时序逻辑设计原理

合集下载

同步和异步时序逻辑电路的原理

同步和异步时序逻辑电路的原理

同步和异步时序逻辑电路的原理
同步时序逻辑电路和异步时序逻辑电路是数字电路中常见的两种
设计方式。

同步时序逻辑电路的设计原理是基于时钟信号,即在设计电路中
需要引入一个时钟信号作为同步时序电路的控制信号。

同步电路中各
个逻辑门的输入信号只能在时钟上升沿之前稳定,而在时钟上升沿后,所有逻辑门输出信号也都会变成稳定的。

同步电路的时钟控制能够确
保电路的正确性,并且在同步时序电路中,设计师只需要考虑时序问题,简化了设计流程。

异步时序逻辑电路则没有时钟信号控制。

其设计原理是基于信号
的时序间隔,该电路中每一个逻辑门的输入信号在数学“连续性”的
要求下改变其状态,没有同步电路中严格的时钟同步。

异步电路跨越
时序间隔的时间存在一定的延迟,需要设计者考虑信号传播的速度和
稳定性等问题,所以相对来说设计复杂度较高。

综上所述,同步时序逻辑电路和异步时序逻辑电路分别适用于不
同的应用场景,设计时需要根据具体情况进行选择。

数字电子技术基础-第六章_时序逻辑电路(完整版)

数字电子技术基础-第六章_时序逻辑电路(完整版)

T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)

CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0

CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3

时序实验实验报告

时序实验实验报告

一、实验目的1. 掌握时序逻辑电路的基本原理和设计方法。

2. 熟悉常用时序逻辑电路器件的结构和功能。

3. 培养实际操作能力,提高电路设计水平。

二、实验原理时序逻辑电路是指输出不仅与当前输入有关,还与过去输入有关,即电路的输出状态具有记忆功能的电路。

本实验主要涉及同步计数器和寄存器的设计与测试。

三、实验设备1. 数字电子实验箱2. 示波器3. 信号发生器4. 74LS163、74LS00、74LS20等集成器件四、实验内容1. 设计一个4位同步计数器,实现二进制加法计数功能。

