回溯与分支限界算法设计

合集下载

回溯法和分支限界法解决0-1背包题(精)[精品文档]

回溯法和分支限界法解决0-1背包题(精)[精品文档]

0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。

由此得一个解为[1,0.2,1,1],其相应价值为22。

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较摘要:通过对回溯法与分支限界法的简要介绍,进一步分析和比较这两种算法在求解问题时的差异,并通过具体的应用来说明两种算法的应用场景及侧重点。

关键词:回溯法分支限界法n后问题布线问题1、引言1.1回溯法回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

这种以深度优先方式系统搜索问题解的算法称为回溯法。

1.2分支限界法分支限界法是以广度优先或以最小耗费优先的方式搜索解空间树,在每一个活结点处,计算一个函数值,并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解,这种方法称为分支限界法。

2、回溯法的基本思想用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少应包含问题的一个解。

之后还应将解空间很好的组织起来,使得能用回溯法方便的搜索整个解空间。

在组织解空间时常用到两种典型的解空间树,即子集树和排列树。

确定了解空间的组织结构后,回溯法从开始结点出发,以深度优先方式搜索整个解空间。

这个开始结点成为活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

此时,应往回移动至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法以这种工作方式递归的在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。

3、分支限界法的基本思想用分支限界法解问题时,同样也应明确定义问题的解空间。

之后还应将解空间很好的组织起来。

分支限界法也有两种组织解空间的方法,即队列式分支限界法和优先队列式分支限界法。

算法设计(第7章回溯和分支限界)

算法设计(第7章回溯和分支限界)

wv S : (3,8)
(20,50) (5,12) (10,21) (5,10) W = 30
当前最优解: 01101 (72)
bound: 50+10=60
7.2 0-1背包问题
限界函数:当前背包价值加上剩余所有物品的价值
30,0
1
0
27,8
1
0
7,58
1
0
2,70 7,58
27,8 1
5,62
第1个可行解: 11100 (70)
bound: 58+21+10=89
7.2 0-1背包问题
限界函数:当前背包价值加上剩余所有物品的价值
30,0 1
27,8 1
7,58
1
0
2,70 7,58
0
0
2,70 7,58
0
2,70
wv S : (3,8)
(20,50) (5,12) (10,21) (5,10) W = 30
bound: 50+21+10=81
7.2 0-1背包问题
限界函数:当前背包价值加上剩余所有物品的价值
30,0
1
0
27,8
1
0
30,0 1
7,58
1
0
2,70 7,58
27,8 1
5,62
10,50 0 10,50
0
0
2,70 7,58
0
0
1
0
5,62 0,71 10,50
1
0
2,70
0,72
0,71
第1个可行解: 11100 (70)
bound: 50+12+21+10=93

回溯法和分支限界法解决背包题

回溯法和分支限界法解决背包题

0-1背包问题计科1班朱润华 32方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。

由此得一个解为[1,,1,1],其相应价值为22。

尽管这不是一个可行解,但可以证明其价值是最优值的上界。

算法的设计(第7章回溯和分支限界)

算法的设计(第7章回溯和分支限界)

未来发展趋势及挑战
算法优化与创新
随着问题规模的增大和复杂性的提高,对算法性能的要求也越来越高。未来,回溯和分支 限界算法的优化和创新将成为研究的重要方向,包括设计更高效的剪枝策略、改进限界函 数等。
人工智能与算法设计的融合
人工智能技术的快速发展为算法设计提供了新的思路和方法。未来,将人工智能技术应用 于回溯和分支限界算法的设计中,实现自动化或半自动化的算法设计和优化,将是一个具 有挑战性的研究方向。
旅行商问题(TSP)。该问题是一个典 型的分支限界法应用案例,通过估计 旅行路线的最小和最大长度,可以缩 小搜索范围,并提高求解效率。回溯 法也可以求解TSP问题,但通常需要结 合其他优化技术来提高效率。
案例三
图的着色问题。该问题既可以通过回 溯法求解,也可以通过分支限界法求 解。回溯法通过搜索所有可能的着色 方案,并判断每种方案是否满足条件 ;而分支限界法则可以通过估计着色 的最小和最大颜色数来缩小搜索范围 。在实际应用中,可以根据问题的具 体特点和要求选择合适的算法。
利用问题领域的启发式信息来指导搜索过程,通过评估当前状态的优劣来决定是否继续 搜索该分支。启发式剪枝能够显著减少搜索空间,提高算法效率。
04 分支限界法详解
队列式分支限界法原理及实现
• 原理:队列式分支限界法是一种广度优先搜索策略,通过维 护一个队列来存储待处理的节点。在搜索过程中,不断从队 列中取出节点进行处理,并将产生的子节点加入队列,直到 找到目标节点或队列为空。
特点
回溯算法通常采用深度优先搜索策略 ,在搜索过程中,当发现当前路径无 法满足问题要求时,会及时“回溯” 到上一步,尝试其他可能的路径。
适用场景及问题类型
适用场景
回溯算法适用于求解组合优化问题, 如排列组合、图的着色、旅行商问题 等。

