数学竞赛论-5组合

合集下载

关于竞赛数学中排列组合问题的解题策略

关于竞赛数学中排列组合问题的解题策略

40
中学数学研究
2021 年第 5 期 (上)
将不定方程化为 (x1 − 1) + (x2 − 1) + · · · + (x8 − 1) = 17, 再 令 y1 = x1 − 1, y2 = x2 − 1, · · · , y2 = x8 − 1, 即 得 y1 + y2 + · · · + y8 = 17, 且 yi 1(其中 1 i 8). 于是上 述问题就转化为以上不定方程的正整数解的组数. 由引理知 其正整数解个数为 C176.
2300 46 例 3 (第一届美国数学邀请赛第 10 题) 数 1447, 1005 和 1231 有某些共同点, 即每一个都是以 1 开头的四位数, 且每 个数恰好有两个数字相等. 这样的数共有多少个?
解法一 首先, 不难发现满足条件的四位数有六种类型: 11AB, 1A1B, 1AB1, 1AAB, 1ABB, 1ABA. 而对于每一类 A 都 有 9 种 可 能, B 都 有 8 种 可 能, 所 以 这 样 的 数 共 有 6 · 9 · 8 = 432 个.
38
中学数学研究
2021 年第 5 期 (上)
关于竞赛数学中排列组合问题的解题策略
广东省深圳市前海港湾学校 (518000) 李可欣
摘要 竞赛数学中关于排列与组合的问题, 归根到底利 用的就是排列、组合与四个基本定理, 但是基本解法却多种 多样, 常见的有列举法、分类讨论、构造不定方程和利用递推 关系. 本文结合例题对如上解题方法予以归纳和梳理.
立) (3) 成立. 由 (1) +(2) +(3) 得 ln2(1 + x) + e−2x + sin x 1

数学竞赛经典讲座-组合不等式

数学竞赛经典讲座-组合不等式

组合不等式 讲 座组合不等式问题是数学竞赛中的热点问题,通常也是教学竞赛中难度很大的问题,同时也是针对学生思维考测的典型问题.组合不等式问题的内容非常广泛,涉及到代数、几何、数论等多个分支。

