二叉树实验报告
实验报告:二叉树

实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。
二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。
在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。
树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。
遍历二叉树的实质是将非线性结构转为线性结构。
三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。
【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。
【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。
五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。
六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。
第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。
二叉排序树的实验报告

二叉排序树的实验报告二叉排序树的实验报告引言:二叉排序树(Binary Search Tree,简称BST)是一种常用的数据结构,它将数据按照一定的规则组织起来,便于快速的查找、插入和删除操作。
本次实验旨在深入了解二叉排序树的原理和实现,并通过实验验证其性能和效果。
一、实验背景二叉排序树是一种二叉树,其中每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得在二叉排序树中进行查找操作时,可以通过比较节点的值来确定查找的方向,从而提高查找效率。
二、实验目的1. 理解二叉排序树的基本原理和性质;2. 掌握二叉排序树的构建、插入和删除操作;3. 验证二叉排序树在查找、插入和删除等操作中的性能和效果。
三、实验过程1. 构建二叉排序树首先,我们需要构建一个空的二叉排序树。
在构建过程中,我们可以选择一个节点作为根节点,并将其他节点插入到树中。
插入节点时,根据节点的值与当前节点的值进行比较,如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。
重复这个过程,直到所有节点都被插入到树中。
2. 插入节点在已有的二叉排序树中插入新的节点时,我们需要遵循一定的规则。
首先,从根节点开始,将新节点的值与当前节点的值进行比较。
如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。
如果新节点的值与当前节点的值相等,则不进行插入操作。
3. 删除节点在二叉排序树中删除节点时,我们需要考虑不同的情况。
如果要删除的节点是叶子节点,即没有左右子树,我们可以直接删除该节点。
如果要删除的节点只有一个子树,我们可以将子树连接到要删除节点的父节点上。
如果要删除的节点有两个子树,我们可以选择将其右子树中的最小节点或左子树中的最大节点替代该节点,并删除相应的替代节点。
四、实验结果通过对二叉排序树的构建、插入和删除操作的实验,我们得到了以下结果:1. 二叉排序树可以高效地进行查找操作。
二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告篇一:二叉树的建立及遍历实验报告实验三:二叉树的建立及遍历【实验目的】(1)掌握利用先序序列建立二叉树的二叉链表的过程。
(2)掌握二叉树的先序、中序和后序遍历算法。
【实验内容】1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。
如:输入先序序列abc###de###,则建立如下图所示的二叉树。
并显示其先序序列为:abcde中序序列为:cbaed后序序列为:cbeda【实验步骤】1.打开VC++。
2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。
至此工程建立完毕。
3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。
给文件起好名字,选好路径,点OK。
至此一个源文件就被添加到了你刚创建的工程之中。
4.写好代码5.编译->链接->调试#include#include#define OK 1#define OVERFLOW -2typedef int Status;typedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild, *rchild;}BiTNode,*BiTree;Status CreateBiTree(BiTree &T){TElemType ch;scanf("%c",&ch);if (ch=='#')T= NULL;else{if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))return OVERFLOW;T->data = ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); }return OK;} // CreateBiTreevoid PreOrder(BiTree T) {if(T){printf("%c",T->data); PreOrder(T->lchild); PreOrder(T->rchild);}}void InOrder(BiTree T) {if(T){InOrder(T->lchild);printf("%c",T->data);InOrder(T->rchild);}}void PostOrder(BiTree T){if(T){PostOrder(T->lchild); PostOrder(T->rchild);printf("%c",T->data);}}void main(){BiTree T;CreateBiTree(T);printf("\n先序遍历序列:"); PreOrder(T);printf("\n中序遍历序列:"); InOrder(T);printf("\n后序遍历序列:"); PostOrder(T);}【实验心得】这次实验主要是通过先序序列建立二叉树,和二叉树的先序、中序、后续遍历算法。
数据结构二叉树的实验报告

