稳恒电流的磁场(上)
第三章 静电场和稳恒磁场1

y
r′
q′
r
q x
( x, y , z ) x = 0 = 0
(1)
ε
z
q
2
O v n 1 2 ε
q
4πε ( x a ) + y 2 + z 2 4πε r 由对称性:a, 0, 0 ) , q ( a, 0, 0 ) , q′ = q : (
r = 3ε 0 E 0 c o s θ
r=a
由真空中电偶极矩 v 在真空中产生的电势
P
v v P r = 4π ε 0 r 3
P P cos θ = 4π ε 0 r 2
v P = 4π ε 0 E 0 a 3
例2.
P75
解:电势是球对称,则 b1 1 = a1 + (R > R3 ) R b2 2 = a2 + ( R 2 > R > R1 ) R 条件:
v δ (x) = 0
v
∫ δ ( x )dV = 1
v x≠0 v x = 0 ∈V
v v x δ x x′ 表示 ( ) v 与 x = 0 的 δ 函数定义相较,则有
v v δ ( x x′) = 0
v v
v 处于 x′点上的单位点电荷密度用函数
∫ δ ( x x′)dV = 1
v v x ≠ x′ v x′ ∈V
1) 2 3) σ ∴
R = R1
R3
2
R2 R1 1
= 1
R→ ∞
= 0, 2 ) 2 ,σ
R = R3 2
R = R2
= 1
R = R3
1
= ε0
1 R
= ε0
2 R
大学物理稳恒磁场

B2
0
r
r2 R2
I
rR
I
0I rR p r
B20R I2r rR
rp
B 0I rR 2r
B
无限长圆柱导体电流外面的磁场与电流
都集中在轴上的直线电流的磁场相同
.
R
r
无限长通电柱面
B2r 0 rR
0I rR p r I
B0 rR
rp
B 0I rR 2r
B
思考:有人说:“环路不环绕
电流时,环路上磁场必处处为
o
( D ) 20I R
B
( E ) 20I 8R
.
[A]
5.如图所示,电流由长直导线 1 经 a 点流 入电阻均匀分布的正方形线框,再由 b 点 流出,经长直导线 2 返回电源(导线 1、2 的延长线均通过 o 点)。设载流导线 1、2 和正方形线框在框中心o 点产生的磁感应 强度分别用 B1、B2、B3 表示,则 o 点的感 应强度大小
单位长度的电流)到处均匀。大小为 j
解:视为无限多平行
长直电流的场。 B
p
分析场点p的对称性
B
因为电流平面是无限大,故与电流平面等距离的 各点B的大小相等。在该平面两侧的磁场方向相反。
.
作一安培回路如图: bc和 da两边被电流平 面等分。ab和cd 与电 流平面平行,则有
L B d lB 2 lojl
(A )BR2B r. (B)BRBr. (C )2BRB r. (D )BR4Br.
.
[B]
4.两半径为R的相同导体细圆环,互相垂直放 置,且两接触点A、B连线为环的直径,现有 电流1沿AB连线方向由A端流入,再由 B端流 出,则环中心处的磁感应强度大小为:
第八章 恒定电流的磁场(一)

一. 选择题: [ D ]1. 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B)π2∶1 (C)π2∶4 (D)π2∶8[B ]2.有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度B的大小为(A) )(20b a I+πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ.[ D ]3. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd 等于(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ.提示[ B ] 4. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域.(C) Ⅲ区域.(D) Ⅳ区域.(E) 最大不止一个.提示:加原理判断磁场和磁感应强度的叠根据无限长直导线产生[ C ]5. 在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B) 22202R r a a I -⋅πμ (C) 22202r R a a I -⋅πμ (D) )(222220ar R a a I -πμ 二. 填空题1.在匀强磁场B 中,取一半径为R 的圆,圆面的法线n与B成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B d Φ221R B π-提示:2. 一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l I d ,则该电流元在(a ,0,0)点处的磁感强度的大小为 204aI d lπμ 方向为Z轴负方向提示:ⅠⅡⅢⅣ aRr O O ′I任意曲面3. 