组合不等式问题有:组合数不等式、组合计数不等式、组合最值、组合几何不等式、组合数论不等式等.下面就从几个典型的组合不等式问题的研究,提高我们的思维能力.例1:对n ≥2,证明(1)n n n n C 422<<;(2)1124--<n n n C证明:(1)当n =2时,22222462<=<⨯C 不等式成立设kk k k C 422<<成立,则1+=k n 时由n k k k k k k k k k n C C C C 22222212121222==⋅>>==++++ n k k k k k k k k kk n n C C C k k C C 4444422112221222122==⋅<=⋅<++⋅<=++ 知不等式成立由归纳原理,对n ≥2不等式nn n n C 422<<恒成立(2)∑-=----=⋅==12012122212122124n k k n n n n C nn n k n n k n C C C 121112122--=---=>=∑ 例2:在一个车厢中,任何()3≥m m 个旅客都有惟一的公共朋友(当甲是乙的朋友时,乙也是甲的朋友;任何人都不作为自己的朋友),问在这个车厢中,朋友最多的人有多少位朋友?解:设朋友最多的人有k 个朋友,显然,m k ≥,若m k >,设A 有k 个朋友B 1,B 2,…,k B ,并记{}k B B B S ,,21=.设{}121,,,-m i i i B B B 是S 的任一个1-m 元子集,则A ,121,,,-m i i i B B B 这m 个人有惟一的公共朋友,记为i C .因i C 是A 的朋友,故S C i ∈.宝义映射{}S C B B B f i i i i m ∈→-121,,,: ,则f 是从S 的所有1-m 元子集的集合到S 的一个单射.事实上,若有S 的两个不同的1-m 元子集{}121,,,-m i i i B B B和{}121,,,-m j j j B B B,二者有相同的象i C ,则因{}{}1111,,,,--m m j j i i B B B B中至少有m 个元素,这m 个人有两个公共朋友A 和i C ,此与已知矛盾.由于f 是单射,故有k C m k≤-1.另一方面,因为3≥m ,21≥-m ,所以k C C C k k m k =>≥-121,矛盾.可见,所求的最大值为m .例3:设{}10,,2,1 =S ,k A A A ,,,21 都是S 的子集且满足(1)k i A i ,,2,1,5 ==;(2)k j i A A j i ≤<≤≤1,2 .求k 的最大值.解:设k 有个子集满足题中条件(1)和(2),并设i 属于这k 子集中的i x 个集合,i =1,2,…,10.若j A i ∈ ,k A i ∈,k j ≠,则称i 为一个重复数对.于是由数i 导致的重复数对有2i x C 个.由S 中的10个元素所导致的重复数对的总数为2221021x x x C C C +++ ,k x x x 51021=+++ . 另一方面,每两个子集间至多有两个重复数对,所以k 个子集之间至多有22k C 个得复数对.因而有222221021k x x x C C C C ≤+++ ①由柯西不等式有2221021x x x C C C +++ ()()(){}1112110102211-++-+-=x x x x x x ()()102121022212121x x x x x x +++-+++= ()k x x x 25212102212-++= ()()2452552012-=-≥k k k k ②由①和②得到()1245-≤-k k ③由③解得6≤k .这表明至多有6个子集.例4:设3221,,,+n P P P 为平面上的32+n 个点,其中任何3点都不共线,任何4点都不共圆.过其中3点作圆,使其余n 2个点在圆内和圆外各有n 个点,这种圆的个数词类K ,求证2321+>n C K π.证明:首先证明对任意两点i P ,j P ,一定存在第3点k P ,使得过i P ,j P ,k P 3点的圆满足题中的要求.为此,不妨设直线i P j P 的上方的点数1+≥n m .因为任何3点不共线,任何4点不共圆,故可将直线上方的m 点按对线段i P j P 的张角从小到大排列为1k P ,2k P ,…m k P ,即有︒<∠<<∠<∠<︒180021j k i j k i j k i P P P P P P P P P m由此可知,过i P ,j P ,k P 3点的圆内的点数不多于n .若两圆中有一圆内恰有n 个点,则它就满足要求.否则,前者内部点数大于n ,后者内部点数小于n .而当顺次考察过i P ,j P ,k P (h=1,2,…,m )3点的圆时,圆内给定点的个数每次恰减少1个.故知其中必有1个圆满足题中要求.这样一来,对于{}3221,,,+n P P P 中的任意两点都可以作出1个圆满足题中要求.于是共可得到232+n C 个圆.但在这个计数过程中,每个圆可被计数3次,故得232232131++>≥n n C C K π. 例5:10人到书店去买书,已知(1)每人都买了3种书;(2)任何两人所买的书中,都至少有一种相同.问购买人数最多的一种书最少有几个人购买?说明理由.解:右图中,由正五边形的中心和两个相领顶点构成的三角形共有5个,由正五边形的3个不全相连的顶点构成的三角形也共有5个.不难看出,这10个三角形中的任何两个都至少有一个公共顶点.将这些三角形的顶点号码组写出来并让10人所买的书号依次为这10个三角形的顶点号码组:(123),(134),(145),(156),(162),(245),(356),(426),(523),(634). 显然,每种书都有人购买.故知所求的最小值示超过5.设所求的最小值为4,10人共买了n 种书且第i 种书有i m 人购买,于是4≤i m 且3021=+++n m m m .当两人买同一种书时,称之为一个“书对”.由已知,每两人之间至少有1个书对,于是至少共有45210=C 个书对.另一方面,由第i 种书形成的书对有2i m C 个,共有22221nmm m C C C +++ 个书对.从而有 4522221≥+++nm m m C C C ①因为624=C ,323=C ,122=C ,故又有437222422221=+≤+++C C C C C nm m m ②由于①与②矛盾,故知所求的最小值为5.例6:在1980×1981的方格表的每个方格中都写有+1,-1和0之一,且表中所有数之和等于0.试证存在两行和两列,使得位于它们交点处的4个数之和为0.证明:若不然,则任何一个边在网格线上的矩形的4个角格中的4数之和均不为零. (1)考察数表中0的个数.设表中1981列中0的个数依次为198121,,,k k k .因为不能有两行两列之交的4个方格中同时为0,故有197999019811219802⨯=≤∑=i ki C C.①因为990245=C ,946244=C ,故表中0的个数不超过1980×45个.1980×1936,故-1的个数与+1的个数都不少于1980×968.若有某行中有1015个-1,则因有+1最多的一行至少有968个+1,故必有两个-1与两个+1同列,此与反证假设矛盾,故知每行中-1的个数和+1的个数均不超过1014.设第i 行有ni 个-1,mi 个+1,1980,,2,1 =i .因为不能有两行两列之我的4格中的数之和为0,故必有∑=⨯=≤19801219819901981i Cnimi ,②其中∑=⨯≥198019681980i ni ,∑=⨯≥198019681980i mi ,ni ,1014≤mi ,1980,,2,1 =i .由排序不等式知在②式中可设{}ni 递增而{}mi 递减且在容许条件下前面的mi 尽可能大,前面的ni 尽可能地小.从而有∑=⨯≥19801210141800i nimi ③③与②矛盾,这就完成了反证的证明.例7:在某项竞赛中,共有a 名参赛选手与b 位裁判员,其中3≥b 为奇数,每位裁判对每名选手的评分都只有“合格”与“不合格”两种,设N k ∈,任何两位裁判至多可对k 名选手有完全相同的评分,求证bb a k 21-≥. 证明:当两位裁判对一名选手的评分相同时,称之为一个“相同评分对”下面对相同评分对的个数进行换序求和.一方面,每名运动员都获得b 位裁判的各一个评分.设第i 名选手获得xi 个合格与xi b -个不合格,于是由第i 名选手产生的相同评分对的个数为22i ix b x C C -+,a i ,,2,1 =.从而所有相同评分对的个数为()()221122m m ai x b x C C a C Ci i +≥++=-∑()()()2112am m m m m a=-++=, 其中12+=m b ,N m ∈. 另一方面,任何两位裁判所产生的相同评分对至多k 对,故所有相同评分对的个数不超过2b kC . 结合起来,得到()21222am C C kC ai x b x bii ≥+≥∑=-, ()2121am b b k ≥-⋅, 21-⋅=≥b a am kb , bb a k 21-≥. 例8:n 个平面最多可以将空间分成多少个部分区域?解:为求这个最大值,我们先证如下的引理,平面上的n 条直线,最多可以把平面分成121++n C 个部分.显然,当这n 条直线两两相交且任何三条都不共点时,把平面分成的部分最多.设平面被k 条直线分成的部分数的最大值为k m ,然后加入第1+k 条直线,它与前k 条直线中的每一条都相交,共得到k 个交点,这k 个点将第1+k 条直线分成1+k 段,其中每一段都把它所穿过的区域一分为二.故知由于第1+k 条直线的加入而新增加的小区域数与第1+k .这样,我们得到递推公式11++=+k m m k k由此递推即得211--+-+=+=n n n m n n n m m1112121111+=++++-+=+++-+=+n C n n m n n这就完成了引理的证明,下面利用引理来解原题.设空间中的k 个平面最多能把空间分成k υ个区域,然后考察当第1+k 个平面加入时,新增加的小区域的个数.这时,第1+k 个平面与前k 个平面中的每个平面都交于1条直线,在第1+k 号平面上共得到k 条直线.由引理知,这k 条直线最多能把平面分成121++k C 个部分,其中每部分都把它所穿过的区域一分为二,故得递推关系式mk k k +=+υυ1由此递推即得1121υυ++++=--m m m n n n()2122212+-++++=-n C C C n n 131++=+n C n ,即空间中的n 个平面最多可以把空间分成131+++n C n 个部分,这个最大值当任何3个平面都共点,任何四个平面都不共点时取得.例9:设{}n S ,4,3,2,1=项的数列n a a a ,,,21 具有下列性质:对于S 的任何一个非空子集B (集B 的元数记为B ),在该数列中都有相邻的B 项恰好组成集合B .求项数n 的最小值.解:对于每个S i ∈,它都可以与S 中的另外3个元素各组成一个二元子集,即共有3个含i 的二元子集,若i 在数列中仅出现1次,则含i 的相邻两项组至多两个,所认i 在数列中至少出现两次,由于1,2,3,4都至少出现两次,故数列至少有8项,即8≥n .另一方面,容易验证,8项数列3,1,2,3,4,1,2,4满足题中条件. 综上可知,数列项数n 的最小值为8.例10:给定平面的n 的相异点,证明其中距离为单位长的点对少于32n 对. 证:对于平面上的点集{}n P P ,,1 .令i e 表示与i P 相距为单位长的点j P 的个数,不妨设1≥i e ,则相距为单位长的点对的对数是221ne e e E +++=设i C 是以点i P 为圆心,以1为半径的圆.因为每对圆至多有2个交点,故所有的i C 至多有()122-=n n C n 个交点.点i P 作为j C 的交点出现2j e C 次,因此()∑=≥-nj e j C n n 121()()∑∑==-≥-=n j j nj j j e e e 12112121 ①由柯西不等式及①式得()()∑∑==-⋅≤⎥⎦⎤⎢⎣⎡-n j j n j j e n e 122111()3212n n n n <-⋅≤于是有()∑=⋅<-nj jn e132121∑==nj jeE 33222n n n <+<.于是问题得证.例11:设A 是一个n 元集合,A 的m 个子集m A A A ,,,21 两两互不包含,试证(1)∑=≤mi in A C 111;(2)∑=≥mi i nm A C12,其中i A 表示i A 所含元素的个数 证:按定义有()!!!1n A n A A C i i i n -=, 由此可见,为证(1),只须证明等价不等式()∑=≤-mi iin A n A 1!!!.①对于每个i A ,利用i A 构造集A 中的n 个元素的排列如下:前i A 个位置是i A 中的所有元素的一个排列,后()i A n -个位置是i A 的补集ci A 中的所有元素的一个排列,这样的排列称之为从属于iA的排列,按乘法定理知,这样的排列数是()!!i i A n A -.当i j ≠时,不妨设i j A A ≥,如果有一个A 的元素的排列既从属于i A ,又从属于j A ,则其中的前i A 个元素都属于i A ,前j A 个元素都属于i A ,从而有j i A A ⊂,此与已知矛盾,这表明从属于不同子集的任何两个排列互不相同,因为A 中n 个元素的所有排列总数为!n ,故得不等式①.对于任何m 个正数m a a a ,21,,由柯西不等式有⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⋅=∑∑∑===m i i m i i m i i i a a a a m 1121211. ②在②中令iA ni C a =,m i ,,2,1 =,由已证的不等式(1)即得∑∑∑===≤⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤m i An mi A n m i An i i iC C C m 11121 例12:已知一个由0和1组成的数列n x x x ,,,21 ,A 为等于(0,1,0)或(1,0,1)的三元数组()k j i x x x ,,的个数,其中i j x x k j i ≠≤<<≤1的j 的个数.(1)求证:222321nd d d n C C C C A ----= ; 给定奇数n ,求A 的最大值.解:对于n i ,,2,1 =,令{}n j i x x i j x x x D i j i j j i ≤<≠<≤==,;1,,于是有i i d D =,在i D 中任取二元与i x 共3项,按下标从小到大的顺序排成三元数组,所有这样数组的集合记为i S ,显示然,2i d i C S =,将所有不满足题中要求的三元数组的集合记为T ,则T S i ⊂,n i ,,2,1 =且诸i S 两两不交,实际上,若()i k j i S x x x ∈,,,则k j i x x x =≠;若()j k j i S x x x ∈,,,则k j i x x x ≠=;若()k k j i S x x x ∈,,,则k j i x x x ==,由此可知诸i S 两两不交.另一方面,对于T 中任一个三元数组()k j i x x x ,,,必为下列6种情形之一:(0,0,1),(0,1,0),(0,1,1),(1,0,0),(0,0,0),(1,1,1),按定义,前两种情形属于j S ,中间两种情形属于i S ,后两种情形属于k S ,故有 ni iST 1=⊂,从而得到ni i S T 1==⊂由此即得2223321nd d d n n C C C C T C A ----=-= 再解(2)按i D 和i d 的定义,对任一个二元数组()j i x x ,,n j i ≤<≤1,若j i x x =,则j i D x ∈并在j d 中计数一次;若j i x x ≠,则j x 恰在i d 中计数一次,由此可见,所有i d 之和恰为所有二元数组的个数,即有∑==ni n iC d12.为求A 的最大值,只须求∑=ni d jC12的最小值,这时,由柯西不等式有∑∑==≤⎪⎭⎫⎝⎛ni i n i i d n d 1221①所以有()∑∑∑∑====⎪⎭⎫ ⎝⎛-=-=ni ni n i n i i i i i d d d d d C i11112221121 ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛≥∑∑==n i i n i i d d n 121121 ⎪⎭⎫ ⎝⎛-=∑∑==112111n i i n i i d n d ()()3181--=n n n ②因为12+=k n ,所以k n 21=-,223-=-k n ,()181-n n()()21213k nC k nk n =-=-,代入②式即得212k ni d nC C i ≥∑= ③由①知,③式中等号成立当且仅当()12121-====n d d d n ,容易验证,当数列中奇数项均为0而偶数项均为1时,所有i d 都相等,这表明③式右端所表示的最小值是可以取得的,从而知A 的最大值为()()()()()1241318121612230-=-----=-=n n n n n n n n nC C A k n . 例13:圆周上有800个点,依顺时针表为800,,3,2,1 。

