用坐标表示平移教案
人教版七年级数学下册7.2:用坐标表示平移优秀教学案例

一、案例背景
本节内容是“人教版七年级数学下册7.2:用坐标表示平移”,这是学生在掌握了坐标系的基础知识后,进一步学习坐标系中图形平移的规律和特点。通过本节课的学习,让学生能够理解平移的概念,掌握平移的性质,并能够利用坐标表示平移前后的图形。
在教学过程中,我以学生的生活实际为出发点,设计了一系列具有针对性和实用性的教学活动。首先,我通过引导学生观察生活中的平移现象,如电梯的上下移动、滑滑梯等,让学生对平移有直观的认识。然后,我利用多媒体演示平移的动画,让学生清晰地看到平移的过程,进一步理解平移的性质。接着,我设计了一系列的练习题,让学生运用坐标表示平移前后的图形,巩固所学知识。最后,我组织学生进行小组讨论和交流,让学生分享自己的学习心得,提高学生的合作能力和沟通能力。
4.结合学生的评价结果,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的平移现象,如滑滑梯、电梯等,引导学生关注平移现象,激发学生的学习兴趣。
2.提出问题:“你们观察过这些平移现象吗?它们有什么共同特点?我们如何用数学知识来表示这些平移呢?”引发学生的思考和讨论。
4.及时给予小组评价和反馈,激发学生的学习积极性和团队精神。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和方法,提高学生的自我认知能力。
2.组织学生进行自我评价和同伴评价,让学生了解自己的学习状况,培养学生的评价能力。
3.教师对学生的学习成果进行评价,关注学生的学科素养和发展潜能。
4.问题导向的教学策略:教师引导学生提出问题,激发学生的好奇心和求知欲。鼓励学生通过观察、实验、讨论等方法,自主探索平移的性质和规律。这种教学策略能够培养学生的探究能力和思维能力,使学生成为主动学习的参与者。
用坐标表示平移-(校公开课)

平移距离
平面的平移距离等于各坐标轴上 平移单位数的平方和的平方根, 即√(a²+b²+c²)。
立体图形平移
平移公式
若立体图形在空间直角坐标系 中的各顶点坐标分别为
(x1,y1,z1),(x2,y2,z2),...,(xn,yn, zn),则立体图形沿x轴、y轴、 z轴分别平移a、b、c个单位后,
各顶点的新坐标分别为 (x1+a,y1+b,z1+c),(x2+a,y2+
能够使用坐标表示平移,并能够 根据给定的坐标变化判断一个点 的平移方向和距离。
在解决与平移相关的实际问题时, 能够灵活运用所学知识进行分析 和求解。
下一步学习建议
深入学习平移的性质和应 1
用,探索更多与平移相关 的数学问题和实际应用。
4
在学习过程中,保持积极的学 习态度和良好的学习习惯,与 同学和老师共同进步。
平移的性质
平移具有一些重要的性质,如平移前 后的图形全等、对应点所连的线段平 行且相等、对应线段平行且相等、对 应角相等。这些性质在解决平移相关 问题时非常有用。
学生自我评价报告
掌握了平移的定义和性质,能够 准确地描述一个图形在平面上的 平移过程。
在学习过程中,积极参与课堂讨 论和小组合作,与同学和老师保 持良好的沟通和交流。
地理信息系统(GIS)
在GIS中,平移用于地理数据的空间分析和可视化。通过 平移地图或地理要素,可以展示不同地理位置之间的关系 和变化。
计算机图形学
在计算机图形学中,平移是基本的图形变换之一。通过对 图像或三维模型进行平移操作,可以实现场景的动态效果、 视角变化等视觉效果。
物理模拟和仿真
在物理模拟和仿真领域,平移用于描述物体在空间中的位 置变化。通过模拟物体的平移运动,可以研究物体的运动 规律、碰撞检测等问题。
用坐标表示平移教案

用坐标表示平移教案学习目标:经历点的坐标变化与图形变化之间关系的探索过程,感受并了解图形的平移变化与点的坐标变化之间的关系。
