数学建模之蚁群算法

合集下载

蚁群算法内容简介

蚁群算法内容简介

蚁群算法内容简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点。

蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。

蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。

蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。

但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。

在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。

下面是一些最常用的变异蚁群算法精英蚂蚁系统全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素。

最大最小蚂蚁系统(MMAS)添加的最大和最小的信息素量[ τmax ,τmin ],只有全局最佳或迭代最好的巡逻沉积的信息素。

蚁群算法

蚁群算法

蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。

该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。

蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。

蚁群算法是群智能理论研究领域的一种主要算法。

1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。

路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。

蚁群算法及案例分析精选全文

蚁群算法及案例分析精选全文
问过的节点;另外,人工蚁
群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
正反馈、较强的鲁棒性、全
局性、普遍性
局部搜索能力较弱,易出现
停滞和局部收敛、收敛速度
慢等问题
优良的分布式并行计算机制
长时间花费在解的构造上,
导致搜索时间过长
Hale Waihona Puke 易于与其他方法相结合算法最先基于离散问题,不
能直接解决连续优化问题
蚁群算法的
特点
蚁群算法的特点及应用领域
由于蚁群算法对图的对称性以
及目标函数无特殊要求,因此
L_ave=zeros(NC_max,1);
%各代路线的平均长度
while NC<=NC_max
%停止条件之一:达到最大迭代次数
% 第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
scatter(C(:,1),C(:,2));
L(i)=L(i)+D(R(1),R(n));
hold on
end
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])

蚁群算法的

蚁群算法的

蚁群算法的
蚁群算法是近几十年来智能计算领域中新兴的最重要的优化技
术之一,它被认为是能够模拟蚂蚁群体寻找最优解的算法,已经被广泛应用于工程中,包括机器的设计、航运系统的优化,和物流系统的规划等等代表众多应用。

蚁群算法是模拟蚂蚁群体搜索食物的行为,从而求解一个待求解的问题的优化技术,早在1995年的时候就已经被提出,在大规模问题下有很好的搜索性能。

蚁群算法通过模拟蚁群通过特定路径来搜索资源来求解优化问题,模拟理论上这是一个有效的优化算法,可以帮助系统找到最优解并获得最大回报。

蚁群算法的工作原理是通过模拟蚁群通过特定路径来搜索资源,每只蚂蚁经过一条路径时,就会根据路径的特性来选择继续前进的方向,而其他的蚂蚁也会根据当前的状态来决定自己前进的路径,从而形成一种合作的局部路径,一旦有蚂蚁发现有较好的路径就会被其他蚂蚁模仿,最终有效地把所有蚂蚁引导到最优解。

蚁群算法具有几个显著的优点,首先它所耗费的计算资源要比其他算法少得多,其次它的实施简单,能够快速的数据搜索,并且运行简单,容易理解,最后,它可以自我改进,也就是说,它能够实时地进行调整,以适应变化的环境。

虽然蚁群算法有许多优点,但它也有一些限制,首先,蚁群算法对全局最优解的搜索能力有限,其次,它容易陷入局部最优点,最后,它也存在一定的调参不利,对于参数的调整可能会导致算法效率的降
低。

总结而言,蚁群算法是一种有效的优化技术,使用它可以快速有效的搜索解决问题,在几乎所有的行业中都能取得较好的效果。

然而,它也需要注意参数的调整,以及全局最优解的搜索能力,才能发挥出最大的效力。

蚁群算法概述

蚁群算法概述

蚁群算法概述一、蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。

它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。

其选择一条路径的概率与该路径上分泌物的强度成正比。

因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。

蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径。

蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。

这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。

也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。

但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。

这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。

实际上好似是程序的一个自我学习的过程。

3、人工蚂蚁和真实蚂蚁的异同ACO是一种基于群体的、用于求解复杂优化问题的通用搜索技术。

与真实蚂蚁通过外激素的留存/跟随行为进行间接通讯相似,ACO中一群简单的人工蚂蚁(主体)通过信息素(一种分布式的数字信息,与真实蚂蚁释放的外激素相对应)进行间接通讯,并利用该信息和与问题相关的启发式信息逐步构造问题的解。

人工蚂蚁具有双重特性:一方面,他们是真实蚂蚁的抽象,具有真实蚂蚁的特性,另一方面,他们还有一些在真实蚂蚁中找不到的特性,这些新的特性,使人工蚂蚁在解决实际优化问题时,具有更好地搜索较好解的能力。