高中联赛排列组合的解法

高中联赛排列组合的解法

数学竞赛中的排列组合问题江苏省梁丰高级中学 (215600) 张伟新排列组合问题主要依据分类计数原理和分步计数原理,其本身应用的知识并不多,但 由于题目灵活多样,在各级各类考试中经常出现,在数学竞赛活动中尤其突出。

其解题方法 也多种多样,归纳起来,我们一般可用下面的方法来解决。

一、列举法:例1、从0、1、2、3、4、5、6、7、8、9这10个数中取出3个数,使其和为不小于10的 偶数,不同的取法有 。

(1998年全国高中数学联赛) 解:从10个数中取出3个数,使其和为偶数,则这三个数都为偶数或一个偶数二个 奇数。

当三个数都为偶数时,有35C 种取法;当有一个偶数二个奇数时,有15C 25C 种取法。

题意要使其和为不小于10。

我们把和为小于10的偶数列举出来,有如下9种不同取法: (0,1,3),(0,1,5),(0,1,7),(0,3,5),(0,2,4),(0,2,6),(1,2,3), (1,2,5),(1,3,4)。

因此,符合题设要求的取法有35C +15C 25C -9=51种。

例2、设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶 点之一。

若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也 停止跳动。

那么这只青蛙从开始到停止,可能出现的不同跳法共 种。

(1997年全国高中数学联赛)解:如图:青蛙不能经过跳1次、2次或4次到达D 点。

故青蛙的跳法只有下列两种:(1)青蛙跳3次到达D 点,有ABCD ,AFED 两种跳法。

(2)青蛙一共跳5次后停止,那么,前3次的跳法一定不到达D ,只能到达B 或F ,则共有AFEF ,AFAF ,ABAF ,ABCB ,ABAB ,AFAB 这6种跳法。

随后的两次跳法各有四种,比如由F出发的有:FEF ,FED ,FAF ,FAB 共4种。

因此这5次跳法共有 6⨯4=24种不同跳法。

∴一共有2+24=26种不同跳法。

高二数学竞赛班讲义-第五讲--组合恒等式

高二数学竞赛班讲义-第五讲--组合恒等式

高二数学竞赛班二试第五讲 组合恒等式班级 姓名一、知识要点:数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础,并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。

解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。

同时,此类问题的解决也有着自身特殊的解题技巧。

因此,在各类数学竞赛中经常被采用。

1.基本的组合恒等式简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。

事实上,许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。

课本中的组合恒等式有:①r n r n nC C -=; ②111r r rn n n C C C +++=+;③11k k n n kC nC --=; ④r m m r mn r n n m C C C C --=;⑤0122n nn n n n C C C C ++++=L ;⑥()01210.nnn n n n C C C C -+++-=L2.解题中常用方法① 运用基本组合恒等式进行变换;② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标;⑤ 运用赋值法进行证明;⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。

二、经典例题例1.求证:1231232n n n n n n C C C nC n -++++=⋅L .例1.证明:根据前面提到的基本的组合恒等式第三条,可得:左边0121111112n n n n n n nC nC nC nC n ------=++++=⋅=L 右边例2.求和式21nk nk k C=∑的值。

例2.基本思路:将2k n k C 改写为k n k kC ⋅,先将k n kC 用恒等式3提取公因式n ,然后再将11k n kC --变形成为()11111k k n n k C C -----+,而()111k n k C ---又可以继续运用上述恒等变形,这样就使得各项系数中均不含有变动指标k 了。

数学竞赛中组合问题学习方法建议

数学竞赛中组合问题学习方法建议

数学竞赛中组合问题学习方法建议一、中学竞赛组合问题简介二、中学竞赛组合问题学习规划三、组合问题训练方法四、组合学习的常见思考流程和误区五、组合问题冲刺学习建议六、常用书籍推荐组合问题简介首先我们要搞清楚一个问题——什么是组合问题?组合问题,其实是一个比较杂的分类,宏观来讲,不能归于代数、几何、数论部分的问题,都可以归为组合问题。

常见的组合问题可以分为两个分支:第一类叫组合计数问题,是基于课内“排列组合”的部分知识,进行拓展和扩充;第二类叫组合杂题,包括组合最值问题、组合构造问题、对策与操作等几个主要类。

高考只考一些非常简单的计数问题,或者以计数方法为基础的古典概率问题;自招考试中,也很少涉及到组合杂题,多以稍繁琐的计数问题为主;数学竞赛中,高联一试考较复杂的分类计数,高联二试及以上的考试一般以组合杂题为主,且难度很大,涉及范围广,形式灵活多变,对数学综合分析的能力要求也更高。

组合问题学习规划关于组合杂题,我们要做到了解基本的组合原理,并以此为基础,拓展思考方法,积累常见的组合构造。

1、了解基本组合原理基础的组合原理,包括但不限于抽屉原理、极端原理、容斥原理、算两次、染色与赋值法。

很多原理的内容,其实不难理解,比如“抽屉原理”,国外叫“鸽笼原理”,桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。

用标准的数学语言来说,就是将m+1个元素放入m个集合中,则至少有一个集合中有2个或更多的元素;将mn+1个元素放入m个集合中,则必有一个集合里包括n+1或者更多个元素。