重点在于通过画图、观察、分析点的坐标变化与图形变化之间的关系;难点是用数学语言描述这种关系。
课前练习一1. 如图,已知点P(4,2)(1) 过点P作直线L1,平行于X轴。
请在直线L1上任取几点,并写出它们的坐标。
由此你发现了什么?平行于X轴的直线上的点的。
(2) 过点P作直线L2平行于Y轴,则直线L2上的点的坐标有什么特点?平行于Y轴的直线上的点的横坐标相等。
新课探索:1. 将点A(-3,3)、B(4,5)分别作以下平移,请在图上标出平移后的点,并写出它们的坐标A(-3,3)向右平移5个单位→( )B(4,5)向左平移5个单位→ ( )A(-3,3)向上平移3个单位→ ( )B(4,5)向下平移3个单位→ ( )观察:平移前后的点的坐标的变化,你能从中发现什么规律?新课一(2)归纳:在平面直角坐标系中,将点(X,Y)向右(或左)平移a个单位长度,可以得到对应点, 将点(X,Y)向上(或向下)平移b个单位长度,可以得到对应点。
2、思考:平移△ABC(1) 若△ABC中的顶点A向右平移3个单位,则顶点B,C将如何平移?△ABC内任意一点P将如何平移?(2) 若将△AB C的顶点A的横坐标减3,纵坐标不变,则顶点B,C的坐标将发生什么变化?3. 已知三角形ABC的三个顶点的坐标分别是A(4,3),B(3,1),C(1,2)(1)将三角形ABC 三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1,B1,C1,依次连接A1,B1,C1各点,所得三角形ABC的大小,形状和位置有什么变化?(2)将三角形ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2,B2,C2,依次连接A2,B2,C2各点,所得三角形A2B2C2的大小与三角形ABC的大小,形状和位置有什么关系?课内练习1.思考:已知三角形ABC的三个顶点的坐标分别是A(4,3),B(3,1),C(1,2)(1) 如果将三角形ABC三个顶点的"横坐标都加3,纵坐标都不变"或"纵坐标都加2,横坐标都不变",那么你能得出什么结论?(2) 如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?2 .已知点A(-2,-3),分别求出点A经平移后得到的坐标:(1) 向上平移3个单位长度(2) 向下平移3个单位长度(3) 向左平移2个单位长度(4) 向右平移4个单位长度(5) 向上平移5个单位长度,再向右平移2个单位长度3. 在平面直角坐标中,点A(1,2)平移后的坐标是A'(-3,3),按照同样的规律平移其它点,则( )变换符合这种要求.A.(3,2)→(4,-2)B.(-1,0)→(-5,-4)C.(2.5, )→(-1.5, )D.(1.2,5)→(-3.2,6)4. 线段AB的两个端点坐标为A(1,3)、B(2,7),线段CD的两个端点坐标为C(2,-4)、D(3,0),则线段AB与线段CD的关系是( )A.平行且相等B.平行但不相等C.不平行但相等D. 不平行且不相等小测:1. 将点P(-3,2)向下平移3个单位,向左平移2个单位后得到点Q(x,y),则xy=__________2. 将点P( ,-5)向左平移个单位,再向上平移4个单位后得到的坐标为 .3. 将点P(m-2,n+1)沿x轴负方向平移3个单位,得到 (1-m,2),求点P坐标. .。
用坐标表示平移说课稿

《用坐标表示平移》说课稿尊敬的各位评委老师,大家好。
我是XX 号考生。
我今天说课的课题是《用坐标表示平移》,下面我将从说教材,说学情,说教法与学法,说教学程序,说板书设计这五个方面进行阐述。
一.说教材。
《用坐标表示平移》是选自人教版数学教材七年级下册第七章第二节的内容。