数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。
二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。
本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。
二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。
三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。
通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。
例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。
2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。
3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。
常见的查找方式有深度优先搜索和广度优先搜索。
深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。
四、实验结果通过实验,我们可以观察到二叉树的特性和性能。
在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。
而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。
在遍历二叉树时,不同的遍历方式会得到不同的结果。
前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。
在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。
深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。
二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。
二、实验内容
1、构造一个二叉树。
我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。
2、实现查找二叉树中的节点。
在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。
3、实现删除二叉树中的节点。
在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。
4、对二叉树进行遍历操作。
二叉树的遍历有多种方法,本实验使用的是先序遍历。
首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。
三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。
实验报告平衡二叉树

实习报告一、需求分析1、问题描述利用平衡二叉树实现一个动态查找表。
(1)实现动态查找表的三种基本功能:查找、插入和删除。
(2)初始时,平衡二叉树为空树,操作界面给出查找、插入和删除三种操作供选择。
每种操作均要提示输入关键字。
在查找时,如果查找的关键字不存在,则把其插入到平衡二叉树中。
每次插入或删除一个结点后,应更新平衡二叉树的显示。
(3)每次操作的关键字都要从文件中读取,并且关键字的集合限定为短整型数字{1,2,3······},关键字出现的顺序没有限制,允许出现重复的关键字,并对其进行相应的提示。
(4)平衡二叉树的显示采用图形界面画出图形。
2、系统功能打开数据文件,用文件中的关键字来演示平衡二叉树操作的过程。
3、程序中执行的命令包括:(1)(L)oad from data file //在平衡的二叉树中插入关键字;(2)(A)ppend new record //在平衡的二叉树中查找关键字;(3)(U)pate special record //显示调整过的平衡二叉树;(4)(D)elete special record //删除平衡二叉树中的关键字;(5)(Q)uit //结束。
4、测试数据:平衡二叉树为:图 1 插入关键字10之前的平衡二叉树插入关键字:10;调整后:图 2 插入关键字10之后的平衡二叉树删除关键字:14;调整后:图 3 删除关键字14后的平衡二叉树查找关键字:11;输出:The data is here!图 3 查找关键字11后的平衡二叉树二、概要设计本次实验目的是为了实现动态查找表的三种基本功能:查找、插入和删除。
动态查找表可有不同的表示方法,在此次实验中主要是以平衡二叉树的结构来表示实现的,所以需要两个抽象数据类型:动态查找表和二叉树。
1、动态查找表的抽象数据类型定义为:ADT DynamicSearchTable{数据对象D :D是具有相同特性的数据元素的集合。
二叉树 实验报告

二叉树实验报告二叉树实验报告引言:二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在本次实验中,我们将探索二叉树的基本概念、特性以及应用。
一、二叉树的定义与性质1.1 二叉树的定义二叉树是一种递归定义的数据结构,它可以为空,或者由一个根节点和两个二叉树组成,分别称为左子树和右子树。
1.2 二叉树的性质(1)每个节点最多有两个子节点,分别称为左子节点和右子节点。
(2)左子树和右子树也是二叉树。
(3)二叉树的子树之间没有关联性,它们是相互独立的。
二、二叉树的遍历方式2.1 前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左子树和右子树。
2.2 中序遍历中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树。
2.3 后序遍历后序遍历是指先遍历左子树,然后遍历右子树,最后访问根节点。
2.4 层次遍历层次遍历是指按照从上到下、从左到右的顺序遍历二叉树的每个节点。
三、二叉树的应用3.1 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得二叉搜索树可以高效地进行查找、插入和删除操作。
3.2 哈夫曼树哈夫曼树是一种带权路径长度最短的二叉树,它常用于数据压缩中。
哈夫曼树的构建过程是通过贪心算法,将权值较小的节点放在离根节点较远的位置,从而实现最优编码。
3.3 表达式树表达式树是一种用于表示数学表达式的二叉树,它的叶节点是操作数,而非叶节点是操作符。
通过对表达式树的遍历,可以实现对表达式的求值。
结论:通过本次实验,我们对二叉树的定义、性质、遍历方式以及应用有了更深入的了解。
二叉树作为一种重要的数据结构,在计算机科学和算法设计中发挥着重要的作用。
在今后的学习和工作中,我们应该进一步探索二叉树的高级应用,并灵活运用于实际问题的解决中。
二叉树实验报告