原理讲起来很简单,真正的难点在于如何应用。

就说抽屉原理,最难的地方在于遇到题目时要意识到可以应用抽屉原理来解决,以及如何构造所需要的“抽屉”,也就是数学概念中的集合。

这其实也是组合学习、组合训练核心想要解决的问题。

2、拓宽思考方法思考方法,就是当我们面对一个问题的时候,该从什么角度着手解决问题。

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。

解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。

因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。

由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。

所以 \( a^2 + 5a + 6 = 0 \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。

将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。

解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。

将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。

试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。

数学竞赛组合试题及答案

数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。

如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。

将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。

试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。

答案:首先计算没有红球的概率,即抽到3个蓝球的概率。

用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。

然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。

试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。

求这条弦的长度小于8的概率。

答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。

通过几何关系和圆的性质,可以计算出这个特定角度。

然后,利用面积比来计算概率。

圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。

最后,将扇形面积除以圆的面积得到概率。

试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。

答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。

将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。

试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。

现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。

问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。

小学数学竞赛7-5-组合

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m mP 种排法. 根据乘法原理,得到m m mn n m P C P =⋅.知识要点教学目标组合因此,组合数12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅m mn nm m P n n n n m C P m m m ()(()()().这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n mn C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n nC =,01n C =.模块一、组合及其应用【例 1】 计算:⑴ 26C ,46C ;⑵ 27C ,57C .(2级) 【解析】 ⑴ 226622651521P C P ⨯===⨯,4466446543154321P C P ⨯⨯⨯===⨯⨯⨯ ⑵ 227722762121P C P ⨯===⨯,557755765432154321P C P ⨯⨯⨯⨯===⨯⨯⨯⨯ 【小结】注意到上面的结果中,有2466C C =,2577C C =.【例 2】 计算:⑴ 198200C ;⑵ 5556C ;⑶ 981001001002C C -.(2级)【解析】 ⑴ 21982001982200200200200222001991990021P CCCP -⨯=====⨯; ⑵ 15556551565656561156561P C CC P -=====;⑶ 2981002100100100100221009922122494821P CCCP ⨯-=-⨯=-=-=⨯.【巩固】 计算:⑴ 312C ;⑵ 9981000C ;⑶ 2288P C -.(2级)例题精讲【解析】⑴312121110220 321C⨯⨯==⨯⨯⑵9982100010001000999499500 21C C ⨯===⨯⑶2288878756282821P C ⨯-=⨯-=-=⨯.【例 3】6个朋友聚会,每两人握手一次,一共握手多少次?(2级)【解析】这与课前挑战的情景是类似的.因为两个人握手是相互的,6个朋友每两人握手一次,握手次数只与握手的两个人的选取有关而与两个人的顺序无关,所以这是个组合问题.由组合数公式知,266515 21C⨯==⨯(次).所以一共握手15次.【巩固】某班毕业生中有20名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手?(2级)【解析】2202019190 21C⨯==⨯(次).【例 4】(难度等级※※)学校开设6门任意选修课,要求每个学生从中选学3门,共有多少种不同的选法?(4级)【解析】被选中的3门排列顺序不予考虑,所以这是个组合问题.由组合数公式知,3665420 321C⨯⨯==⨯⨯(种).所以共有20种不同的选法.【例 5】某校举行排球单循环赛,有12个队参加.问:共需要进行多少场比赛?(2级)【解析】因为比赛是单循环制的,所以,12个队中的每两个队都要进行一场比赛,并且比赛的场次只与两个队的选取有关而与两个队选出的顺序无关.所以,这是一个在12个队中取2个队的组合问题.由组合数公式知,共需进行212121166 21C⨯==⨯(场)比赛.【巩固】芳草地小学举行足球单循环赛,有24个队参加.问:共需要进行多少场比赛?(2级)【解析】由组合数公式知,共需进行2242423276 21C⨯==⨯(场)比赛.【例 6】一批象棋棋手进行循环赛,每人都与其他所有的人赛一场,根据积分决出冠军,循环赛共要进行78场,那么共有多少人参加循环赛?(4级)【解析】从若干人中选出2人比赛,与选出的先后顺序无关,这是一个组合问题.依题意,假设有n个人参加循环赛,应该有217821⋅-==⨯n n nC (),所以17821312⋅-=⨯=⨯n n(),所以13n=,即一共有13人参加循环赛.【例 7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?(4级)【解析】第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛266515 21C⨯==⨯场,共8个小组,有158120⨯=场;第二阶段中,每个小组内部4人中每2人赛一场,组内赛24436 21C⨯==⨯场,共4个小组,有6424⨯=场;第三阶段赛224+=场.根据加法原理,整个赛程一共有120244148++=场比赛.【例 8】从分别写有1、3、5、7、9的五张卡片中任取两张,做成一道两个一位数的乘法题,问:⑴有多少个不同的乘积?⑵有多少个不同的乘法算式?(6级)【解析】⑴要考虑有多少个不同乘积.由于只要从5张卡片中取两张,就可以得到一个乘积,所以,有多少个乘积只与所取的卡片有关,而与卡片取出的顺序无关,所以这是一个组合问题.由组合数公式,共有225522541021PCP⨯===⨯(个)不同的乘积.⑵要考虑有多少个不同的乘法算式,它不仅与两张卡片上的数字有关,而且与取到两张卡片的顺序有关,所以这是一个排列问题.由排列数公式,共有255420P=⨯=(种)不同的乘法算式.【巩固】9、8、7、6、5、4、3、2、1、0这10个数字中划去7个数字,一共有多少种方法?(4级)【解析】相当于在10个数字选出7个划去,一共有10×9×8×7×6×5×4÷(7×6×5×4×3×2×1)=10×9×8÷(3×2×1)=120种.【巩固】从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张,做成一道两个一位数的加法题,有多少种不同的和?(4级)【解析】228822872821PCP⨯===⨯(种).【例 9】在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?(6级)【解析】两个数的和是偶数,通过前面刚刚学过的奇偶分析法,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题.从50个偶数中取出2个,有25050491225 21C⨯==⨯(种)取法;从50个奇数中取出2个,也有25050491225 21C⨯==⨯(种)取法.根据加法原理,一共有122512252450+=(种)不同的取法.【小结】在本题中,对两个数的和限定了条件.不妨对这个条件进行分类,如把和为偶数分成两奇数相加或两偶数相加.这样可以把问题简化.【巩固】从19、20、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?(6级)【解析】19、20、……、93、94中有38个奇数,38个偶数,从38个数中任取2个数的方法有:238383770321C ⨯==⨯(种),所以选法总数有:70321406⨯=(种).【例 10】 一个盒子装有10个编号依次为1,2,3,,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?(6级)【解析】 10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:⑴ 5奇1偶,这时对奇数只有1种选择,对偶数有5种选择.由乘法原理,有155⨯=(种)选择;⑵ 3奇3偶,这时对奇数有3554310321C ⨯⨯==⨯⨯(种)选择,对偶数也有3554310321C ⨯⨯==⨯⨯(种)选择.由乘法原理,有1010100⨯=(种)选择;⑶ 1奇5偶,这时对奇数有5种选择,对偶数只有1种选择.由乘法原理, 有515⨯=(种)选择.由加法原理,不同的摸法有51005110++=(种).【例 11】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?(6级)【解析】 先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题,有26651521C ⨯==⨯(种)选法;再从剩下的4个数位上选2个放2,有2443621C ⨯==⨯(种)选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有156190⨯⨯=(个).在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数903060-=(个).【例 12】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?(6级) 【解析】 整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法;第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法.所以总的个数为:3255457200C C P ⨯⨯=(个).【例 13】 从0、0、1、2、3、4、5这七个数字中,任取3个组成三位数,共可组成多少个不同的三位数?(这里每个数字只允许用1次,比如100、210就是可以组成的,而211就是不可以组成的).(2008年“陈省身杯”国际青少年数学邀请赛五年级)(4级)【解析】 若三位数不含有0,有54360⨯⨯=(个),若含有一个0,有54240⨯⨯=(个),若含有两个0,有5(个),所以共有60405105++=(个).【例 14】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?(6级)【解析】 先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有2615C =种选法;再从剩下的4个数位上选2个放2,有246C =种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有156190⨯⨯=个.在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数903060-=个.【巩固】用两个3,一个2,一个1,可以组成多少个不重复的4位数?(6级) 【解析】 这道题由于3有2个,是其中最特殊的,所以从它入手.先从四位数的4个数位中选择2个来放3,有246C =种选法;然后剩下的两个数位放1和2,有2种放法;根据乘法原理,共有6212⨯=种不同的方法,所以可以组成12个不重复的四位数.【例 15】 工厂某日生产的10件产品中有2件次品,从这10件产品中任意抽出3件进行检查,问:(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有一件是次品的抽法有多少种?(3)抽出的3件中至少有一件是次品的抽法有多少种?(6级) 【解析】 (1)从10件产品中抽出3件,抽法总数为310C =120(种)(2)3件中恰好一件次品,那么还有两件正常品.抽法总数为12C ×28C =56(种)(3)与“至少有一件是次品”互补的事件是“全都不是次品” 全都不是次品的抽法总数为38C =56(种)所以至少有一件次品的抽法总数为120-56=64(种).【例 16】 200件产品中有5件是次品,现从中任意抽取4件,按下列条件,各有多少种不同的抽法(只要求列式)?⑴都不是次品;⑵至少有1件次品;⑶不都是次品.(6级)【解析】 第⑴题:与顺序无关;都不是次品,即全部都是正品,正品有195件.第⑵题:与顺序无关;至少有1件次品,即有1件次品、2件次品、3件次品、4件次品等四类情况,次品共5件.可用直接法解答,也可用间接法解答.第⑶题:与顺序无关;不都是次品,即至少有1件是正品. ⑴都不是次品,即全部为正品.