在此之前,学生已经学习了平移的基本性质以及平面直角坐标系的相关知识,将通过本节课学习用坐标刻画平移变换,它既是对直角坐标系的深化和应用,又为今后学习利用平移变换、坐标变换探索几何性质以及图案设计打下基础做好铺垫,可以说,本节课的内容在教材中起着承前启后的作用,因此,上好本节课是十分重要的。
根据本节课内容,新课标标准以及学生的特点。
我制定了如下三维教学目标。
知识与技能目标:掌握在平面直角坐标系中点或图形的平移引起的点的坐标变化规律过程与方法目标:通过小组合作讨论,让学生经历得到平移引起的点的坐标的变化规律的过程,培养学生观察,判断,合作,探究等思维能力。
情感态度与价值观目标:让学生从现实生活经历及体验出发,激发学习兴趣,感受数学之美,培养严谨的科学态度和勇于探索的科学精神。
根据教学目标的导向,我将本节课的重点确定为理解并掌握点或图形的平移引起的点的坐标变化规律,难点确定为运用该变化规律进行证明和计算。
二.说学情。
学生是学习的主人。
七年级的学生活动参与性强,思维活跃,可塑性强。
针对学生的认知结构特点和心理特征,我将采用“引导探索法”由浅入深,由特殊到一般的提出问题,引导学生自主探索,合作交流,通过观察,对比,归纳,抽象,形成对平移过程中点的坐标变化规律的认识,培养学生“动手”“动脑”“动口”的习惯,并锻炼其理性思维。
这样可以在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
三.说教法学法。
为了更好地完成课堂教学任务,根据本节课教学目标以及学生认知特点,我将采用启发式教学,分组讨论,合作探究的教学方法,坚持“以学生为主体,教师为主导,探究为主线”的原则。
用坐标表示平移教案

用坐标表示平移教案一、教学目标:1. 让学生理解平移的性质,掌握平移在坐标系中的表示方法。
2. 培养学生运用坐标解决实际问题的能力,提高学生的数学思维水平。
3. 培养学生的团队协作精神,提高学生的动手操作能力。
二、教学内容:1. 平移的定义及性质2. 坐标系中平移的表示方法3. 平移在实际问题中的应用三、教学重点与难点:1. 教学重点:平移的性质,坐标系中平移的表示方法。
2. 教学难点:平移在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解平移的定义及性质,引导学生理解平移的概念。
2. 采用案例分析法,分析坐标系中平移的表示方法,让学生学会运用坐标解决实际问题。
3. 采用小组讨论法,让学生在团队合作中探索平移在实际问题中的应用。
五、教学过程:1. 导入:通过生活中的实例,如滑滑梯、拉抽屉等,引导学生感受平移现象。
2. 新课讲解:讲解平移的定义及性质,让学生理解平移的概念。
3. 案例分析:分析坐标系中平移的表示方法,让学生学会运用坐标解决实际问题。
4. 小组讨论:让学生在团队合作中探索平移在实际问题中的应用。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,拓展学生的知识视野。
六、教学评估:1. 课堂提问:通过提问了解学生对平移概念的理解程度,以及是否能熟练运用坐标表示平移。
2. 小组讨论:观察学生在小组讨论中的参与程度,以及他们的合作意识和解决问题的能力。
3. 课后作业:通过课后作业的完成情况,评估学生对课堂所学内容的掌握程度。
七、教学资源:1. 教学PPT:展示平移的定义、性质和坐标表示方法。
2. 坐标纸:用于让学生在实际操作中体验平移。
3. 课后作业:提供具有不同难度的题目,以适应不同学生的需求。
八、教学进度安排:1. 第一课时:讲解平移的定义及性质。
2. 第二课时:分析坐标系中平移的表示方法。
3. 第三课时:探索平移在实际问题中的应用。
4. 第四课时:总结本单元内容,布置课后作业。