人工蚂蚁与真实蚂蚁的相同点为:1.都是一群相互协作的个体。

蚁群算法——精选推荐

蚁群算法——精选推荐

蚁群算法⼀、蚁群算法蚁群算法是在20世纪90年代由澳⼤利亚学者Marco Dorigo等⼈通过观察蚁群觅⾷的过程,发现众多蚂蚁在寻找⾷物的过程中,总能找到⼀条从蚂蚁巢⽳到⾷物源之间的最短路径。

随后他们在蚂蚁巢⽳到⾷物源之间设置了⼀个障碍,⼀段时间以后发现蚂蚁⼜重新⾛出了⼀条到⾷物源最短的路径。

通过对这种现象的不断研究,最后提出了蚁群算法。

蚁群算法在解决(即TSP问题)时,取得了⽐较理想的结果。

⼆、基本⼈⼯蚁群算法原理运⽤⼈⼯蚁群算法求解TSP问题时的基本原理是:将m个蚂蚁随机地放在多个城市,让这些蚂蚁从所在的城市出发,n步(⼀个蚂蚁从⼀个城市到另外⼀个城市为1步)之后返回到出发的城市。

如果m个蚂蚁所⾛出的m条路经对应的中最短者不是TSP问题的最短路程,则重复这⼀过程,直⾄寻找到满意的TSP问题的最短路径为⽌。

为了说明这⼀个算法下⾯⽤⼀个算法流程图来表⽰⼀下:三、蚁群算法中涉及到的参数及其符号::蚂蚁数量,约为城市数量的1.5倍。

如果蚂蚁数量过⼤,则每条路径上的信息素浓度趋于平均,正反馈作⽤减弱,从⽽导致收敛速度减慢;如果过⼩,则可能导致⼀些从未搜索过的路径信息素浓度减⼩为0,导致过早收敛,解的全局最优性降低:信息素因⼦,反映了蚂蚁运动过程中积累的信息量在指导蚁群搜索中的相对重要程度,取值范围通常在[1, 4]之间。

如果信息素因⼦值设置过⼤,则容易使随机搜索性减弱;其值过⼩容易过早陷⼊局部最优:启发函数因⼦,反映了启发式信息在指导蚁群搜索中的相对重要程度,取值范围在[3, 4.5]之间。

如果值设置过⼤,虽然收敛速度加快,但是易陷⼊局部最优;其值过⼩,蚁群易陷⼊纯粹的随机搜索,很难找到最优解:信息素挥发因⼦,反映了信息素的消失⽔平,相反的反映了信息素的保持⽔平,取值范围通常在[0.2, 0.5]之间。

当取值过⼤时,容易影响随机性和全局最优性;反之,收敛速度降低:信息素常数,表⽰蚂蚁遍历⼀次所有城市所释放的信息素总量。

04蚁群算法ACA

04蚁群算法ACA

导言蚁群算法是20世纪90年代发展起来一种模仿蚂蚁群体行为的新的智能优化算法。

意大利学者Dorigo M等人提出一种模拟昆虫王国蚂蚁群体觅食行为方式的仿生优化算法——蚁群算法(Ant Colony Algorithm,ACA)。

该算法引入正反馈并行机制,具有较强的鲁棒性、优良的分布式计算机制、易于与其他方法结合等优点。

目前蚁群算法已经渗透到各个应用领域,从一维静态优化问题到多维动态优化问题,从离散问题到连续问题。

蚁群算法解决了许多复杂优化和经典NP-C问题,展现出优异的性能和广阔的发展前景。

基本蚁群算法的原理基本蚁群算法(Ant System,AS)是采用人工蚂蚁的行走路线来表示待求问题可行解得一种方法。

每只人工蚂蚁在解空间中独立的搜索可行解,当它们碰到一个还没有走过的路口时,就随机挑选一条路径前行,同时释放出与路径长度有关的信息素(pheromone) 。

路径越短信息素的浓度就越大。

当后继的人工蚂蚁再次碰到这个路口的时候,以相对较大的概率选择信息素较多的路径,并在“行走路径”上留下更多的信息素,影响后来的蚂蚁,形成正反馈机制。

随着算法的推进,代表最优解路线上的信息素逐渐增多,选择它的蚂蚁也逐渐增多,其他路径上的信息素却会随着时间的流逝而逐渐消减,最终整个蚂蚁在正反馈机制的作用下集中到代表最优解的路线上,也就找到了最优解。