2. 设计一个8位同步寄存器,实现数据的暂存和传送功能。

五、实验步骤1. 4位同步计数器设计(1)根据计数器功能要求,列出状态转换表。

(2)根据状态转换表,画出状态转换图。

(3)根据状态转换图,画出电路图。

(4)将电路图连接到实验箱上,并进行调试。

(5)观察计数器输出,验证计数功能是否正确。

2. 8位同步寄存器设计(1)根据寄存器功能要求,列出数据输入、保持、清除和输出控制信号的真值表。

(2)根据真值表,画出电路图。

(3)将电路图连接到实验箱上,并进行调试。

(4)观察寄存器输出,验证寄存功能是否正确。

六、实验结果与分析1. 4位同步计数器实验结果经过调试,4位同步计数器能够实现二进制加法计数功能。

观察计数器输出,验证计数功能正确。

2. 8位同步寄存器实验结果经过调试,8位同步寄存器能够实现数据的暂存和传送功能。

观察寄存器输出,验证寄存功能正确。

七、实验总结本次实验,我们通过设计4位同步计数器和8位同步寄存器,掌握了时序逻辑电路的基本原理和设计方法。

在实际操作过程中,我们提高了电路设计水平,培养了实际操作能力。

八、实验心得1. 在设计时序逻辑电路时,要充分理解电路功能要求,合理选择器件,确保电路能够实现预期功能。

2. 在调试过程中,要仔细观察电路输出,发现问题及时解决。

3. 通过本次实验,我们对时序逻辑电路有了更深入的了解,为今后学习和实践打下了基础。

时序逻辑电路

时序逻辑电路

时序逻辑电路时序逻辑电路是一种在电子数字电路领域中应用广泛的重要概念,它主要用于解决电路中的时序问题,如时钟同步问题、时序逻辑分析等。

本文将详细介绍时序逻辑电路的基础概念、工作原理以及应用。

一、时序逻辑电路的基础概念1、时序逻辑和组合逻辑的区别组合逻辑电路是一类基于组合逻辑门的电路,其输出仅取决于输入信号的当前状态,不受先前的输入状态所影响。

而时序逻辑电路的输出则受到先前输入信号状态的影响。

2、时序逻辑电路的组成时序逻辑电路通常由时钟、触发器、寄存器等组成。

时钟信号被用于同步电路中的各个部分,触发器将输入信号存储在内部状态中,并在时钟信号的作用下用来更新输出状态。

寄存器则是一种特殊类型的触发器,它能够存储多个位的数据。

3、时序逻辑电路的分类根据时序逻辑电路的时序模型,可将其分为同步和异步电路。

同步电路按照时钟信号的周期性工作,这意味着电路通过提供时钟信号来同步所有操作,而操作仅在时钟上升沿或下降沿时才能发生。

异步电路不同,它不依赖时钟信号或时钟信号的上升和下降沿,所以在一次操作完成之前,下一次操作可能已经开始了。

二、时序逻辑电路的工作原理时序逻辑电路的主要工作原理基于触发器的行为和时钟电路的同步机制。

在时序逻辑电路中使用了一些触发器来存储电路状态,待时钟信号到达时更新输出。

时钟信号提供了同步的机制,确保电路中所有部分在时钟信号到达时同时工作。

触发器的基本工作原理是将输入信号存储到内部状态中,并在时钟信号的作用下,用来更新输出状态。

时钟信号的边沿触发触发器,即在上升沿或下降沿时触发触发器状态的更新。

这意味着在更新之前,电路的状态保持不变。

三、时序逻辑电路的应用1、时序电路在计算机系统中的应用时序逻辑电路在计算机系统中有着广泛的应用。

例如,计算机中的时钟信号可用来同步处理器、主存储器和其他外设间的工作。

此外,电路中的寄存器和触发器也被用于存储和更新信息,这些信息可以是计算机程序中的指令、运算结果或其他数据。

第六章 时序逻辑电路

第六章  时序逻辑电路

Y Q* 0 0 0 1 0 1 0 0 0 1 1
0 0 1 0 0
图6.2.2
6.2.时序逻辑电路的分析方法
三、时序图: 在时钟脉冲 序列的作用下, 电路的状态、输 出状态随时间变 化的波形叫做时 序图。由状态转 换表或状态转换 图可得图6.2.3所 示 图6.2.3
6.2.时序逻辑电路的分析方法
K1 1
6.2.时序逻辑电路的分析方法
(2) 状态方程:
JK触发器的特性方程
Q J Q K Q
*
将驱动方程代入JK触发器的特性方程中,得出电 路的状态方程,即
K1 1 J 1 ( Q 2 Q 3 ) , K 2 ( Q 1Q 3 ) J 2 Q1 , J QQ , K 3 Q2 1 2 3
设初态Q3Q2Q1=000,由状态方程可得:
CLK Q3 Q2 Q1 Q *3 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 3 4 5 6 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0
Q *2 Q *1 Y 0 1 0
Q 1 * ( Q 2 Q 3 ) Q 1 Q 2 * Q 1 Q 2 Q 1Q 3 Q 2 Q * Q Q Q Q Q 1 2 3 2 3 3
1 1 0 0 1 0 0
0 1 0 1 0 0 0
0 0 0 0 0 1 1
由状态转换表可知,为七进制加法计数器,Y为进位 脉冲的输出端。
6.2.时序逻辑电路的分析方法
二、状态转换图: 将状态转换表以图形的方式 直观表示出来,即为状态转换图 由状态转换表可得状态转换图 如图6.2.2所示
CLK Q3 Q2 Q1 0 0 0 0 1 0 0 1 2 0 1 0 3 4 5 6 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1

数字电路系统设计中英文课件教程 07 时序逻辑电路原理-Sequential Logic Design Principles (1)

数字电路系统设计中英文课件教程 07 时序逻辑电路原理-Sequential Logic Design Principles (1)
所有的时序电路对亚稳态都是敏感的
metastable 亚稳态
stable
稳态
stable
稳态
7.2 Latches and Flip-Flops (锁存器与触发器)
—— The Basic Building Blocks of most Sequential Circuits. (大多数时序电路的基本构件)
Clock Frequency: The Reciprocal of the Clock Period
(时钟频率:时钟周期的倒数。)
Clock Tick: The First Edge of Pulse in a clock period or sometimes the period itself.
DIGITAL SYSTEM DESIGN
ESHINE
eshine.li@
Chapter 7 Sequential Logic Design Principles ( 时序逻辑设计原理 )
Latches and Flip-Flops (锁存器和触发器 ) Clocked Synchronous State-Machine Analysis (同步时序分析) Clocked Synchronous State-Machine Design (同步时序设计)
Basic Concepts (基本概念)
Sequential Logic Circuit (时序逻辑电路) Clock Period: The Time between Successive transitions in the same direction.
(时钟周期:两次连续同向转换之间的时间。)