用坐标表示平移(课教案)

用坐标表示平移一、教学目标1. 让学生理解平移的性质,掌握平移在坐标系中的表示方法。
2. 培养学生运用坐标解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:平移的性质,坐标系中平移的表示方法。
2. 教学难点:坐标系中图形平移的坐标表示。
三、教学准备1. 教学工具:多媒体课件、黑板、粉笔、坐标纸、学生活动材料。
2. 学生活动材料:坐标纸、铅笔、直尺、橡皮。
四、教学过程1. 导入新课a. 利用多媒体课件展示生活中的平移现象,如电梯上升、滑滑梯等。
b. 引导学生观察这些现象,提问:它们有什么共同特点?c. 学生回答后,总结平移的定义。
2. 探究平移的性质a. 在黑板上画出一个简单的图形,如一个三角形。
b. 进行一次平移,观察图形的变化。
c. 提问:图形发生了什么变化?它的位置发生了怎样的改变?d. 学生回答后,总结平移的性质。
3. 学习坐标系中的平移表示a. 讲解坐标系的基本知识,如坐标轴、原点等。
b. 讲解图形在坐标系中的表示方法。
c. 讲解图形平移时,坐标的变化规律。
d. 进行实例演示,让学生理解并掌握平移的坐标表示方法。
4. 实践操作a. 让学生在坐标纸上进行实践操作,尝试用坐标表示平移。
b. 学生互相交流,分享自己的成果。
c. 教师选取部分学生的作品进行展示,并讲解其正确性。
5. 总结提升a. 让学生总结本节课所学的知识。
b. 教师进行补充,强调平移的性质和坐标表示方法的重要性。
五、课后作业1. 完成教材中的相关练习题。
2. 结合生活实际,找出一道关于平移的问题,并用坐标表示出来。
六、教学拓展1. 利用多媒体课件展示平移在实际生活中的应用,如图形设计、建筑物的移动等。
2. 引导学生理解平移在现实世界中的重要性,激发学生学习兴趣。
七、课堂小结1. 让学生回顾本节课所学的知识,总结平移的性质和坐标表示方法。
2. 强调平移在实际生活中的应用,提醒学生注意观察和思考。
用坐标表示平移

《用坐标表示平移》教学设计上犹县营前中学罗小勇一、教材分析1、教材的地位作用本节课是在上一章学习了点或图形平移及其性质的基础之上,用坐标刻画了平移变换,从数的角度进一步认识了平移变换,这就是用代数方法研究几何问题,体现了平面直角坐标在数学中的作用。
2、教学重点、难点“用坐标表示平移”在教材中起着承上启下的作用,因此本节课的重点是在直角坐标系中,探究点或图形的平移引起的点坐标变化的规律。
对应点的坐标变化规律的获得过程,教科书中仅用了点平移、图形平移两个栏目,来呈现平移引起点坐标变化规律的。
规律不能让学生死记硬背,而是让学生通过观察、分析、归纳的途径来掌握。
因此本节课的难点设定为在坐标系中结合图形的平移变换理解和归纳对应点的坐标变化规律并进行应用。
二、学习者情况分析本人这学期教了两个班,一个是初一(7)班,平行班;另一个是初一(8)班,实验班。
前一个班学生基础不是很好,前面的知识掌握的不是很好,所以要讲基础好点,后一个班基础较好,但是较多学生比较马虎,所以在要注意的地方多提醒学生。
二、教学目标(1)知识目标经历图形坐标变化与图形变化的探索过程,使学生掌握在平面直角坐标系中图形的平移规律。
(2)能力目标通过在直角坐标系中对图形平移的研究探索,培养学生用坐标解决问题的能力和动手操作能力。
(3)情感目标:通过在直角坐标系中对图形平移的研究,丰富对现实空间及图形的认识,体验数学活动充满创造与探索。
三、教学方式及教学手段的选择教学方式:启发探究式教学手段:现代信息技术辅助教学四、教学过程设计分析(一)创景引趣复习、导入新课1. 什么叫做平移?平移后得到的新图形与原图形有什么关系?2. 已知点P(4,2)(1) 过点P作直线L1,平行于X轴。
请在直线L1上任取几点,并写出它们的坐标。