共有抽法4195C 种.⑵至少有1件次品,包括1件、2件、3件、4件次品的情况.共有抽法31221341955195519555()C C C C C C C +++种(或44200195()C C -种).⑶不都是次品,即至少有1件正品.共有抽法1322314195519551955195()C C C C C C C +++种(或442005()C C -种).【例 17】 在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的:⑴ 直线段;⑵ 三角形;⑶ 四边形.(6级)【解析】 由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段;在10个点中取3个点,就可以画出一个三角形;在10个点中取4个点,就可以画出一个四边形,三个问题都是组合问题. 由组合数公式:⑴ 可画出221010221094521P C P ⨯===⨯(条)直线段.⑵ 可画出331010331098120321P C P ⨯⨯===⨯⨯(个)三角形. ⑶ 可画出44101044109872104321P C P ⨯⨯⨯===⨯⨯⨯(个)四边形.【巩固】 平面内有10个点,以其中每2个点为端点的线段共有多少条?(4级) 【解析】 这道题不考虑线段两个端点的顺序,是组合问题,实际上是求从10个元素中取出2个元素的组合数,由组合数公式,2101094521C ⨯==⨯,所以以10个点中每2个点为端点的线段共有45条.【巩固】 在正七边形中,以七边形的三个顶点为顶点的三角形共有多少个?(4级) 【解析】 三角形的形状与三个顶点选取的先后顺序无关,所以这是一个组合问题,实际上是求从7个点中选出3个点的选法,等于3776535321C ⨯⨯==⨯⨯(种).【例 18】 平面内有12个点,其中6点共线,此外再无三点共线.⑴ 可确定多少个三角形?⑵ 可确定多少条射线?(6级)【解析】 ⑴ 分三类:①有2个顶点在共线的6点中,另1个顶点在不共线的6点中的三角形有2665669021C ⨯⨯=⨯=⨯个; ②有1个顶点在共线的6点中,另2个顶点在不共线的6点中的三角形有2665669021C ⨯⨯=⨯=⨯(个); ③3个顶点都在不共线的6点中的三角形有3665420321C ⨯⨯==⨯⨯个.根据加法原理,可确定909020200++=个三角形. ⑵ 两点可以确定两条射线,分三类: ①共线的6点,确定10条射线;②不共线的6点,每两点确定两条射线,共有2665223021C ⨯⨯=⨯=⨯(条)射线; ③从共线的6点与不共线的6点中各取一个点可以确定66272⨯⨯=(条)射线. 根据加法原理,可以确定103072112++=(条)射线.【巩固】 如图,问:⑴ 图1中,共有多少条线段?⑵ 图2中,共有多少个角?(4级)54321 ...P 9P 3P 2P 1BAO图1 图2 【解析】 ⑴ 在线段AB 上共有7个点(包括端点A 、B ).注意到,只要在这七个点中选出两个点,就有一条以这两个点为端点的线段,所以,这是一个组合问题,而27C 表示从7个点中取两个不同点的所有取法,每种取法可以确定一条线段,所以共有27C 条线段. 由组合数公式知,共有227722762121P C P ⨯===⨯(条)不同的线段; ⑵ 从O 点出发的射线一共有11条,它们是OA , 1OP ,2OP ,3OP ,,9OP ,OB .注意到每两条射线可以形成一个角,所以,只要看从11条射线中取两条射线有多少种取法,就有多少个角.显然,是组合问题,共有211C 种不同的取法,所以,可组成211C 个角.由组合数公式知,共有2211112211105521P C P ⨯===⨯(个)不同的角.【例 19】 某班要在42名同学中选出3名同学去参加夏令营,问共有多少种选法?如果在42人中选3人站成一排,有多少种站法?(6级)【解析】 要在42人中选3人去参加夏令营,那么,所有的选法只与选出的同学有关,而与三名同学被选出的顺序无关.所以,应用组合数公式,共有342C 种不同的选法.要在42人中选出3人站成一排,那么,所有的站法不仅与选出的同学有关,而且与三名同学被选出的顺序有关.所以,应用排列数公式,共有342P 种不同的站法.由组合数公式,共有3342423342414011480321P C P ⨯⨯===⨯⨯(种)不同的选法; 由排列数公式,共有34242414068880P =⨯⨯=(种)不同的站法.【巩固】 学校新修建的一条道路上有12盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中2盏灯,但两端的灯不能熄灭,也不能熄灭相邻的2盏灯,那么熄灯的方法共有多少种?(6级)【解析】 要熄灭的是除两端以外的2盏灯,但不相邻.可以看成有10盏灯,共有9个空位,在这9个空位中找2个空位的方法数就是熄灭2盏灯的方法数,那么熄灯的方法数有29983621C ⨯==⨯(种).【例 20】 将三盘同样的红花和四盘同样的黄花摆放成一排,要求三盘红花互不相邻,共有__________种不同的方法.(2007年“希望杯”第一试)(4级)【解析】 因为三盘红花不能相邻,所以可以先将四盘黄花摆好,红花只能摆在黄花之间或者黄花的两边.这样共有5个空,每个空最多只能放一盘红花,相当于从5个元素中取出3个,所以共有3554310123C ⨯⨯==⨯⨯种不同的放法.【例 21】 在一次合唱比赛中,有身高互不相同的8个人要站成两排,每排4个人,且前后对齐.而且第二排的每个人都要比他身前的那个人高,这样才不会被挡住.一共有多少种不同的排队方法?(4级)【解析】 因为所有人的身高两两不同,所以只要确定了位于同一列的两个人是谁,也就确定了他们的前后关系.所以排队方法总数为:222 864281562520C C C⨯⨯=⨯⨯=(种).【例 22】在一次考试的选做题部分,要求在第一题的4个小题中选做3个小题,在第二题的3个小题中选做2个小题,在第三题的2个小题中选做1个小题,有多少种不同的选法?(6级)【解析】由于选做的题目只与选取的题目有关,而与题目的顺序无关,所以在三道题中选题都是组合问题.第一题中,4个小题中选做3个,有344324 321C⨯⨯==⨯⨯(种)选法;第二题中,3个小题中选做2个,有23323 21C⨯==⨯(种)选法;第三题中,2个小题中选做1个,有12212 1C⨯==(种)选法.根据乘法原理,一共有43224⨯⨯=(种)不同的选法.【例 23】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?(6级)【解析】分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有266515 21C⨯==⨯(种)选法;第二步,从余下的4个班中选取两个班给乙,有24436 21C⨯==⨯(种)选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有156190⨯⨯=(种)不同的分配方法.【例 24】(2007年“迎春杯”高年级初赛)将19枚棋子放入55⨯的方格网内,每个方格至多只放一枚棋子,且每行每列的棋子个数均为奇数个,那么共有________种不同的放法.(4级)【解析】55⨯的方格网共有25个方格,放入19枚棋子,说明还有6个空格.由于棋子的数目较多,直接考虑棋子比较困难,可以反过来考虑6个空格.由于每行每列的棋子个数均为奇数个,而每行每列都有5个方格,说明每行每列的空格数都是偶数个.那么每行每列的空格数可能为0,2或4.如果有某一行或某一列的空格数为4个,为保证每行每列的空格数都是偶数个,那么这4个空格所在的列或行都至少还有另外1枚棋子,这样至少有8个空格,与题意不符,所以每行每列的空格数不能为4个,只能为0个或2个.则肯定是某3行和某3列中每行每列各有2个空格,如下:□□○□○□○□□其中□表示空格,○表示有棋子的方格,其它的方格则全部有棋子.选择有空格的3行3列有33551010100C C⨯=⨯=种选法,在这3行3列中选择6个空格(也相当于每行每列选择1枚棋子)有3216⨯⨯=种选法,所以总共有1006600⨯=种不同的放法.【例 25】甲射击员在练习射击,前方有三种不同类型的气球,共3串,有一串是红气球3个,有一串是黄气球2个,有一串是绿气球4个,而且每次射击必须射最下面的气球,问有多少种不同的射法?(6级)绿黄红【解析】根据射击规则,任意一种打法都对应三个红色气球,二个黄色气球,四个绿色气球,即9个物体的排列,当然有987654321⨯⨯⨯⨯⨯⨯⨯⨯种排列方法.但是,其中三个红色气球是不能随意排列的,应该是固定由下到上的,而上面却包括了它的随意排列的情况,所以应该除以321⨯⨯,其他黄色气球、绿色气球依此类推.所以共有射击方法:(987654321)(321)(21)(4321)⨯⨯⨯⨯⨯⨯⨯⨯÷⨯⨯÷⨯÷⨯⨯⨯(987654)(21)(4321)=⨯⨯⨯⨯⨯÷⨯÷⨯⨯⨯1260=(种).本题也可以这样想:任意一种打法都对应9个物体的排列,从中先选出3个位置给红色气球,有39C种选法;这3个红色气球的顺序是固定的,所以它们之间只有一种排列顺序;再从剩下的6个位置中选出2个给黄色气球,有26C种选法;它们之间也只有一种排列顺序;剩下的4个位置给绿色气球,它们之间也只有一种排列顺序.所以,根据乘法原理,共有32961260C C⨯=种不同的射法.【例 26】有8个队参加比赛,采用如下图所示的淘汰制方式.问在比赛前抽签时,可以得到多少种实质不同的比赛安排表?(6级)【解析】(法1)先选4人,再考虑组合的方法.8选4有4870C=种组合,其中实质不同的有一半,即70235÷=种;对每一边的4个人,共有实质性不同的2423C÷=种,所以,可以得到3533315⨯⨯=种实质不同的比赛安排表.(法2)先考虑所有情况,再考虑重复情况首先是8!87654321=⨯⨯⨯⨯⨯⨯⨯考虑到实质相同:1、2;3、4;5、6;7、8;一、二;三、四;A、B,以上7组均可交换,即每一种实际上重复计算了72次,答案为:78!2315÷=.【例 27】某池塘中有A B C、、三只游船,A船可乘坐3人,B船可乘坐2人,C船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?(6级)【解析】由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C船.⑴若这5人都不乘坐C船,则恰好坐满A B、两船,①若两个儿童在同一条船上,只能在A船上,此时A船上还必须有1个成人,有133C=种方法;②若两个儿童不在同一条船上,即分别在A B、两船上,则B船上有1个儿童和1个成人,1个儿童有122C=种选择,1个成人有133C=种选择,所以有236⨯=种方法.故5人都不乘坐C船有369+=种安全方法;⑵若这5人中有1人乘坐C船,这个人必定是个成人,有133C=种选择.其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A船上,此时A船上还必须有1个成人,有122C=种方法,所以此时有326⨯=种方法;②若两个儿童不在同一条船上,那么B船上有1个儿童和1个成人,此时1个儿童和1个成人均有122C=种选择,所以此种情况下有32212⨯⨯=种方法;故5人中有1人乘坐C船有61218+=种安全方法.所以,共有91827+=种安全乘法.【例 28】有蓝色旗3面,黄色旗2面,红色旗1面.这些旗的模样、大小都相同.现在把这些旗挂在一个旗杆上做成各种信号,如果按挂旗的面数及从上到下颜色的顺序区分信号,那么利用这些旗能表示多少种不同信号? (4级)【解析】按挂旗的面数来分类考虑.第一类:挂一面旗.从蓝、黄、红中分别取一面,可以表示3种不同信号;第二类:挂两面旗.按颜色分成:红+黄(222P=种);红+蓝(222P=种);黄+蓝(222P=种);黄+黄(1种);蓝+蓝(1种);共8种;第三类:挂三面旗.按颜色分类:红+蓝+蓝(133C=种);红+黄+黄(133C=种);红+黄+蓝(336P=种);黄+黄+蓝(133C=种);黄+蓝+蓝(133C=种);蓝+蓝+蓝(1种);共19种;第四类:挂四面旗.按颜色分类:红+黄+黄+蓝(24212C⨯=或44212P÷=种);红+黄+蓝+蓝(24212C⨯=或44212P÷=种);红+蓝+蓝+蓝(144C=种);黄+黄+蓝+蓝(22426C C⨯=种);黄+蓝+蓝+蓝(144C=种),共38种;第五类:挂五面旗.按颜色分类:红+黄+黄+蓝+蓝(32153130C C C⨯⨯=种);红+黄+蓝+蓝+蓝(352120C⨯⨯=种);黄+黄+蓝+蓝+蓝(325210C C⨯=种),共60种;第六类:挂六面旗.红+黄+黄+蓝+蓝+蓝(32163160C C C⨯⨯=种).根据加法原理,共可以表示3819386060188+++++=种不同的信号.【例 29】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选;⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人.(6级)【解析】⑴恰有3名女生入选,说明男生有5人入选,应为3581014112C C⨯=种;⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010843758C C C C --⨯=;⑶4人必须入选,则从剩下的14人中再选出另外4人,有4141001C =种; ⑷从所有的选法818C 种中减去这4个人同时入选的414C 种:84181443758100142757C C -=-=.⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:817261441441434749C C C C C +⨯+⨯=.【例 30】 从4名男生,3名女生中选出3名代表.⑴ 不同的选法共有多少种?⑵ “至少有一名女生”的不同选法共有多少种?⑶ “代表中男、女生都要有”的不同选法共有多少种?(6级)【解析】 ⑴ 相当于从7名学生中任意选3名,不同的选法有3776535321C ⨯⨯==⨯⨯(种).⑵ 方法一:可以分成三类:①选1名女生,选2名男生.由乘法原理,有12344331821C C ⨯⋅=⨯=⨯(种)选法; ②选2名女生,选1名男生.由乘法原理,有21343241221C C ⨯⋅=⨯=⨯(种)选法; ③选3名女生,男生不选,有1种选法.根据加法原理,“至少有一名女生”的不同选法有1812131++=(种).方法二:先不考虑对女生的特殊要求,从从7名学生中任意选3名,有3776535321C ⨯⨯==⨯⨯(种)选法;考虑一个女生都不选的情况,则3名代表全产生于男生中,有344324321C ⨯⨯==⨯⨯ (种)选法,所以,至少选一名女生的选法有35431-=种,这种“去杂法”做起来也比较简单.⑶ “代表中男、女生都要有”,可以分成两类:①1名男生,2名女生,由乘法原理,有21343241221C C ⨯⋅=⨯=⨯(种)选法; ②2名男生,1名女生,由乘法原理,有12344331821C C ⨯⋅=⨯=⨯(种)选法. 根据加法原理,“代表中男、女生都要有”的不同选法共有121830+=(种).【小结】选择问题是组合问题中的一类常见问题,可根据具体情况从正面考虑或逆向求解,采用“去杂法”.【巩固】 在6名内科医生和4名外科医生中,内科主任和外科主任各一名,现要组成5人医疗小组送医下乡,按照下列条件各有多少种选派方法? ⑴ 有3名内科医生和2名外科医生; ⑵ 既有内科医生,又有外科医生; ⑶ 至少有一名主任参加; ⑷ 既有主任,又有外科医生.(8级)。