Latches(锁存器)

时序逻辑电路的输出,与电路的原状态 -回复

时序逻辑电路的输出,与电路的原状态 -回复

时序逻辑电路的输出,与电路的原状态-回复时序逻辑电路的输出与电路的原状态息息相关,它们之间的关系是通过时钟信号来实现的。

时序逻辑电路是一种具有状态的电路,它会根据输入信号和当前的状态产生不同的输出信号。

其输出与电路的原状态有着密切的联系,下面我将一步一步回答这个问题,详细阐述时序逻辑电路的输出与电路的原状态之间的关系。

首先,让我们来了解一下时序逻辑电路的基本原理。

时序逻辑电路由触发器(flip-flop)和组合逻辑电路(combinational logic)两部分组成。

触发器用于存储电路的状态,而组合逻辑电路则用于实现输入信号对于状态的转换。

时序逻辑电路的最重要的特点就是其输出不仅与当前的输入信号有关,还与之前的输入信号和状态有关。

时序逻辑电路的输出由两个主要因素决定:输入信号和电路的当前状态。

输入信号就是电路的外部输入,它们会触发电路的状态变化。

电路的当前状态则由之前的输入信号和状态经过逻辑运算得到。

我们可以利用触发器来存储电路的状态,通常使用D触发器和JK触发器。

这些触发器有时也被称为时序存储器,因为它们能够存储电路的状态,并且在时钟信号到来时根据输入信号和当前状态产生输出。

时序逻辑电路的输出在时钟信号的控制下发生变化。

时钟信号是一个周期性的信号,它的高电平和低电平分别代表了一个时钟周期的开始和结束。

在每个时钟周期的上升沿或下降沿,电路会根据当前的状态和输入信号产生新的输出。

时钟信号的频率决定了电路的工作速度,它通常以赫兹(Hz)为单位表示。

时序逻辑电路的输出也可以被称为时钟输出,它在时钟周期的每个时间点都会有一个确定的值。

时序逻辑电路的输出是通过组合逻辑电路计算得到的。

组合逻辑电路是由逻辑门和逻辑门之间的连线组成的,它们根据输入信号和电路的当前状态计算出输出信号。

逻辑门实现了逻辑运算,例如与门、或门、非门等,它们能够实现逻辑与、逻辑或、逻辑非等运算。

组合逻辑电路的输出会被反馈到触发器中,以更新电路的状态。

数字电路时序设计

数字电路时序设计

数字电路时序设计时序设计是数字电路设计中的重要部分,它负责处理和控制电路中的时序信号。

时序设计不仅涉及到时钟信号的产生和传播,还包括时序逻辑电路的设计和时序约束的建立。

本文将介绍数字电路时序设计的基本原理和常用技术手段。

一、时序设计的基本原理时序设计是指在数字电路中,通过合理地控制信号的时间顺序和时机,实现对电路的各种操作和功能的精确控制。

其基本原理包括以下几点:1. 时钟信号的产生和传播:时钟信号是数字电路中重要的时序信号,它的产生和传播需要考虑到时钟频率、时钟相位、时钟的稳定性等因素。

时钟信号的产生可以通过晶体振荡器、计数器等电路来实现;时钟信号的传播则需要通过时钟树网络和时钟分配策略来保证时钟信号的稳定性和准确性。

2. 时序逻辑电路的设计:时序逻辑电路是指在数字电路中,根据时钟信号的触发沿或边沿来控制电路中的状态变化和信号传输的电路。

时序逻辑电路的设计需要考虑到寄存器、计数器、状态机等电路的选择和配置,以及触发器的使用和时序逻辑的优化等方面。

3. 时序约束的建立:时序约束是指在时序设计中,对时钟信号的频率、占空比、时钟关系等要求进行具体规定和约束。

时序约束的建立需要根据实际应用需求和电路特性来确定,以确保电路的时序性能符合设计要求,例如保证数据的正确性、减少功耗等。

二、常用的时序设计技术手段1. 同步时序设计:同步时序设计是指通过时钟信号来同步电路的工作,即电路中的状态变化和信号传输仅在时钟边沿或触发沿上发生。

同步时序设计具有时钟稳定性好、抖动较小、电路布局布线灵活等优点,适用于大多数数字电路设计。

2. 异步时序设计:异步时序设计是指电路中的状态变化和信号传输在时钟信号之外的其他条件下发生,不依赖于时钟信号的同步控制。

异步时序设计适用于对响应时间要求较高或者对功耗控制较为重要的应用场景,但也存在着电路复杂、设计布线难度大、状态和信号的稳定性难以保证等缺点。

3. 管脚映射和物理布局:在时序设计中,管脚映射和物理布局是影响时序性能的重要因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章时序逻辑设计原理
39
另一种商用的边沿JK触发器
74LS109
第7章时序逻辑设计原理
40
T(Toggle)触发器
T触发器:在每一个时钟脉冲的有效边沿都会
改变状态。 常用在计数器和分频器。 具有使能端的T触发器
由D触发器构成
由JK触发器构成
第7章时序逻辑设计原理
41
JK触发器 Vs D触发器
存器。
动态输入指示符
CLK 主锁存器 从锁存器
L
写入
不变
上升沿 锁存
开始写入
H
不变
写入
第7章时序逻辑设计原理
26