由此你发现了什么?平行于X轴的直线上的点()。
(2) 过点P作直线L2平行于Y轴,则直线L2上的点的坐标有什么特点? 平行于Y轴的直线上的点()。
用坐标表示平移(优质课教案)

用坐标表示平移(优质课教案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN用坐标表示平移教学目标:1. 掌握点的坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.2. 经历探索点坐标变化与点平移的关系,图形各个点坐标变化与图形平移的关系的过程,发展学生的形象思维能力和数形结合意识。
教学重难点:教学重点:掌握坐标变化与图形平移的关系.教学难点:探索坐标变化与图形平移的关系.学情分析:1、知识掌握上,七年级学生刚刚学习直角坐标系,对直角坐标系及坐标的理解不一定很深刻,许多学生容易造成知识混乱,所以应全面系统的去讲述。
2、由于七年级学生的理解能力、思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
教法:根据所学知识直观性的特点,我将采用多媒体教学,以学生的自主探究、合作交流为主,教师的点播为辅。
教学过程:一、知识回顾:什么叫做平移?把一个图形整体沿某一个方向移动一定的距离,图形的这种移动,叫做平移。
平移后得到的新图形与原图形有什么关系?新图形中的每一点都是由原图形中的某一点移动后得到的。
二、观察发现(1)在方格纸上画出点A的坐标,然后按照下面的提示进行平移,观察平移后点的坐标变化:点A(-3,-2)向右平移5个单位长度;(2,-2)点A(-3,-2)向右平移7个单位长度;(4.-2)总结:若将点A(-3,-2)向右平移a(a>0)个单位长度,得到的点的坐标为(-3+a,-2)横纵坐标发生了什么变化?向右平移,纵坐标不变,横坐标加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6,纵坐标不变,则有 A1
,B1
,C1
用幻灯片详细演示,让学生在观察后自行总结出此
次变化的实质结果。
y
A
A1
2
C
2
C1 1
B1
1
B
-4
-2
-5 -4 -3 -2 -1 0
-1 -1
2
4
1 2 3 4x
由于图形的 平移 是建立在点平移的基础 上的,因此这一知识点 可由学 生自主探索完 成。
-2 -2 -3 -3
用坐标表示平移
1、教学目标: ( 1)知识目标
掌握点的坐标变化与点的左右或上下平移间关系,掌握图形各个点的坐标变化与图形平移的关系并能够 解决与平移相关的数学问题。
( 2)能力目标 经历探索点坐标变化与点平移的关系,图形各个点坐标变化与图形平移的关系过程,让学生学会独立自
主地、有条理地思考、分析,解决、发展学生的形象思维能力和数形结合能力。 ( 3)情感目标
2、思考 [1] : 用姚明作引路人,引学生进入几何画板,教师操 作演示,让学生观察点的坐标在平移过程中的变 化 ,为后面总结规律作铺垫;
Y
X O
,
抽学生上机实际操 作,利用几何画板,寻 找点在坐标系内上、下、 左、右平移的过程中其 坐标的变化规律。有效 渗透数形结合的数学意 识。学生以小组合作讨 论方式,自行总结出点 的平移与其坐标变化的 规律。
问题(2)是问题(1) 的变式。学生会利用经 验正确回答该问题
三个顶点的纵坐标同时减去 5呢?
(生答:)
关
2 思考 [3](接例题) (1)将 △ABC 三个顶点的横坐标都加 3, 在练习中,学生逐渐联
想到用坐标表示图形平
纵坐标不变; 纵坐标都加 2,横坐标不变分别 移时,往往通过某些特
能得到什么结论 ?以姚明为引路,进入几何 殊点的平移来解决,加
画板,再作直观演示,进一步让学生观察总
强了学生对知识点间相
结平移时点坐标的变化 .