数学竞赛中的组合数学

数学竞赛中的组合数学在高中数学竞赛中,组合数学是一个重要且常见的考点。

它在数学中的地位也越来越重要,不仅能帮助我们在比赛中取得更好的成绩,更能增强我们的逻辑思维能力。

组合数学的基本概念是排列和组合。

排列是指从n个不同的元素中取出m个元素排成一列,不同排列的个数为A(n,m)=n×(n-1)×(n-2)×...×(n-m+1)。

组合是指从n个不同的元素中取出m个元素,不考虑排列顺序,不同组合的个数为C(n,m)=A(n,m)/m!=n!/[m!(n-m)!]。

在组合数学的学习中,一个重要的定理是乘法原理和加法原理。

乘法原理是指若有两个事件A、B,那么总的事件数为它们发生的方式数的积。

加法原理是指若有两个互相排斥的事件A、B,那么总的事件数为它们发生的方式数的和。

另一个重要的组合数学定理是排列组合公式。

它是指在概率问题中常用的计算公式,能用于求解排列和组合的概率。

其公式为P(n,m)=n!/[m!(n-m)!],其中n是元素总数,m是取出的元素个数。

组合数学还可以用于求解各种排序和组合问题。

例如,在比赛中出现的一道题目:用1、2、3、4、5一共五个数字,组成不能重复的三位数并将这些三位数排序,求第k(k<60)个数是多少?这类问题可以用排列组合公式和乘法原理解决。

除此之外,组合数学还在各种实际问题中得到广泛应用。

统计学中,组合数学用于计算随机事件的概率;密码学中,组合数学用于设计和破解密码算法;计算机科学中,组合数学用于算法设计以及计算模型的研究。

总之,组合数学是数学竞赛中的重要一环,也是我们日常生活中的必要技能之一。

学好组合数学可以帮助我们更好的解决各种实际问题,并提高我们的思维能力。

在数学竞赛中,掌握组合数学的知识可以帮助我们更好的理解和解决问题,从而提高我们的比赛成绩。

数学竞赛之排列组合(有解析)