边沿D触发器功能特性
CLK为0的区间,QM发生变化; CLK为1后,QM的值传给Q。
第7章时序逻辑设计原理
27
边沿D触发器时间特性
传播延迟 (from CLK) 建立时间 (D before CLK) 保持时间 (D after CLK)
RS锁存器及典型操作
或非门构成的RS锁存器,有两个输入R、S,两个输出Q、QN。
S进行置位set, 使得Q输出1 R进行复位 reset,使得Q 输出0
(1)
(3)
(2)
(5) (4)
(6)
(7) (8)
(9)
(11) (10) (12)
RS正常输入
RS同时起作用
第7章时序逻辑设计原理
R和S不能同时取消, 否则会导致震荡状态或亚稳态。
史信息。
时序电路的状态个数有限:
有限状态机 状态的流转反映了电路的特性。
第7章时序逻辑设计原理
3
时序电路导读
状态变化的驱动方式:
时钟clock 有效电平:通常在时钟的触发沿内状态发生改变。 时钟周期tper、时钟频率、时钟触发沿、占空比
高电平有效
低电平有效
第7章时序逻辑设计原理
4
时序电路导读
LOW HIGH
HIGH LOW
HIGH LOW
第7章时序逻辑设计原理
LOW HIGH
7
Analog analysis
以CMOS电路电压传输特性为例 CMOS阈值电平2.5 V左右
2245..5.5801VVV
20.50 V
(2.5V, 2.5V)
20.50 V
245..580 VV
第7章时序逻辑设计原理
况下使用JK触发器
第7章时序逻辑设计原理
42
锁存器和触发器的描述
电路图 功能表 逻辑符号 特征方程 状态图
第7章时序逻辑设计原理
43
特征方程
锁存器或触发器的功能特性采用特征方程进行形式描述
SR锁存器
Qn1 S R Qn
JK触发器 T触发器
Qn1 J Qn KQn
Qn1 Qn
触发器(Flip-flop)
连续地监测输入信号,并只在时钟信号所确定的时刻改变其输出 同步(Synchronous):与时钟信号同步
第7章时序逻辑设计原理
25
主从D触发器——边沿D触发器
正边沿D触发器:一对D锁存器构成 只在控制时钟上升沿到来的时刻采样D输入信号,并且据此改
变Q和QN输出; 第1个锁存器称为主(master)锁存器,第2个称为从(slave)锁
D触发器
Qn1 D
第7章时序逻辑设计原理
44
状态转移图(State Diagram)
用来描述电路状态,也可以对现实世界中任何有 状态的事物进行建模
列举出该事物所有可能的状态,每个状态用一个 圈表示
状态之间可以相互转换。状态转换用带箭头的弧 线表示。
在弧线上标明状态发生变化的条件(即系统的输 入)。也可以标明该状态转移导致的结果(输 出)。
15
RS锁存器时间参数
新状态 外输入RS
原状态 00 00 00
01 01
11 11
10 10
01 11 10
10 00 01 10 00 01 10 00 01 10 00 01
传播延迟
最小脉冲宽度
输入信号宽度必须大于最小脉冲宽度
第7章时序逻辑设计原理
16
R S 锁存器
R非S非锁存器:低态有效的置位和复位,可以用与 非门实现。
第7章 时序逻辑设计原理
第一讲 南京大学计算机系
时序电路导读
自然 世界
确定 的输入 组合
组合 逻辑
确定 的输出 组合
自然 世界
是问题的全部吗?
第7章时序逻辑设计原理
2
时序电路导读
时序电路的输出不仅取决于当前的输入,而其取 决于过去的输入序列(状态)。
状态state:
是一个状态变量集合。 包含了在当前输入的基础上预测当前输出的所有的历
第7章时序逻辑设计原理
17
具有使能端的RS锁存器
•S-R Latch with
1
1
Enable, 带使能端的 1
RS锁存器(RS闩锁) 1
1
•受使能信号控制,C
为写入条件或指令
第7章时序逻辑设计原理
18
具有使能端的RS锁存器
•S-R Latch with
1
Enable, 带使能端的 0
RS锁存器(RS闩锁) 1 •受使能信号控制,
为了使得输出能正确地反映输入的变化,要求在 时钟脉冲信号为高期间,输入不发生变化。
其特点是数据在第一个边沿锁入触发器,第二个 边沿后数据出现在输出端。
主从式触发器基本上已经被边沿触发式触发器所 取代。
第7章时序逻辑设计原理
34
主从式RS触发器
第7章时序逻辑设计原理
35
主从式RS触发器
第7章时序逻辑设计原理
触发器(Flip-Flop)
连续地监测输入信号,并只在时钟信号所确定的时刻 改变其输出
同步(Synchronous):与时钟信号同步
第7章时序逻辑设计原理
13
锁存器
1. RS(Reset-Set)锁存器
2. R S 锁存器
3. 具有使能端的RS锁存器 4. D锁存器
第7章时序逻辑设计原理
14
第7章时序逻辑设计原理
S=X R=0
47
JK触发器的状态转移图
Inputs
Output
J
K
CLK
Q
Q’
说明
0
0

