4.1静态存储器扩展实验
硬件实验四 存储器扩展

实验四存储器
实验要求:
用所给的1*1bit存储器的电路,构成一个2*4bit的存储器电路。
其中输入数据用开关,输出用指示灯(或发光二极管)。
验证实验结果,需记录实验结果。
叙述字扩展和位扩展的基本原理。
注意:实际的存储器一般是输入输出数据线是合用的。
R/W端高电平为读操作,低电平为写操作。
片选信号为高电平即为选中。
实验报告要求
1.实验目的
2.实验原理(详细说明什么是字扩展,什么是位扩展,本实验应用的是什么扩展。
实验逻辑图)
3.实验结果记录和分析:参考电路图
4.实验心得
5.思考题
a.本实验存储器电路的寻址范围是多少?容量是多少?
b.实验存储器电路中哪些线可作为地址线?共几位?为什么?
c.如果用本实验构成的2*4bit存储器电路作为一个存储器单元,再构成一4*8bit
的存储器电路,应该如何连接?请画出逻辑框图。
静态存储器 实验报告

静态存储器实验报告静态存储器实验报告引言:静态存储器(Static Random Access Memory,简称SRAM)是一种常见的存储器类型,具有快速读写速度和稳定性等优点。
在本次实验中,我们将对SRAM 进行测试和分析,以评估其性能和可靠性。
实验目的:1. 了解静态存储器的基本原理和工作方式;2. 测试SRAM的读写速度和稳定性;3. 分析SRAM的性能特点和应用范围。
实验步骤:1. 准备工作:搭建SRAM测试平台,包括电源、控制电路和数据输入输出接口等;2. 读写速度测试:通过控制电路发送读写指令,并记录SRAM的读写时间;3. 稳定性测试:连续进行大量的读写操作,并观察SRAM的稳定性表现;4. 性能分析:根据测试结果,分析SRAM的读写速度、稳定性和功耗等性能指标。
实验结果:1. 读写速度:经过多次测试,我们得出了SRAM的平均读写速度为XX ns。
这一速度相对较快,适用于对存储器响应速度要求较高的应用场景。
2. 稳定性:在连续读写测试中,SRAM表现出了较好的稳定性,未出现数据丢失或错误的情况。
这证明了SRAM在数据存储和传输过程中的可靠性。
3. 功耗:SRAM在读写操作时会消耗一定的功耗,但相对于动态存储器(DRAM)而言,SRAM的功耗较低。
这使得SRAM在低功耗要求的电子设备中具有一定的优势。
讨论与分析:1. SRAM的优点:相对于动态存储器,SRAM具有读写速度快、稳定性高和功耗低等优点。
这使得SRAM在高性能计算机、嵌入式系统和高速缓存等领域得到广泛应用。
2. SRAM的缺点:与之相对应的是,SRAM的成本较高。
由于SRAM采用了更复杂的电路结构,导致其制造成本较高。
这使得SRAM在大容量存储器领域的应用受到一定的限制。
3. SRAM的应用范围:由于SRAM的快速读写速度和稳定性,它在高性能计算领域得到了广泛应用。
同时,由于SRAM的低功耗特性,它也适用于移动设备、物联网和嵌入式系统等低功耗要求的场景。
存储器扩展实验|计算机原理存储器扩展实验word版

存储器扩展实验
一、实验目的
掌握单片机系统中存储器扩展方式。
二、实验设备
TDN86/51教学实验系统一台
三、实验内容及步骤
1、实验电路如图所示,扩展的外部数据存储器6264的地址范围为
6000H-7FFFH,共8K字节。
将片内
RAM40H-4FH单元中的6个数据,传送到外部RAM7000H-7FFFH单元中,然后翻读到片内RAM的50H-5FH单元中。
2、实验程序如下
ORG 0000H
LJMP MAIN
ORG 1000H MAIN: MOV R0, #40H MOV R2, #10H MOV DPTR, #7000H L1: MOV A, @R0 MOVX @DPTR, A INC R0
INC DPTR
DJNZ R2, L1
MOV R0, #50H
MOV DPTR, #7000H MOV R2, #10H
L2: MOVX A, @DPTR MOV @R0, A
INC R0
INC DPTR
DJNZ R2, L2
L3: SJMP L3
END
实验步骤
(1)按图接线。
(2)输入程序检查无错误,经汇编、连接后装入系统。
(3)在101AH处设断点。
(4)用R07**命令在40H-4FH单元中送入16个数。
(5)GB=0000运行程序。
(6)用R07**命令检查50H-5FH单元中的内容是否与40H-4FH单元一致。
实验四 存储器扩展实验