34. 按规律填数。 35.下面哪两行数字的排列规律相同 ?请画 “√。"
36. 按规律填数。
37.10 人围成一圈,从中选出三个人,其中三人均不相邻,共有多少种不同的选法?
38. 早餐店有馄饨,大饼,包子,烧麦四种早点供选择,最少吃一种,最多吃四种,有多少种不同的选择
方法?
39.文艺汇演共有 6 个节目,分 3 种类型: 1 个小品, 2 个舞蹈, 3 个演唱.现在要编排一个节目单; ( 1)如果要求第一个节目是小品,那么共有多少种节目单的编排顺序?
【解析】 【解答】解: 1,2, 3, 4, 5, 6, 7 中 1, 3, 5, 7 是奇数, 2, 4,6 是偶数
3+5=2+6
1+7=2+6
1+5=2+4
1+3=4
1+5=6
3+7=4+6
5+7=2+4+6 共 7种
故选: B.
【分析】找出 1, 2, 3, …, 7 这 7 个自然数那些是奇数,哪些是偶数,列出符合条件偶数之和等于奇数
13.书架上有 3 本故事书, 2 本科技书和 4 本英语书,每本书的内容不同,从中取出故事书,科技书,英语 各一本;共有 ________种不同的取法.
14.从班内 3 名男生和 4 名女生中选出 2 人参加羽毛球混合双打比赛,共有 ________种组队方案。
15.若 3 名同学中选出两人做班长,有 ________种可能。
13.【答案】 24 【考点】 排列组合 【解析】 【解答】解: 3×2×4=2(4种) 故答案为: 24. 【分析】本题直接根据排列组合的方法进行解答即可。
14.【答案】 12 【考点】 排列组合 【解析】 【解答】解: 3×4=12(种); 故答案为: 12. 【分析】 3 名男生和 4 名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配, 根据乘法原理可知,共有 3×4=12种不同的组队方案.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-5 数学竞赛中的组合问题数学竞赛中的组合数学不是一个严格的概念,它离中学教材最远,通常指中学代数、几何、算术(数论)之外的内容(俗称杂题).对中学生而言,这类问题的基本特点是不需要专门的数学语言就可以表述明白,解决起来也没有固定的程式(非常规),常需精巧的构思.从内容上可以归结为两大类:组合计数问题,组合设计问题.(1)组合计数问题这包括有限集合元素的计算、相应子集的计算、集合分拆方法数的计算等,表现为数值计算、组合恒等式或组合不等式的证明.知识基础是加法原理、乘法原理和排列组合公式;常用的方法有:代数恒等变形、二项式定理、数学归纳法、递推、组合分析、容斥原理等.(2)组合设计问题其基本含义是,对有限集合A,按照性质p来作出安排,有时,只是证实具有性质p的安排是否存在、或者验证作出的安排是否具有性质p(称为存在性问题,又可分为肯定型、否定型和探究型);有时,则需把具体安排(或具体性质)找出来(称为构造型问题);进一步,还要找出较好的安排(称为最优化问题).值得注意的一个新趋势是组合与几何、数论的结合,产生组合几何、组合数论,它们与集合分拆一起组成IMO试题的三个热点,突出而鲜明的体现数学竞赛的“问题解决”特征.这三方面之所以成为热点,从思维方式、解题技巧上分析,是因为其更适宜数学尖子的脱颖而出,且常与现代数学思想相联系;从技术层面上分析,还由于都能方便提供挑战中学生的新颖题目.链接资料组合数学又称组合分析或组合学.研究将有限个元素安排到适合(服从)某些限制条件的集合.有三个基本问题:(1)组态问题,解决存在这种安排的条件,给出明确的结论;(2)组态存在时,确定其数目或将它们进行分类;(3)研究安排的性质和结构,包括最优化问题.组合数学最早出现的是神话传说:大禹时代(公元前2200年)的神龟背上驮着的幻方,古代称为"九宫",即4 9 23 5 78 1 6一般是将2放到n n 格子中,使每行每列各数之和1,2,,n相等,称为n阶幻方.还有缺角棋盘的覆盖问题、柯克曼15女生散步问题、欧拉36名军官问题都是著名的组合学例子.现代科学技术中,又提出离散性问题及关系结构分析,图论、信息论、编码、实验设计、线性规定划等领域也提了一系列问题,促进了组合学的发展.一.IMO 中的组合题(智力题) 1.数量统计从6465,IMO IMO --开始,占20% 2.基本类型(1)组合计数问题: ①问题类型有限集合元素的计算, 子集的计算, 集合分拆的计算 ②解题方法: 代数恒等变形 二项式定理 组合等式 递推 组合分析 容斥原理 数学归纳法.(2)组合设计问题:对集合A ,按照某种性质P 来作出安排. ①问题类型存在性问题, 构造性问题, 最优化问题. ②解题方法: 构造法、 反证法 抽屉原理 染色方法 递推方法更多的解题技巧 见 §2-7 3.发展特点以组合计数、组合设计为基础,与数论、几何交叉,形成组合数论、组合几何、集合分拆三大热点.二、基础知识(与基本类型相一致) 有7个定义、9条定理:定义1 从n 个不同的元素中取出m 个()m n ≤,按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列.相异元素排列数的计算公式为:()()()11!11!!mm mn n n n p n n n m np m C n m --=--+===- . 定义2 从n 个不同的元素中取出m 个()m n ≤,并成一组,叫做从n 个不同的元素中取出m 个元素的一个组合.相异元素组合数的计算公式为:()()()1111!!!!mm n mm n nn n m m n n n m p n n C C C p m m n m m -----+=====- . 定理1 (加法原理)做一件事,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法, ,在第n 类办法中有n m 种不同的方法,那么完成这件事共有12n N m m m =+++种不同的方法.定理2 (乘法原理)做一件事,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法, ,做第n 步有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法. 定理3 组合恒等式 (1)()0m n m n n C C m n -=≤≤ (2)()1111m m m n n n C C C m n ---=+≤≤ (3)02.nk n n k C ==∑(4)()010.nk k n k C =-=∑定理4 (二项式定理)().nnk n k kn k a b C a b -=+=∑ 定义3 从n 个不同的元素中取出m 个,按照一定的顺序排在一个封闭曲线上,叫做环形排列(或循环排列、圆排列). 相异元素的 圆排列数公式为:()(),1!.mmn n p f n m m C m==-定义4 从n 个不同的元素中,允许重复取出m 个元素,按照一定的顺序排成一列,称为n 个相异元素允许重复的m 元排列.相异元素的可重复排列数计算公式为:(),.m U n m n =定义5 从n 个不同的元素中,允许重复取出m 个元素,不管怎样的顺序并成一组,称为n 个相异元素允许重复的m 元组合.相异元素的可重复组合数计算公式为:()1,.mn m f n m C +-=定义6 若n 个元素中,有1n 个1a ,2n 个2,,a m n 个m a ,且12m n n n n +++= ,则这n 个元素的全排列,称为不尽相异元素的全排列.不尽相异元素的全排列公式为: ()1212!,,.!!!m m n V n n n n n n =定义7 如果A 是一个n 元有限集合,那么,它的子集12,,,m A A A 组成的集合{}12,,,m R A A A = 叫做A 的一个子集系.定理5 n 元集合A 中含有()0k k n ≤≤个元素的子集有k n C 个;集合A 的所有子集共2n 个. 定理6 (抽屉原理)(1)若把1mn +元素放进n 个集合,则必存在一个集合至少放有1m +个元素.(2)若把()01211m n ++++--⎡⎤⎣⎦ 个元素放进mn 个集合,则至少有1m +个集合的元素一样多.(3)若把1mn -元素放进n 个集合,则必有一个集合至多含有1m -个元素.定理7 (容斥原理)设集合{}12,,,,n A a a a = 12,,,m A A A A ⊆ ,记i A 为i A 对于全集A 的补集,则 (1) 12m A A A()1111121.mi i j i j ki i j m i j k nm m A A A A A A A A A =≤≤≤≤<<≤-=-+-+-∑∑∑(2) 1212.mm A A A A A A A =-定理8 (自然数的良序性)自然数的任一非空子集中,必有一个元素是最小的.定理9 设,A B 是两个有限元集合,,A B 分别是两集合的元素个数,f 是A 到B 的一个映射. (1)若f 是单射,则A B≤;特别的,f 是单射而非满射,则A B<.(2)若f 是满射,则A B≥.(3)若f 是一一映射(双射),则A B=.2.主要类型(1)排列、组合的知识. (2)集合、影射的知识. (3)抽屉原理. (4)容斥原理. (5)组合恒等式. 三、例题讲解例1 (1)将10个苹果分给3个人,每人至少1个,问有几种不同的分法?(10的有序分拆)(2)将10个苹果分成3堆,每堆至少1个,问有几种不同的分法?(10的无序分拆)解(1)设第i 个人分得i x 个苹果,则有()123101i x x x x ++=≥11110+++=对应9个加号取2个的取法,得2936C =.相当于10个苹果一字排开两手拿隔板往里一插,得一种分法.