Last Q
Last Q’
维持原状态
0
1

0
1
复位
1
0

1
0
置位
1
1

Last Q’
Last Q 翻转(Toggle)
第7章时序逻辑设计原理
48
T触发器的状态转移图
D触发器的状态转移图?
第7章时序逻辑设计原理
20
D锁存器时间参数
D Latch: Transparent Latch
建立时间(Set-up time) 保持时间(Hold time)
建立保持时间
需满足tsetup和thold的要求
窗口内D输入改变导 致输出不可预测
第7章时序逻辑设计原理
21
锁存器与触发器
都是双稳态元件 锁存器(Latch)
第7章时序逻辑设计原理
49
当TE有效时,D输入被禁止,触发器的数据从TI输入。
第7章时序逻辑设计原理
32
扫描触发器
当TE无效时,电路特性和普通的D触发器没有区别。
第7章时序逻辑设计原理
33
主从式(Master-slave)触发器
在时钟脉冲信号高电平期间数据进入触发器,在 下降沿输出反映输入的变化
主从式触发器也称为脉冲触发型触发器(Pulse Triggered Flip-flops)
Ignored since QN
is
0.
1钳位Is:ginncoereCd
is
now
0.
K输入有效,
J
J输入无效
K
IsginncoereQd0i钳s 0.位:
Ignored since QN
is 0.J输入有效, NhomakorabeaK输入无效
C
QM
QM_L
Q
QN
第7章时序逻辑设计原理
38
边沿触发式J-K触发器
解决主从JK触发器中1和0钳位的问题。 在上升沿时采样输入信号。
•扫描触发器除了D输入端以外,还有两个输 入端。
•TI即Test Input,用来输入测试序列(测试向量)。 •TE即Test Enable,用来控制触发器工作状态。
•TE为0时触发器工作在正常状态,功能和D 触 发器一样。 •TE为1时,触发器工作在测试状态。
第7章时序逻辑设计原理
31
扫描触发器
窗口内D输入改变导 致输出不可预测
第7章时序逻辑设计原理
28
其它的D触发器种类
负边沿D触发器Negative-edge triggered
具有预置和清零端的正边沿D触发器
第7章时序逻辑设计原理
29
具有使能端的边沿触发式D触发器
•在时钟边沿能够保持最后一次储存的值。
第7章时序逻辑设计原理
30
扫描触发器
36
主从式J-K触发器
•解决RS端同时有效的问题;在JK触发器中,JK同时有 效,Q和QN进入与当前状态相反的状态(状态翻转)。
主从式JK触发器
复位/置位/数据保持/数据求反
第7章时序逻辑设计原理
37
主从式J-K触发器
在触发脉冲的后沿,JK输入 的状态变化无效。
JK输入保持稳定
Ignored since C is 0.
相关文档
最新文档