一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10 A 的电流时,它的横截面上的磁通量为)(1046W b -⨯π. (真空磁导率μ0 =4π×10-7 T ·m/A)提示:为S 1L21提示:根据安培环路定理5. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__6.67×10-7(T ),该带电质点轨道运动的磁矩p m =_7.2×10-7(Am 2)___.(μ0 =4π×10-7 H ·m -1)提示:6. 如图所示,在宽度为d 的导体薄片上有电流I 沿此导体长度方向流过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P 点的磁感强度B的大小为dI20μ提示7. 在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ = 2ln 20a Iπμ提示:俯视图三.计算题1.将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感应强度 )221()]4/([02⋅=b I B πμ BC 段在D 处的磁感应强度 )221()]4/([03⋅=b I B πμ1B 2B 3B方向相同,故D 点处总的磁感应强度为)223(40321ba I B B B B +=++=ππμ 2..已知半径为R 的载流圆线圈与边长为a 的载流正方形线圈的磁矩之比为2∶1,且载流圆线圈在中心O 处产生的磁感应强度为B 0,求在正方形线圈中心O '处的磁感强度的大小.解:设圆线圈磁矩为1m P 方线圈磁矩为2m P 则211R I P m π= 222a I P m = 由已知条件得: )2/(2122a I R I π=正方形一边在其中心产生的磁感应强度为 )2/(201a I B πμ=正方形各边在其中心产生的磁感应强度大小相等,方向相同,因此中心/O 处的总的磁感应强度的大小为3120200/222aI R a I Bμπμ== 由 RI B 2100μ=得 012μRB I =所以 03/0)/2(B a R B =3. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.解: 圆线圈的总电荷 λπR q 2= ,转动时等效的电流为λωωπλπR R T q I ===/22, 代入环形电流在轴线上产生磁场的公式得2/32230)(2y R R B B y +==ωλμ 方向沿y 轴正向。
大学物理第二十章题解

20-2.如图所示,将一条无限长直导线在某处弯成半径为 R 的半圆形,已知导线中的 电流为 I ,求圆心处的磁感应强度 B .
解 根据毕-萨定律,两直线段导线的电流在 O 点产生的磁感应强度 B 0 ,半圆环形 导线的电流在 O 点产生的磁感应强度 B 1 0I .由叠加原理,圆心
2 2R O 处的磁感应强度
B 1 0I 1 0I 1 0I 0I 2 ,方向垂直纸面向里.
2 2 R 2 2 R 2 2R 4 R
*20-4.如图所示,电流 I 均匀地流过宽为 2a 的无限长平面导体薄板 . P 点到薄板的 垂足 O 点正好在板的中线上,设距离 PO x ,求证 P 点的磁感应强度 B 的大小为
B 0 I arctan a
2a
解 把薄板等分成无限多条宽为 dy 的细长条,
每根细长条的电流 dI I dy ,可视为线电流;无 2a
限长载流薄板可看成由无限多条无限长载流直导线构
成.
y
处的细长条在
P
x
点产生的磁感应强度为
强度为 dB ,二者叠加为沿 Oy 方向的 dB .所以 P 点的磁感应强度 B 沿 Oy 方向, B 的大
解 在1 4 圆周的圆弧 aAb 上,单位长度弧长的线圈匝数为
N 2N 2 R 4 R
在如图 处, d 角对应弧长 dl 内通过的电流
第二十章 稳恒电流的磁场
20-1.如图所示,将一条无限长载流直导线在某处折成直角, P 点在折线的延长线上, 到折线的距离为 a .(1)设导线所载电流为 I ,求 P 点的 B .(2)当 I 20A , a 0.05m ,求 B .
解
(1)根据毕-萨定律, AB 段直导线电流在 P 点产生的磁场 B 0 ; BC 段是
第十三章 稳恒电流的磁场

v Idl
L
r
ˆ r
v r v v µ Idl ×r B = ∫ dB= ∫ 3 L L4 π r
四、毕—萨定律应用 萨定律应用 r 1.载流直导线产生的B r r Idl 在P点产生dB,
X I
⊗ B 统一变量: x, α , r三个变量 统一变量: sinα = cos β
2 v Idl α v 方向:垂直版面向里 L r µ Idl sin α dB = 2 x Z 4π r β1 β µ Idxsinα B= ∫ o 2 a L 4 π r
I
θ
R
•
µ0I θ B= 2R 2 π
例:如图,电流I经过半无限长导线Ⅰ,半圆导线(半径为 R)Ⅱ,半无限长导线Ⅲ,求圆心O点的磁感应强度 B 。
微观本质: 微观本质:
1) 电流是电荷运动的结果;
2) 磁铁是环形电流的定向排列——安培分子 电流假说。
s
应用程序
N
v 二、磁感应强度 (B)
与描述电场类似, 与描述电场类似,运动电荷在磁场中受力的性质引入一 个磁感应强度。 个磁感应强度。
r r 运动电荷在磁场中受力最大: 运动电荷在磁场中受力最大:v ⊥ B
ZnCl2 NH3Cl
依靠某种与静电力完全不 同的力——非静电力。提 非静电力。 同的力 非静电力 供非静电力的装置称为电 源。
四、欧姆定律的微分形式
v j
n λ e γ 令: = v 2m v
2
v E
∆ s u∆ t
v u
γ 称为电导率
令:
v v j =γE
1
γ
= ρ称为电阻率
欧姆定律的微分形式
r n
dSn
v j
稳恒电流的磁场(上)只是分享

稳恒磁场中用运动试探电荷在磁场中的受力研究 磁场。
2020/6/27
12
(1)对运动试验电荷的要求:
①要求此运动电荷产生的磁场应该充分小,小到 它不能影响我们所研究的原来的磁场。
②此电荷的线度应该充分小,小到某一时刻所处 的位置就是一个几何点,故应该要求它还是一个 点电荷。
2020/6/27
22
(4)毕奥-萨伐尔定律的物理意义
表明一切磁现象的根源是电流(运动电荷)产生 的磁场。反映了载流导线上任一电流元在空间任 一点处产生磁感应强度在大小和方向上的关系。 由此定律原则上可以解决任何载流导体在起周围 空间产生的磁场分布。
2020/6/27
13
(2)实验结果:
运动电荷在磁场中受到力的作用,受力大小与 下列因素有关:
①运动速度的大小
②磁场 B
③
V
和B的取向有关
Fm B
q
v
2020/6/27
14
实验发现带电粒子在磁场 中沿某一特定直线方向运 动时不受力,此直线方向 与电荷无关。
q不受力时的运动方向(或 反方向),即为该点B的 方向,其具体指向可由q
dB4π0IRdl2 si n450
毕奥-萨伐尔定律
2020/6/27
21
(2)一段电流源 的磁感应强度
B LdB = L4 u0 Id rl2rˆ
(3)库仑定律与毕奥-萨伐尔定律的异同
①两个定律在各自的领域地位相当,在形式上都是平 方反比律;
②适用对象不同,一个是电性质,一个是磁性质。
③库仑定律可以直接由试验验证,而B-S law 只能间 接验证。
2020/6/27
稳恒电流的磁场

将线圈置于磁场中,当磁场发生变化时,线圈中产生感应电流,并 受到磁场的作用力而发生旋转,实现电磁驱动。
霍尔效应实验
将导体置于磁场中,当电流通过导体时,在导体两侧产生电势差, 这种现象称为霍尔效应,可用于测量磁场强度。
电磁感应现象实验
法拉第实验
通过在导线线圈中切割磁感线,发现导线中产生 感应电流,即电磁感应现象。
稳恒电流的磁场
https://
REPORTING
• 磁场和电流的关系 • 稳恒电流产生的磁场 • 磁场对稳恒电流的作用 • 稳恒电流的磁场应用 • 实验与观察
目录
PART 01
磁场和电流的关系
REPORTING
WENKU DESIGN
安培环路定律
安培环路定律是描述磁场和电流之间关系的物理定律,它指出磁场和电流之间的 关系是线性的,即磁场是由电流产生的,并且电流的存在会导致周围空间中磁场 的形成。
电流在磁场中的受力分析
02
根据左手定则,可以判断电流在磁场中受到的力的方向。
电磁感应
03
当导线在磁场中做切割磁感线运动时,导线中会产生感应电动
势,从而产生感应电流。
PART 03
磁场对稳恒电流的作用
REPORTING
WENKU DESIGN
洛伦兹力
定义
洛伦兹力是指带电粒子在磁场中 所受到的力,其大小与带电粒子 的电荷量、速度和磁感应强度有
磁场对电流的作用力
磁场对电流的作用力是指电流在磁场中受到的力,这个力的 大小和方向取决于电流和磁场的相互位置和方向。
磁场对电流的作用力遵循安培定律,其数学表达式为: F=IBLsinθ,其中F表示作用力,I表示电流,B表示磁场强度,L 表示导线长度,θ表示电流和磁场方向的夹角。
稳恒磁场一章习题解答

稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为rIa b r a r I B 2)(2)(0022220 )()()(b r b r a a r 所以,应该选择答案(B)。
习题9—2 如图,一个电量为+q 、质量为m 的质点,以速度v沿X 轴射入磁感应强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x =0延伸到无限远,如果质点在x =0和y =0处进入磁场,则它将以速度v从磁场中某一点出来,这点坐标是x =0和[ ]。
(A) qBm y v。
(B) qB m y v2 。
(C) qB m y v 2。
(D) qBm y v。
解:依右手螺旋法则,带电质点进入磁场后将在x >0和y >0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R vr BO a b (A) (B) B a b r O B r O a b (C) B Or a b(D) 习题9―1图习题9―2图因此,它从磁场出来点的坐标为x =0和qBm y v2 ,故应选择答案(B)。