二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。
本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。
本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。
2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。
树的左子节点和右子节点被称为二叉树的左子树和右子树。
3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。
节点结构包含一个数据域和左右指针,用于指向左右子节点。
创建二叉树的过程可以通过递归或者迭代的方式来完成。
3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。
插入时需要考虑保持二叉树的有序性。
删除操作是将指定节点从树中删除,并保持二叉树的有序性。
在实验中,我们可以使用递归或者循环的方式实现这些操作。
3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。
常见的遍历方式包括前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。
中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。
后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。
3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。
可以通过递归或者循环的方式实现二叉树的查找操作。
基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。
4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。
具体实现包括二叉树的创建、插入、删除、遍历和查找操作。
在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。
4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。
另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树的创建与遍历
一、试验内容
根据输入的字符串创建树或二叉树,输出树或二叉树的先序遍历和后序遍历序列。
二、运行环境
Visual C++
三、需求分析
1、建立一棵用二叉链表方式存储的二叉树。
2、从键盘接受扩展先序序列,以二叉链表作为存储结构。
3、建立二叉树,并将遍历结果打印输出。
采用递归和非递归两种
方法实现。
四、设计概要
//——————二叉树的二叉链表存储表示——————
typedef struct BiTBode{
TElemType data;
Struct BiTNode *lchild, *rchild //左右孩子指针
}BiTNode, *BiTree;
//—————基本操作的函数原型说明————————
Status CreateBiTree(BiTree &T);
//按先序次序输入二叉树中结点的值(一个字符),空格字符表示空树。
//构造二叉树链表表示的二叉树T。
Status PreOrderTraverse(BiTree T, status(*visit)(TElemType e));
//采用二叉链表存储结构,visit是对结点操作的应用函数。
//先序遍历二叉树T,对每个结点调用函数visit一次且仅以次。
//一旦visit()失败,则操作失败。
Status PostOrderTraverse(BiTree T, status(*visit)(TElemType e));
//采用二叉链表存储结构,visit是对结点操作的应用函数。
//后序遍历二叉树T,对每个结点调用函数visit一次且仅以次。
//一旦visit()失败,则操作失败。
—————先序遍历二叉树基本操作的递归算法————
Status PreOrderTraverse(BiTree T,Status(*visit)(TElemType e)){
//采用二叉链表存储结构,visit是对数据元素操作的应用函数,
//先序遍历二叉树T的递归算法,对每个数据元素调用函数visit。
//最简单的visit函数是:
// Status PrintElement(TElemType e) {//输出元素e的值
// printf(e); //实用时,加上格式窜
// return OK;
// }
//调用实例:PreOrderTraverse(T,PrintElement);
if(T) {
if (visit(T->data))
if(PreOrderTraverse(T->lchild,visit))
if(PreOrderTraverse(T->rchild,visit)) return OK;
return ERROR;
}else return OK;
}//PreOrderTraverse
五、源程序代码
#include<stdio.h>
#include<stdlib.h>
typedef struct BiTNode
{ char data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
void CreatBiTree(BiTree &T) //先序创建二叉树
{char ch;
if((ch=getchar())=='\n') T=NULL;
else { T=(BiTNode*)malloc(sizeof(BiTNode));
if(!T) exit(1);
T->data=ch;
CreatBiTree(T->lchild);
CreatBiTree(T->rchild);
}
}
void PreTravel(BiTree &T) //先序遍历
{if(T)
{
printf("%c",T->data);
PreTravel(T->lchild);
PreTravel(T->rchild);
}
}
void PostTravel(BiTree &T) //后序遍历
{if(T)
{
PostTravel(T->lchild);
PostTravel(T->rchild);
printf("%c",T->data);
}
}
void main()
{ BiTree T;
printf("请输入字符串:\n" );
CreatBiTree(T);
printf("先序遍历序列:\n");
PreTravel(T);
printf("\n");
printf("后序遍历序列:\n");
PostTravel(T);
printf("\n");
};
六、调试结果
1、输入ABC##DE#G##F### (#表示空格字符)
2、输入AGM##ST##WB#E (#表示空格字符)
输出遍历序列:。