在整个寻优过程中,单只蚂蚁的选择能力有限,但蚁群具有高度的自组织性,通过信息素交换路径信息,形成集体自催化行为,找到最优路径。

蚁群优化算法中,每个优化问题的解都是搜索空间的一只蚂蚁,蚂蚁都有一个由优化的目标函数决定的适应度函数值(与释放的信息素成正比) ,蚂蚁根据周围信息素的多少决定搜索方向,并在搜索过的路径上释放信息素以影响别的蚂蚁。

优缺点分析ACA 具有如下优点:(1)ACA 是一种正反馈算法,这是蚁群算法最显著的特点;(2)ACA 本质上一种分布式并行算法。

(3)ACA 具有较好的全局寻优特性。

蚁群算法——精选推荐

蚁群算法——精选推荐

蚁群算法⼀、蚁群算法简介 蚁群算法(AG)是⼀种模拟蚂蚁觅⾷⾏为的模拟优化算法,它是由意⼤利学者Dorigo M等⼈于1991年⾸先提出,并⾸先使⽤在解决TSP(旅⾏商问题)上。

之后,⼜系统研究了蚁群算法的基本原理和数学模型.⼆、蚁群算法原理1、蚂蚁在路径上释放信息素。

2、碰到还没⾛过的路⼝,就随机挑选⼀条路⾛。

同时,释放与路径长度有关的信息素。

3、信息素浓度与路径长度成反⽐。

后来的蚂蚁再次碰到该路⼝时,就选择信息素浓度较⾼路径。

4、最优路径上的信息素浓度越来越⼤。

5、最终蚁群找到最优寻⾷路径。

三、蚁群算法流程图四、实例应⽤基于TSP问题的基本蚁群算法原理讲解参考⽼师上课讲解的PPT不做过多粘贴1.源代码:%% 旅⾏商问题(TSP)优化%% 清空环境变量clear allclc%% 导⼊数据citys = ceil(rand(50,2)*50000)%load newcitys.mat%% 计算城市间相互距离fprintf('Computing Distance Matrix... \n');n = size(citys,1);D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));elseD(i,j) = 1e-4;endendend%% 初始化参数fprintf('Initializing Parameters... \n');m = 50; % 蚂蚁数量alpha = 1; % 信息素重要程度因⼦beta = 5; % 启发函数重要程度因⼦rho = 0.05; % 信息素挥发因⼦Q = 1; % 常系数Eta = 1./D; % 启发函数Tau = ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 150; % 最⼤迭代次数Route_best = zeros(iter_max,n); % 各代最佳路径Length_best = zeros(iter_max,1); % 各代最佳路径的长度Length_ave = zeros(iter_max,1); % 各代路径的平均长度%% 迭代寻找最佳路径figure;while iter <= iter_maxfprintf('迭代第%d次\n',iter);% 随机产⽣各个蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start;% 构建解空间citys_index = 1:n;% 逐个蚂蚁路径选择for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)allow_index = ~ismember(citys_index,tabu);allow = citys_index(allow_index); % 待访问的城市集合P = allow;% 计算城市间转移概率for k = 1:length(allow)P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta; endP = P/sum(P);% 轮盘赌法选择下⼀个访问城市Pc = cumsum(P);target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = Table(i,:);for j = 1:(n - 1)Length(i) = Length(i) + D(Route(j),Route(j + 1));endLength(i) = Length(i) + D(Route(n),Route(1));end% 计算最短路径距离及平均距离if iter == 1[min_Length,min_index] = min(Length);Length_best(iter) = min_Length;Length_ave(iter) = mean(Length);Route_best(iter,:) = Table(min_index,:);else[min_Length,min_index] = min(Length);Length_best(iter) = min(Length_best(iter - 1),min_Length);Length_ave(iter) = mean(Length);if Length_best(iter) == min_LengthRoute_best(iter,:) = Table(min_index,:);elseRoute_best(iter,:) = Route_best((iter-1),:);endend% 更新信息素Delta_Tau = zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算for j = 1:(n - 1)Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i); endDelta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i); endTau = (1-rho) * Tau + Delta_Tau;% 