习题9—3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为[ ]。
(A) O Q P B B B 。
(B) O P Q B B B 。
(C) P O Q B B B 。
(D) P Q O B B B说明:本题得通过计算才能选出正确答案。
对P 点,其磁感应强度的大小 aI B P 20 对Q 点,其磁感应强度的大小 )221(2180cos 45cos 4135cos 0cos 4000a I a I a I B Q对O 点,其磁感应强度的大小 )21(2424000a I a I aIB O 显然有P Q O B B B ,所以选择答案(D)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
1.电流元
在一根载流直线上任意取一线元,叫做电流元; I
I d l 矢量
大小:该线元的长度乘以I
方向:该点直线上电流的方向 电流元与点电荷的区别 (1)点电荷可以独立存在 (2)电流元不能单独存在
I dl
r
P
2018/5/30
稳恒电流只存在于闭合回路中
20
2、毕奥-萨伐尔定律
静电荷
运动电荷
稳恒电流
静电场
电场
磁场
稳恒磁场
学习方法: 类比法
2018/5/30
1
稳恒磁场
磁场:是物质的一种形式 稳恒磁场:又称为静磁场,指磁感应强度不随时间 变化的磁场,但在空间不同位置可以有不同的值。 稳恒磁场是由恒定电流(或者说恒定运动的电荷)产 生的磁场;变速运动的电荷要产生变化的电磁场。
2018/5/30 23
(4)毕奥-萨伐尔定律的物理意义
表明一切磁现象的根源是电流(运动电荷)产生 的磁场。反映了载流导线上任一电流元在空间任 一点处产生磁感应强度在大小和方向上的关系。 由此定律原则上可以解决任何载流导体在起周围 空间产生的磁场分布。
2018/5/30
24
(5)毕奥-萨伐尔定律的应用:
安培分子电流假说:组成磁铁的最小单元就是环形 电流。若这样一些分子环流定向地排列起来,在宏 观上就会显示出N、S极
I
2018/5/30
n
N
S
10
原子是带正电的原子核和绕核旋转的负电子组成。 电子不仅绕核旋转,还有自旋。原子、分子等微观 粒子内电子的这些运动形成了“分子环流”这便是 物质磁性的基本来源。 电荷的运动是一切磁现象的根源。
2018/5/30
0 IR 2 32 35 2( R 2 x 2 )
结论: 大小: B 2( R 2 x 2 )3 2 方向: 右手螺旋法则
0 IR
2
Idl
I
O
Y
R
r0
d B dB
pdB
x
X
1. x R B ?
B
0 IR 2
2 x3
运动电荷
电流
2018/5/30
磁场
磁场
运动电荷
电流
11
2、磁场的性质:
(1)磁场对进入场中的运动电荷或载流导体有磁 力作用
(2)载流导体在磁场中移动时,磁力将对载流导 体作功,表明磁场具有能量。
2018/5/30
12
3、磁场的描述
设计实验确定空间一点的磁感应强度 思路:用类比的方法 静电场中用试验点电荷在电场中的受力研究电场; 稳恒磁场中用运动试探电荷在磁场中的受力研究 磁场。
22
(2)一段电流源的磁感应强度
ˆ u0 Idl r B d B= 2 L L 4 r
(3)库仑定律与毕奥-萨伐尔定律的异同
①两个定律在各自的领域地位相当,在形式上都是平 方反比律; ②适用对象不同,一个是电性质,一个是磁性质。 ③库仑定律可以直接由试验验证,而B-S law 只能间 接验证。
(1)电流元的磁感应强度:
Idl
dB
r
0 I d l r ˆ dB 2 4 r
dB
I
Idl
0 4 107 NA2 真空磁导率
r : 指Idl 到待求场点的矢径
P*
r
0 Idl sin 大小:dB 4 r2 方向:右手螺旋法则
③ V 和 B 的取向有关
Fm
q
B
v
2018/5/30
15
实验发现带电粒子在磁场 中沿某一特定直线方向运 动时不受力,此直线方向 与电荷无关。 q不受力时的运动方向(或 反方向),即为该点B的 方向,其具体指向可由q 在其它方向运动时的 和 Fm的方向根据洛仑兹力 式来确定。
3
一、基本磁现象
1、中国在磁学方面的贡献:
最早发现磁现象:磁石吸引铁屑 春秋战国《吕氏春秋》记载:磁石召铁 东汉王充《论衡》描述:司南 勺最早的指南器具 十一世纪沈括发明指南针,发 现地磁偏角,比欧洲的哥伦布 早四百年 十二世纪已有关于指南针用于航海的记载
2018/5/30 4
2、早期的磁现象包括:
4、通电线能使小磁针偏转; 5、磁体的磁场能给通电线以力的作用; 6、通电导线之间有力的作用; 7、磁体的磁场能给通电线圈以力矩作用; 8、通电线圈之间有力的作用; 9、天然磁体能使电子束偏转。
2018/5/30
表现为: 相互吸引 排斥 偏转等
9
二、磁场
电流(或磁铁) 磁场 电流(或磁铁)
1、磁铁和电流是否在本质上是一致的?