(2)10的3项分拆:每堆先放1个苹果,剩下的7个苹果可以拆开放到3堆,也可以放到2堆,或全放到1堆,故得10的3项分拆=7的3项分拆+7的2项分拆+7的1项分拆=4的3项分拆+4的2项分拆+4的1项分拆+3+1=1+2+1+3+1=8.一般地m的n项分拆=m n-的n项分拆+m n-的1n-项分拆+…+m n-的2项分拆+m n-的1项分拆.数字小时可以列举10=1+1+8=1+2+7=1+3+6=1+4+5=2+2+6=2+3+5=2+4+4=3+3+4共8种例2(1988,高中联赛,例2-104)甲乙两队各出7名队员按事先安排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,依次类推,直到有一方队员全被淘汰为止,另一方获胜利,形成一种比赛过程,那么所有可能出现的比赛过程的种数有多少?(P .205)解法112345671234567,,,,,,,,,,,,A A A A A A A B B B B B B B ——714C解法2 设i A 胜 i x 场,甲胜等价于方程12345677x x x x x x x ++++++=,非负整数解的个数,令1i i y x =+,方程123456714y y y y y y y ++++++=,正整数解的个数1111111111111114+++++++++++++=,从13个加号取6个的方法数613C 种. 同理,乙胜也有613C 种. 得2613C =714C 种.2613C =714C =3432种.例2-1 联欢晚会准备了2n 个礼物,平分为两串公开吊挂在墙上,每个获奖者可以(也只能)从两串的最下方任选一个礼物,则2n 个获奖者选这2n 个礼物,共有 种不同的选法.(2n n C )例3(1989,306IMO -,例2-105)设n 是正整数,我们说集合{}n 2,,2,1 的一个排列()122,,,n x x x 具有性质p,是指在{}12,,2,1-n 当中至少有一个i ,使得n x x i i =-+||1,求证对于任何n,具有性质p的排列比不具有性质p的排列的个数多.(P .85)解 1n =显然成立.对2n ≥设不具有性质p 的排列组成集合A ,设恰有一个元素具有性质p 的排列组成集合B ,取()122,,,n X x x x A =∈ ,则存在2k >,使1||k x x n -=,作对应()122112:,,,,,,,k k k k n f X Y x x x x x x x --+→= ,则Y B ∈,且A 中不同的元素在B 中有不同的像,得 A B ≤<具有性质p 的排列个数.例4(1989,高中)如果从数1,2,…,14中按由小到大的顺序取出123,,a a a ,使同时满足 21323, 3a a a a -≥-≥那么,所有符合上述要求的不同取法有多少种? 解 由已知得121323 10, 30 30, 140,a a a a a a -≥--≥--≥-≥4项均为非负数,相加得()()()()121323133 147a a a a a a -+--+--+-=,于是123,,a a a 的取法数就是不定方程 12347x x x x +++=的非负整数解的个数,作一一对应11i y x =+问题又等价于不定方程 123411y y y y +++= 的正整数解.由11111+++=得310C 个解,即符合要求的不同取法有310C 种.(P .240)例5 (1992高中联赛) 设集合{}1,2,,n S n = ,若X 是nS 的子集,把X 中的所有数的和称为X 的“容量”(规定空集的容量为0).若X 的容量为奇(偶数),则称X 为n S 的奇(偶)子集.(1)求证:n S 的奇子集与偶子集个数相等.(2)求证:当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等.(3)当3n ≥时,求n S 的所有奇子集的容量之和. 证明1 分别求解3问.(1)对n X S ⊆,我们取/n X S ⊆与X 对应:当1X ∈时,就从X 中取出1得/X ;当1X ∉时,就从X 中添上1得/X .于是,X 与/X 一一对应,且一个为奇(偶)子集时,另一个便为偶(奇)子集,故n S 中的奇子集与偶子集一一对应,个数相等.(2)设n S 中的奇子集个数有n a 个,偶子集个数有n b 个,所有奇子集的容量之和为()n f a ,所有偶子集的容量之和为()n f b ,由第(1)问及n S 中有2n 个子集知12n n n a b -==.1)当3n ≥且n 为奇数时,n S 中的奇(偶)子集由两部分组成,其一是1n S -的奇(偶)子集,其二是1n S -的每一个偶(奇)子集与{}n 的并集,有()()()()()()()()111111111.n n n n n n n n n n n f a f a f b nb f a f b na f b f a na f b ---------=++⎡⎤⎣⎦=++=++⎡⎤⎣⎦=2)当3n ≥且n 为偶数时,则1n -为奇数,由上证,有()()1111n n n n a b f a f b ----==且.此时,n S 中的奇(偶)子集由两部分组成,其一是1n S -的奇(偶)子集,其二是1n S -的每一个奇(偶)子集与{}n 的并集,有()()()111n n n n f a f a f a na ---=++⎡⎤⎣⎦ ()()111n n n f a f a nb ---=++⎡⎤⎣⎦()()()111.n n n n f b f b nb f b ---=++⎡⎤⎣⎦=综上得,当3n ≥时()()n n f a f b =.(3)由于n S 中每个元素都出现在12n -个子集中,所以n S 的所有子集的容量为()()n n f a f b +=()1122n n -+++ =()212n n n -+.得 ()()()12n n n f a f a f b =+=⎡⎤⎣⎦()312n n n -+. 证明2 同时求解3问设n S 中的奇子集个数有n a 个,偶子集个数有n b 个,所有奇子集的容量之和为()n f a ,所有偶子集的容量之和为()n f b ,有11221,2.a b a b ====对3n ≥,用数学归纳法证明命题()()()3,:12.n n n n n a b P f a f b n n -=⎧⎪⎨==+⎪⎩ (1)当3n =时,{}31,2,3S =的奇子集有{}{}{}{}1,3,1,2,2,3,偶子集有{}{},2,1,3,∅{}1,2,3,得()()()3333334,123312.a b f a f b -==⎧⎪⎨===+⎪⎩ 命题P 成立.(2)现假设n k =时,命题P 成立.即()()()3,12.k k k k k a b f a f b k k -=⎧⎪⎨==+⎪⎩ 对1k S +的子集可以分成两部分,一部分是k S 的子集,有12k k k a b -==;另一部分是k S 的子集与{}1k +的并集,其奇子集的个数与偶子集的个数也是相等的.有1122k k k k a a b b ++===.并且,()()()11k k f a f b ++或等于()()()k k f a f b 或的2倍,再加上12k -个1k +,即()()()()()()()()()1113113212212121112,k k k k k k k f a f b f a k k k k k k -++--+-==++=⋅+++=+++⎡⎤⎣⎦这说明1n k =+时,命题P 成立.由数学归纳法知,题目中的3问均已成立. 作业1.从n 个不同的元素中,允许重复取出m 个元素,不管怎样的顺序并成一组,称为n 个相异元素允许重复的m 元组合.证明:相异元素的可重复组合数计算公式为:()1,.m n m f n m C +-=2.凸n 边形(4n ≥)玫瑰园的n 个顶点各栽有1棵红玫瑰,每两棵红玫瑰之间都有一条直小路相通,这些直小路没有出现“三线共点”的情况——它们把花园分割成许多不重叠的区域(三角形、四边形,…),每块区域都栽有一棵白玫瑰或黑玫瑰.⑴ 求出玫瑰园里玫瑰总棵数()f n 的表达式. ⑵ 花园里能否恰有99棵玫瑰?说明理由.作业处理1.求方程3222009x x y +=的整数解. 解:由2009的分解式,有 ()222212009741x x y +=⨯=⨯,有 21,1,1,1004,1005,22009,x x x y y x y ==-⎧=⎧⎧⇒⎨⎨⎨==+=⎩⎩⎩227,7,717,24.241,x x x y y x y ==-⎧=⎧⎧⇒⎨⎨⎨==+=⎩⎩⎩2、2009年9月9日的年、月、日组成“长长久久、永不分离”的吉祥数字20090909,而它也恰好是一个不能再分解的素数.若规定含素因子20090909的数为吉祥数,请证明最简分数111220090908m n =+++的分子m 是吉祥数.证明:由111220090908m n =+++1111111200909082200909071004545410045455200909092009090920090909120090908220090907100454541004545520090909,122009090720090908p⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+++⨯⨯⨯=⨯⨯⨯⨯⨯ 其中p 为正整数,有20090909122009090720090908n p m ⨯⨯=⨯⨯⨯⨯⨯ ,这表明,20090909整除122009090720090908m ⨯⨯⨯⨯⨯ ,但20090909为素数,不能整除122009090720090908⨯⨯⨯⨯ ,所以20090909整除m ,得m 是吉祥数.。

相关文档
最新文档