互联系的认识。旁征博 引,举一反三,非常及
古诗词云: 以一叶落而知天下之秋, 窥一斑而知全豹 ,图形 时的将知识点进行了有
上某些特殊点的坐标发生了什么样的变化,就将带动整个
机的链接。
图形发生相同的变化。
( 2)将 △ABC 三个顶点的横坐标都减 6,纵坐标都减 5 ,又
合
作
观察点的平移过程中坐标的变化,用自己的语言
交
阐述发现的规律
流
3、 总结
拓展学生思维,让
学生真正理解并掌握基
探
归纳 1
本的数学知识和技能, 打
在平面直角坐标系中,将点( x,y)向右(或左) 开本节课的研究空间。 为
究
平移 a 个单位长度, 可以得到对应点 (x+a,y)(或 进一点研究图形的平移
思考 [3] ( 2)与前面提到
合
能得到什么结论?(由学生画图,再小组讨论交流自行完成,
的点的 斜向平移 遥相呼应,
作
教师用展示平台展示优秀作品)
(生用几何画板讲授 )
加强学生知识点间的联系。 组织学生以小组合作
方式,通过实验操作, 体会
交
A1
A
y
几何平移的特征。 思考 斜平
C1
22
C
移与水平平移和垂直平移
( x-a,y));将点( x,y)向上(或下)平移 b 个单 作好了铺垫。
发
位长度,可以得到对应点( x,y+b)(或( x,y-b))。
现 4、、口决:点平移 左右平移,左减右加纵不变 上下平移,上加下减横不变
5、、小试牛刀:课堂小练习
通过亲自操作、思 考、合作等过程,不仅培 养了学生的动手能力和 团队精神, 还将直观操作 和间接说理结合起来, 培 养了学生的推理意识和 语言表达能力, 从而使学 生进一步掌握数形结合 的基本技能。
教学难点:利用坐标变化与图形平移的关系解决实际问题。
3 、 教学过程:
窗外明媚的阳光,好比同学们的脸庞,今天,我将和大家一起,再次走进数学的殿堂。三国时
有关云长过五关,斩六将,这一节课,我们在数学课堂上也要来过关斩将,大家有没有信心?
教学 过程
教学内容
设计意图
蓦然回首 学生通过观察图形的平移,回忆:
三
解:(联系前面所学知识, 可知平面直角坐标
系中图形的平移也可先通过平移图形上某些
特殊点,再依次连接这些平移后的特殊点得
到) 因为图形的平移是以 点的平移为基础 的 ,因此所得△ A1B1C1与△ ABC 的大小、形 状完全相同,可以看作将△ ABC 向左平移 6 个单位长度得到。变式问题;要是将△ ABC
是我们今天要学习的主题: 用坐标表示平移。
复习平移的概念,为新知 识作铺垫,起到承上启下的 作用。
从学生已有的数学知识 出发,走进学生的最近思维 发展区,在第一时间内,把 学生的注意力牵引到数学课 堂中来。
一、 探索点的坐标变化与平移间的关系
1、 观察 实验 探索
y
2
2
1
第 二 关
-4
-2
-4
-3
流
1
B
1
1
-6
-4
-2
B
2
4
②
的联系。
-5 -4 -3 -2 -1 0 1 2 3 4 x
1、平移的特点是什么?
第
2、平移后得到的新图形与原图形有什么关系
一
:平移后图形的位置改变,形状、大小不变。
关
点动成线,线动成面,面动成体,一切几何图形都是由
无数个点组成的,图形在平移过程中形状大小不变,但
组成图形的点的坐标是否发生变化了呢?怎么样变呢?
我们是否可以点坐标的变化来表示图形的平移呢?这就
小试牛刀,在总结 的规律 1 的基础上, 乘胜 追击, 趁热打铁,夯实知 识点,扎实基本功。
第
二、 探索图形点的坐标变化与图形平移间的关系
1、 例题探索 如 图 , △ ABC 三 个 顶 点 的 坐 标
A(4,3),B(3,1),C(1,2) ( 1)将△ ABC 三个顶点的横坐标都减去
学生掌握点 的平 移与其坐标的变化关系 后,将知识迁移到几何 图形的平移上来。
-2
-1
0
-1
-1
-2
-2
2
4
1
2
3
4x
-3-3
将吉普车从点 A(-2,-3) 向右平移 5个单位长度,
采用实验、观察、探索的 学习方法,减少学生在学习 过程中对教师的依赖,体现 了“在参与中体验,在活动 中发展”的全新理念。
它的坐标是
。
向左平移 2个单位, 向上平移 6个单位长度呢?向下平移
4呢?
培养学生主动探索,敢于实践的合作创新精神,让学生学会主动寻求解决问题的途径,从成功中体会研
究数学问题的成就感,从而增强学生学习数学的兴趣,树立学好数学的信心。在坐标系中
, 通过对点坐标的
平移变化的探究 , 培养学生合作交流的意识和主动探索问题的精神
.
2、教学重点、难点: 教学重点:掌握坐标变化与图形平移的关系。