实验四存储器扩展实验一、实验目的1.掌握存储器扩展的基本方法及存储器接口地址的设置。
2.了解80X86微型机计算机的存储空间分配。
3.熟悉静态存储器6264的使用方法。
4.掌握存储器的读写原理。
二、实验任务1.在80X86微型计算机上扩展8K字节的RAM。
编制存储器的测试程序,从0单元开始写入数据,首先写0,然后地址每增1,数据都加1,当数据加到FFH后再从0开始,直到存储器的8K字节写满为止;每写入一个数据读出比较一次,若写入的数据与读出的数据相等,则继续;否则显示出错信息。
2.利用DEBUG调试程序中的F命令,将“FFH”填充到6264RAM中C000段的0000H~0FFFH单元中,而将“00H”填充到同一段的1000H~1FFFH单元中,再检查该段0000H~1FFFH单元的内容。
三、实验设备器材1.80X86系列微型计算机一台。
2.微机硬件实验平台。
3.存储器芯片6264及基本门电路若干。
四、实验准备1.预习存储器6264芯片的使用方法。
2.预习存储器扩展的方法,了解80X86系列微型计算机的内存空间分配。
3.设计存储器扩展的接口电路,画出连线图。
4.根据实验任务要求,编写源程序。
五、实验原理提示1.对于存储器的扩展设计,首先要确定存储器的结构和存储器芯片。
本实验扩展8KB RAM,可以采用单存储体结构;选用6264芯片。
6264芯片的管脚图如图1所示。
6264的引脚分为以下三部分:①地址线A0~A12,可访问213个存储单元②数据线D0~D7②控制线:片选信号CE、写信号WE、输出允许信号OE接着进行存储器接口电路的设计。
这也是扩展存储器设计的关键。
在80286以上微型计算机中,用户可用的内存空间为0C0000H~0DFFFFH(可查附录2内存分配表)128KB。
扩展的8KB内存可以从C0000H开始。
设地址范围为C0000H~C1FFFH,可写出地址位图如下。
A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A01 1 0 0 0 0 0高位地址译码选片低位地址直接相连那么对高位地址总线的译码,产生存储器的片选信号;低位地址直接与芯片的地址线相连,实验电路可参考框图2。
微机原理实验---存储器的扩展实验

深圳大学实验报告课程名称:_____________ 微机计算机设计__________________实验项目名称:静态存储器扩展实验______________学院:_________________ 信息工程学院____________________专业:_________________ 电子信息工程____________________指导教师:____________________________________________报告人:________ 学号:2009100000班级:<1>班实验时间:_______ 2011.05. 05实验报告提交时间:2011. 05. 31教务处制一、实验目的1. 了解存储器扩展的方法和存储器的读/ 写。
2. 掌握CPU寸16位存储器的访问方法。
二、实验要求编写实验程序,将OOOOH H OOOFH共16个数写入SRAM的从0000H起始的一段空间中,然后通过系统命令查看该存储空间,检测写入数据是否正确。
三、实验设备PC 机一台,TD-PITE 实验装置或TD-PITC 实验装置一套。
四、实验原理1、存储器是用来存储信息的部件,是计算机的重要组成部分,静态RAM是由MOS 管组成的触发器电路,每个触发器可以存放1 位信息。
只要不掉电,所储存的信息就不会丢失。
此,静态RAM工作稳定,不要外加刷新电路,使用方便。
2、本实验使用两片的62256芯片,共64K字节。
本系统采用准32位CPU具有16 位外部数据总线,即D0 D1、…、D15,地址总线为BHE^(#表示该信号低电平有效)、BLE#、A1、A2、…、A20。
存储器分为奇体和偶体,分别由字节允许线BH四和BLE#选通。
存储器中,从偶地址开始存放的字称为规则字,从奇地址开始存放的字称为非规则字。
处理器访问规则字只需要一个时钟周期,BH即和BLE #同时有效,从而同时选通存储器奇体和偶体。
存储器扩展实验.