算法设计中的回溯与分支限界

算法设计中的回溯与分支限界

算法设计中的回溯与分支限界在算法设计中,回溯(backtracking)和分支限界(branch and bound)是两个重要的技术手段。

它们在解决一些求解最优化问题或搜索问题时具有广泛的应用。

本文将介绍回溯和分支限界的基本概念、原理和应用,并探讨它们在算法设计中的意义和作用。

一、回溯算法回溯算法是一种穷举搜索算法,通过遍历问题的解空间来求解问题。

其基本思想是从初始解开始,逐步地扩展解的空间,直到找到满足问题要求的解。

如果扩展到某一步时发现无法继续扩展,那么就回溯到上一步,并继续向其他可能的解空间进行扩展。

回溯算法通常使用递归的方式实现。

回溯算法的应用非常广泛,适用于求解组合优化、满足约束条件的问题,例如八皇后问题、0-1背包问题、图的哈密顿路径等。

回溯算法虽然简单直观,但由于其穷举搜索的性质,时间复杂度较高,因此在面对问题规模较大时不一定是最优的选择。

二、分支限界算法分支限界算法是一种在解空间中搜索最优解的算法。

它通过在搜索过程中设定上、下界限制来避免对无效解的搜索,从而提高搜索效率。

分支限界算法通常使用优先队列(priority queue)来存储待扩展的节点,并按照一定的优先级进行扩展,每次选择优先级最高的节点进行扩展。

在扩展过程中,通过修剪(pruning)无效解的策略,可以进一步提高搜索效率。

分支限界算法的应用范围广泛,适用于求解组合优化问题、图论问题等。

通过合理的界限设定和剪枝策略,分支限界算法能够大幅减少搜索空间,提高求解效率。

但需要注意的是,分支限界算法并不能保证一定能够找到最优解,只能保证找到满足要求的解。

三、回溯与分支限界的比较回溯算法和分支限界算法都是基于搜索的算法,二者都可以求解组合优化问题和搜索问题。

回溯算法在搜索过程中对解空间进行穷举,而分支限界算法通过设定界限和剪枝策略来减少搜索空间。

因此,相较于回溯算法,分支限界算法具有更高的搜索效率。

然而,回溯算法也有其优点。

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)
BBnode enode =null;
inti = 1;
doublebestp = 0.0;
doubleup = bound(1);
while(i !=n+ 1) {
doublewt =cw+w[i];
//检查当前扩展节点的左儿子节点
if(wt <=c) {
if(cp+p[i] > bestp) {
}
do{
System.out.println("请输入背包的容量:");
input = in.readLine().trim();
input = in.readLine().replaceAll(" ","");
}while(input.equals(""));
if(input.equals("2")){
w=newdouble[n+ 1];
for(inti = 1; i <=n; i++) {
p[i] = pp[q[i - 1].id- 1];
w[i] = ww[q[i - 1].id- 1];
}
backtrack(1);
returnbestp;
}
//回溯过程
privatevoidbacktrack(inti) {
c= cc;
n= pp.length;
Element[] q =newElement[n];
doublews = 0.0;
doubleps = 0.0;
for(inti = 0; i <n; i++) {
q[i] =newElement(i + 1, pp[i] / ww[i]);

第5章-回溯与分支限界

第5章-回溯与分支限界

(1)如果X=(x1, x2, …, xi+1)是问题的最终解,则输出这个解。 如果问题只希望得到一个解,则结束搜索,否则继续搜索其 他解; (2)如果X=(x1, x2, …, xi+1)是问题的部分解,则继续构造解 向量的下一个分量; (3)如果X=(x1, x2, …, xi+1)既不是问题的部分解也不是问题 的最终解,则存在下面两种情况: ① 如果xi+1= ai+1k不是集合Si+1的最后一个元素,则令xi+1= ai+ 1k+1,即选择Si+1的下一个元素作为解向量X的第i+1个分量; ② 如果xi+1= ai+1k是集合Si+1的最后一个元素,就回溯到X=(x1, x2, …, xi),选择Si的下一个元素作为解向量X的第i个分量,假 设xi= aik,如果aik不是集合Si的最后一个元素,则令xi= aik+1; 否则,就继续回溯到X=(x1, x2, …, xi-1);
11
回溯法的搜索过程涉及的结点(称为搜索空间) 只是整个解空间树的一部分,在搜索过程中,通常 采用两种策略避免无效搜索:
(1)用约束条件剪去得不到可行解的子树;
(2)用目标函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数(Pruning Function)。
需要注意的是,问题的解空间树是虚拟的,并不 需要在算法运行时构造一棵真正的树结构,只需要 存储从根结点到当前结点的路径。
3
例5.2 0-1背包问题
实例:V={12,11,9,8}, W={8,6,4,3}, B=13
结点:向量<x1, x2, x3, …, xk>(子集的部分特征向量) 搜索空间:子集树,2n片树叶
<1> <0>
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析实验报

1.骑士游历问题(采用回溯法):
在国际象棋的棋盘(8行×8列)上放置一个马,按照“马走日字”的规则,马要遍历棋盘,即到达棋盘上的每一格,并
且每格只到达一次。

若给定起始位置(x0,y0),编程探索出一
条路径,沿着这条路径马能遍历棋盘上的所有单元格。

2. 行列变换问题(采用分支限界法):
给定两个m n方格阵列组成的图形A和图形B,每个方格的颜色为黑色或白色,如下图所示。

行列变换问题的每一步变
换可以交换任意2行或2列方格的颜色,或者将某行或某列颠
倒。

上述每次变换算作一步。

试设计一个算法,计算最少需要
多少步,才能将图形A变换为图形B。

图形A图形B
}
}
实例:
2. 行列变换问题的程序:
package ;
import graph{
static int sour, dest;//sour是图形的初始整数,dest是图形的目的整数
static int ans[]=new int[1<<16];//静态变量(即全局变量),用于存放图形变换的路径
int m=4,n=4,x;
int row[]=new int[4];
int col[]=new int[4];
void setx(int x){
=x;
}
int getx(){
return ;
}
x/=2;
}
}
}
public static void output(int N){
if(N=={
outb(N);
return;
}
output[N]);//[N]存放着从初始值到目的值的遍历路径
outb(N);
}
}
实例:
实验成绩:
指导教师:年月日精心搜集整理,。

相关文档
最新文档