迭代次数加1,清空路径记录表% figure;%最佳路径的迭代变化过程[Shortest_Length,index] = min(Length_best(1:iter));Shortest_Route = Route_best(index,:);plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');pause(0.3);iter = iter + 1;Table = zeros(m,n);% endend%% 结果显⽰[Shortest_Length,index] = min(Length_best);Shortest_Route = Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%% 绘图figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i = 1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对⽐')运⾏结果:利⽤函数citys = ceil(rand(50,2)*50000) 随机产⽣五⼗个城市坐标2.研究信息素重要程度因⼦alpha, 启发函数重要程度因⼦beta,信息素挥发因⼦rho对结果的影响为了保证变量唯⼀我重新设置五⼗个城市信息进⾏实验在原来设值运⾏结果:实验结果可知当迭代到120次趋于稳定2.1 alpha值对实验结果影响(1)当alpha=4时运⾏结果实验结果可知当迭代到48次左右趋于稳定(2)当alpha=8时运⾏结果:有图可知迭代40次左右趋于稳定,搜索性较⼩(3)当alpha= 0.5运⾏结果:有图可知迭代到140次左右趋于稳定(4)当alpha=0.2时运⾏结果:结果趋于110次左右稳定所以如果信息素因⼦值设置过⼤,则容易使随机搜索性减弱;其值过⼩容易过早陷⼊局部最优2.2 beta值对实验影响(1)当 beta=8时运⾏结果结果迭代75次左右趋于稳定(2)当 beta=1时运⾏结果:结果迭代130次左右趋于稳定所以beta如果值设置过⼤,虽然收敛速度加快,但是易陷⼊局部最优;其值过⼩,蚁群易陷⼊纯粹的随机搜索,很难找到最优解2.3 rho值对实验结果影响(1)当rho=3时运⾏结果:结果迭代75次左右趋于稳定(2)当rho=0.05运⾏结果:结果迭代125次左右趋于稳定所以如果rho取值过⼤时,容易影响随机性和全局最优性;反之,收敛速度降低总结:蚁群算法对于参数的敏感程度较⾼,参数设置的好,算法的结果也就好,参数设置的不好则运⾏结果也就不好,所以通常得到的只是局部最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
1.3 蚁群优化算法研究背景
与大多数基于梯度的应用优化算法不同,群智能依 靠的是概率搜索算法。虽然概率搜索算法通常要采用 较多的评价函数,但是与梯度方法及传统的演化算法 相比,其优点还是显著的 ,主要表现在以下几个方 面: 1 无集中控制约束,不会因个别个体的故障影响整 个问题的求解,确保了系统具备更强的鲁棒性 2 以非直接的信息交流方式确保了系统的扩展性 3 并行分布式算法模型,可充分利用多处理器 4 对问题定义的连续性无特殊要求 5 算法实现简单
8
1.4 蚁群优化算法研究现状
90年代Dorigo最早提出了蚁群优化算法---蚂蚁系统 (Ant System, AS)并将其应用于解决计算机算法学中经 典的旅行商问题(TSP)。 从蚂蚁系统开始,基本的蚁群算法得到了不断的发展和 完善,并在TSP以及许多实际优化问题求解中进一步得到了 验证。这些AS改进版本的一个共同点就是增强了蚂蚁搜索 过程中对最优解的探索能力,它们之间的差异仅在于搜索控 制策略方面。而且,取得了最佳结果的ACO是通过引入局部 搜索算法实现的,这实际上是一些结合了标准局域搜索算法 的混合型概率搜索算法,有利于提高蚁群各级系统在优化问 题中的求解质量。
7
1.3 蚁群优化算法研究背景
群智能方法易于实现,算法中仅涉及各种基本的 数学操作,其数据处理过程对CPU和内存的要求也 不高。而且,这种方法只需目标函数的输出值,而 无需其梯度信息。已完成的群智能理论和应用方法 研究证明群智能方法是一种能够有效解决大多数全 局优化问题的新方法。更为重要是,群智能潜在的 并行性和分布式特点为处理大量的以数据库形式存 在的数据提供了技术保证。无论是从理论研究还是 应用研究的角度分析,群智能理论及其应用研究都 是具有重要学术意义和现实价值的。
12
1.5 蚁群优化算法应用现状
ACO还在许多经典组合优化问题中获得了成功的应用, 如二次规划问题(QAP)、机器人路径规划、作业流程规划、 图着色(Graph Coloring)等问题。 经过多年的发展,ACO已成为能够有效解决实际二次规 划问题的几种重要算法之一。AS在作业流程计划(Jobshop Scheduling)问题中的应用实例已经出现,这说明了 AS在此领域的应用潜力。利用MAX-MIN AS解决PAQ也取 得了比较理想的效果,并通过实验中的计算数据证明采用该 方法处理PAQ比较早的SA算法更好,且与禁忌搜索算法性 能相当。利用ACO实现对生产流程和特料管理的综合优化, 并通过与遗传、模拟退火和禁忌搜索算法的比较证明了 ACO的工程应用价值。
9
1.4蚁群优化算法研究现状
M.Dorigo 最初提出的AS(Ant-System)有三种版本: Ant-density(蚁密)、Ant-quantity(蚁量)和Ant-cycle(蚁 周)。 在Ant-density和Ant-quantity中蚂蚁在两个位置节点间每 移动一次后即更新信息素,而在Ant-cycle中当所有的蚂蚁都 完成了自己的行程后才对信息素进行更新,而且每个蚂蚁所 释放的信息素被表达为反映相应行程质量的函数。通过与其 它各种通用的启发式算法相比,在不大于75城市的TSP中, 这三种基本算法的求解能力还是比较理想的,但是当问题规 模扩展时,AS的解题能力大幅度下降。 对此,后面的研究者提出了多种不同的改进蚁群算法。
10