实验一存储器扩展实验一、实验目的1、学习掌握存储器扩展方法和存储器读/写。
2、掌握存储器地址译码方法。
3、了解6264RAM特性。
二、实验设备1、TDN86/51或TDN86/88教学实验系统一套2、排线、导线若干三、实验内容及步骤(共2个实验)1、扩展存储器的地址编码2、存储器扩展实验(1)、按实验(1)线路图所示编写程序,通过8255产生适当的时序对6264RAM进行读/写。
实验程序如下:STACK SEGMENT STACK DW 64 DUP(?) STACK ENDSCODE SEGMENTASSUME CS:CODESTART: MOV BX,3000H MOV DX,0E010HMOV CX,0010HMOV AL,80HOUT 63H,ALA1: MOV AL,DHOUT 62H,ALMOV AL,DLOUT 61H,ALMOV AL,[BX]OUT 60H,ALMOV AL,0CHOUT 63H,ALMOV AL,0DHOUT 63H,ALINC BXINC DXLOOP A1MOV AL,90HOUT 63H,ALMOV BX,3000HMOV CX,0010HMOV DX,0E010HMOV SI,4000HA2: MOV AL,DHOUT 62H,ALMOV AL,DLOUT 61H,ALMOV AL,0EHOUT 63H,ALIN AL,60HMOV [SI],ALCMP AL,[BX]JNZ A4MOV AL,0FHOUT 63H,ALINC SIINC BXINC DXLOOP A2MOV AX,014FHINT 10HMOV AX,014BHINT 10HA3: JMP A3A4: MOV AX,0145HINT 10HA5: JMP A5CODE ENDSEND START实验步骤:①分析线路图,画出参考程序流程图;②按图(1)连接实验线路;③输入程序并检查无误,经汇编、连接后装入系统;④在3000~300FH单元中填入16个数;⑤运行程序,在“OK”(正确)或“E”(错误)提示出现后,用CTRL+C来终止程序运行;⑥用D命令检查4000~400FH单元中的内容和3000~300FH中的数据是否一致。
静态随机存储器实验实验报告

静态随机存储器实验实验报告摘要:本实验通过对静态随机存储器(SRAM)的实验研究,详细介绍了SRAM的工作原理、性能指标、应用领域以及实验过程和结果。
实验使用了仿真软件,搭建了SRAM电路,通过对不同读写操作的观察和分析,验证了SRAM的可靠性和高速性。
一、引言静态随机存储器(SRAM)是一种常用的存储器类型,被广泛应用于计算机系统和其他电子设备中。
它具有存储速度快、数据可随机访问、易于控制等优点,适用于高速缓存、寄存器堆以及其他要求高速读写和保持稳定状态的场景。
本实验旨在通过设计和搭建SRAM电路,深入理解SRAM的工作原理和性能指标,并通过实验验证SRAM的可靠性和高速性。
二、实验设备和原理1. 实验设备本实验使用了以下实验设备和工具:- 电脑- 仿真软件- SRAM电路模块2. SRAM原理SRAM是由静态触发器构成的存储器,它的存储单元是由一对交叉耦合的反相放大器构成。
每个存储单元由6个晶体管组成,分别是两个传输门、两个控制门和两个负反馈门。
传输门被用于读写操作,控制门用于对传输门的控制,负反馈门用于保持数据的稳定状态。
SRAM的读操作是通过将存储单元的控制门输入高电平,将读取数据恢复到输出端。
写操作是通过将数据线连接到存储单元的传输门,将写入数据传输到存储单元。
三、实验过程和结果1. 设计电路根据SRAM的原理和电路结构,我们设计了一个8位的SRAM 电路。
电路中包括8个存储单元和相应的读写控制线。
2. 搭建电路通过仿真软件,我们将SRAM电路搭建起来,连接好各个线路和电源。
确保电路连接正确无误。
3. 进行实验使用仿真软件中提供的读写操作指令,分别进行读操作和写操作。
观察每个存储单元的输出情况,并记录数据稳定的时间。
4. 分析实验结果根据实验结果,我们可以得出以下结论:- SRAM的读操作速度较快,可以满足高速读取的需求。
- SRAM的写操作也较快,但需要保证写入数据的稳定性和正确性。
静态存储器扩展实验报告记录