21
2018/5/30
例 判断下列各点磁感强度的方向和大小.
1 8
×
2
×3
7
Idl
R
6
×
4
0 Idl r dB 3 4π r
2018/5/30
5
1、5点 :dB 0 0 Idl 3、7点 :dB 4 π R2 2、 4、 6、 8 点 : 0 Idl 0 dB sin 45 4 π R2 毕奥-萨伐尔定律
载流子总数 dN nSdl
26
0 qv ˆ r B 2 4 r
若q 0, B与v r 同向
若q 0, B与v r 反向
r
B
r
q
B
q
2018/5/30
v
v
27
例题:利用电荷运动产生磁场的观点求 B
2018/5/30
m
en
S
2. x 0 B ?
载流圆环 B
圆心角 2
0 I
2R
B
0 IR B 2 2 32 2( R x )
2
I
载流圆弧
圆心角
B
I
0 I B 2 R 2 4R
2018/5/30
O
a a
2 1
dB
P
X
30
Y
2 0 1 4a
I sin d
I
2
0 I (cos 1 cos 2 ) 4a
dl
1 r0
r
0 I B (cos 1 cos 2 ) 4a
l
O
a a
2 1
dB
P
X
电流的磁效应 I
I B r
丹麦物理学家 奥斯特 接通电源时,放在边上的 磁针轻轻抖动了一下,电 流反向时磁针的偏转也反 向……电流的磁效应 2018/5/30
F F
I
8
磁现象: 1、天然磁体周围有磁场; 2、通电导线周围有磁场; 3、电子束周围有磁场。
表现为: 使小磁针偏转
2018/5/30
2
运 动 电 荷 间 的 相 互 作 用
磁 场
磁感应 强度
磁场的高 斯定理 毕-萨定律 安培环路 定理 带电粒子在磁 场中的运动
磁场的 基本性 质
洛仑兹力 稳 恒 磁 场
霍耳效应 磁力的功
安培定律
磁力和磁力矩
顺磁质、抗磁质 和铁磁质的磁化
2018/5/30
磁场强度
介质中的安培 环路定理
(电流元在空间产生的磁场)
任一个带电体 研究思路: Q dQ dE E d E 静电场: 点电荷模型
(微 元 分 析 法 ) 任一载流体 静磁场: 电流元模型
任意载流回路可设想为是由无限多个首尾相接的 电流元构成,
研究思路: I Idl dB B dB 2018/5/30
1、氢原子中电子绕核作圆周运动
v 0.2 106 ms 1
已知
r 0.53 10 m 求: 轨道中心处 B
0 qv r0 解: B 4 r2
10
r
v
又 v r0
2018/5/30
0 ev B 13T 2 4 r
方向:
29
X
P
0 Idl sin B dB 2 4 r
统一积分变量
Y
I
2
dl
1 r0
l actg( ) actg
r
dl a csc d
2
l
2
r a sin
0 I sindl 0 sin ad B I sin 2 2 4 4 a r sin2
q
v
I S 其中
I qnvS
dl
电荷 密度 速率 截面积
ˆ) 0 qv sin( v , r dB B 2 dN 4 r 0 qv ˆ r 运动电荷产生的磁场 B 2 4 r v , r 的方向垂直于 组成的平面。 B 2018/5/30
0 I B 4a
B?
B
I
B0
33
0
2018/5/30
dB 0
2.圆型电流轴线上的磁场
已知:
R、I,求轴线上P点的磁感应强度。
建立坐标系OXY
任取电流元 Idl
大小
方向 Idl r0
2018/5/30
0 Idl dB 4 r 2
Idl
I
O
Y
R
r0
A、由毕奥-萨伐尔定律推出运动电荷的磁场表达式
按经典电子理论,导体中电流是大量带电粒子的定向运动,电流 激发磁场,实质是运动电荷在其周围空间激发磁场。