1.5 蚁群优化算法应用现状
随着群智能理论和应用算法研究的不断发展,研究者 已尝试着将其用于各种工程优化问题,并取得了意想不到 的收获。多种研究表明,群智能在离散求解空间和连续求 解空间中均表现出良好的搜索效果,并在组合优化问题中 表现突出。 蚁群优化算法并不是旅行商问题的最佳解决方法,但是 它却为解决组合优化问题提供了新思路,并很快被应用到 其它组合优化问题中。比较典型的应用研究包括:网络路 由优化、数据挖掘以及一些经典的组合优化问题。
5
1.3 蚁群优化算法研究背景
群智能理论研究领域有两种主要的算法:蚁群 算法(Ant Colony Optimization, ACO)和微粒群(或 称为粒子群)算法(Particle Swarm Optimization, PSO)。 前者是对蚂蚁群落食物采集过程的模拟,已成 功应用于许多离散优化问题。微粒群算法也是起源 于对简单社会系统的模拟,最初是模拟鸟群觅食的 过程,但后来发现它是一种很好的优化工具。
蚁群算法
国防科技大学理学院数学系 成礼智 2011年夏季学期数学建模竞赛讲座
1
1. 2. 3. 4. 5. 6.
蚁群优化算法概述 蚁群优化算法概念 算法模型和收敛性分析 算法实现的技术问题 应用 参考资料
2
1 蚁群优化算法概述 1.1 起源 1.2 应用领域 1.3 研究背景 1.4 研究现状 1.5 应用现状
3
1.1 蚁群优化算法起源
20世纪90年代意大利学者M.Dorigo, V.Maniezzo,A.Colorni等从生物进化的机制中 受到启发,通过模拟自然界蚂蚁搜索路径的行为, 提出来一种新型的模拟进化算法—— 蚁群算法,是 群智能理论研究领域的一种主要算法。用该方法求 解TSP问题、分配问题、job-shop调度问题,取得了 较好的试验结果.虽然研究时间不长,但是现在的 研究显示出,蚁群算法在求解复杂优化问题(特别 是离散优化问题)方面有一定优势,表明它是一种 有发展前景的算法.
4
1.2 蚁群优化算法应用领域
蚁群算法是一种群智能方法,能够被用于解 决大多数优化问题或者能够转化为优化求解的 问题。现在其应用领域已扩展到多目标优化、 数据分类、数据聚类、模式识别、电信管理、 生物系统建模、流程规划、信号处理、机器人 控制、决策支持以及仿真和系统辩识等方面, 群智能理论和方法为解决这类应用问题提供了 新的途径。
11
1.5 蚁群优化算法应用现状
蚁群算法在电信路由优化中已取得了一定的应用成果。 HP公司和英国电信公司在90年代中后期都开展了这方面的研 究,设计了蚁群路由算法(Ant Colony Routing, ACR)。 每只蚂蚁就像蚁群优化算法中一样,根据它在网络上的经 验与性能,动态更新路由表项。如果一只蚂蚁因为经过了网 络中堵塞的路由而导致了比较大的延迟,那么就对该表项做 较大的增强。同时根据信息素挥发机制实现系统的信息更 新,从而抛弃过期的路由信息。这样,在当前最优路由出现 拥堵现象时,ACR算法就能迅速的搜寻另一条可替代的最优 路径,从而提高网络的均衡性、负荷量和利用率。目前这方 面的应用研究仍在升温,因为通信网络的分布式信息结构、 非稳定随机动态特性以及网络状态的异步演化与ACO的算法 本质和特性非常相似。
相关文档
最新文档