静态存储器扩展实验报告记录————————————————————————————————作者:————————————————————————————————日期:深圳大学实验报告课程名称:微机原理与接口技术实验项目名称:静态存储器扩展实验学院:信息工程学院专业:电子信息工程指导教师:周建华报告人:洪燕学号:2012130334 班级:电子3班实验时间:2014/5/21实验报告提交时间:2014/5/26教务部制一.实验目的与要求:1. 了解存储器扩展的方法和存储器的读/写。
2. 掌握CPU 对16位存储器的访问方法。
二.实验设备PC 机一台,TD-PITE 实验装置或TD-PITC 实验装置一套,示波器一台。
三.实验原理存储器是用来存储信息的部件,是计算机的重要组成部分,静态RAM 是由MOS 管组成的触发器电路,每个触发器可以存放1位信息。
只要不掉电,所储存的信息就不会丢失。
因此,静态RAM 工作稳定,不要外加刷新电路,使用方便。
但一般SRAM 的每一个触发器是由6个晶体管组成,SRAM 芯片的集成度不会太高,目前较常用的有6116(2K ×8位), 图4.1 62256引脚图 6264(8K ×8位)和62256(32K ×8位)。
本实验平台上选 用的是62256,两片组成32K ×16位的形式,共64K 字节。
62256的外部引脚图如图4.1所示。
本系统采用准32位CPU ,具有16位外部数据总线,即D0、D1、…、D15,地址总线为BHE #(#表示该信号低电平有效)、BLE #、A1、A2、…、A20。
存储器分为奇体和偶体,分别由字节允许线BHE #和BLE #选通。
存储器中,从偶地址开始存放的字称为规则字,从奇地址开始存放的字称为非规则字。
处理器访问规则字只需要一个时钟周期,BHE #和BLE #同时有效,从而同时选通存储器奇体和偶体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:微型计算机技术与应用
实验项目名称:静态存储器扩展实验
学院:信息工程学院
专业:电子信息工程
指导教师:
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务处制
实验目的:
1.了解存储器扩展的方法和存储器的读/写。
2.掌握CPU对16位存储器的访问方法。
实验设备:
PC机一台,TD-PITE实验装置或TD-PITC实验装置一套,示波器一台。
本系统采用准32位CPU,具有16位外部数据总线,即D0、D1、…、D15,地址总线为BHE#(#表示该信号低电平有效)、BLE#、A1、A2、…、A20。存储器分为奇体和偶体,分别由字节允许线BHE#和BLE#选通。
存储器中,从偶地址开始存放的字称为规则字,从奇地址开始存放的字称为非规则字。处理器访问规则字只需要一个时钟周期,BHE#和BLE#同时有效,从而同时选通存储器奇体和偶体。处理器访问非规则字却需要两个时钟周期,第一个时钟周期BHE#有效,访问奇字节;第二个时钟周期BLE#有效,访问偶字节。处理器访问字节只需要一个时钟周期,视其存放单元为奇或偶,而BHE#或BLE#有效,从而选通奇体或偶体。写规则字和非规则字的简单时序图如图4.2所示。
方法、步骤:
存储器是用来存储信息的部件,是计算机的重要组成部分,静态RAM是由MOS管组成的触发器电路,每个触发器可以存放1位信息。只要不掉电,所储存的信息就不会丢失。因此,静态RAM工作稳定,不要外加刷新电路,使用方便。但一般SRAM的每一个触发器是由6个晶体管组成,SRAM芯片的集成度不会太高,目前较常用的有6116(2K×8位),6264(8K×8位)和62256(32K×8位)。本实验平台上选用的是62256,两片组成32K×16位的形式,共64K字节。62256的外部引脚图如图4.1所示。图4.1 62256引脚图
图4.2写规则字(左)和非规则字(右)简单时序图
实验单元电路图
图4.3 SRAM单元电路图
实验过程及内容:
编写实验程序,将0000H~000FH共16个数写入SRAM的从0000H起始的一段空间中,然后通过系统命令查看该存储空间,检测写入数据是否正确。
SSTACKSEGMENT STACK
DW 32 DUP(?)
从该实验了解规则字与非规则字的存储方法的汇编代码的编写,以及存储方式字节型或者字型存储方式的不同实现方法。
指导教师批阅意见:
成绩评定:
指导教师签字:
年月日
备注:
INC SI
INC SI
LOOPAA1
图4.4 SRAM实验接线图
MOV AX,4C00H
INT 21H;程序终止
STARTENDP
CODEENDS
END START
1.实验接线图如图4.4所示,按图接线。
2.编写实验程序,经编译、链接无误后装入系统。
3.先运行程序,Βιβλιοθήκη 程序运行停止。4.通过D命令查看写入存储器中的数据:
SSTACKENDS
CODESEGMENT
STARTPROC FAR
ASSUME CS:CODE
MOV AX, 8000H;存储器扩展空间段地址
MOV DS, AX
AA0:MOV SI, 0000H;数据首地址
MOV CX, 0010H
MOV AX, 0000H
AA1:MOV [SI], AX
INC AX
D8000:0000回车,即可看到存储器中的数据,应为0001、0002、…、000F共16个字。
5.改变实验程序,按非规则字写存储器,观察实验结果。
运行结束后,使用D命令查看写入存储器的数据为
6.改变实验程序,按字节方式写存储器,观察实验现象。
运行结束后,使用D命令查看写入存储器的数据为
实验结论: