第10章 回溯法和分支限界法

合集下载

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较摘要:通过对回溯法与分支限界法的简要介绍,进一步分析和比较这两种算法在求解问题时的差异,并通过具体的应用来说明两种算法的应用场景及侧重点。

关键词:回溯法分支限界法n后问题布线问题1、引言1.1回溯法回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

这种以深度优先方式系统搜索问题解的算法称为回溯法。

1.2分支限界法分支限界法是以广度优先或以最小耗费优先的方式搜索解空间树,在每一个活结点处,计算一个函数值,并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解,这种方法称为分支限界法。

2、回溯法的基本思想用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少应包含问题的一个解。

之后还应将解空间很好的组织起来,使得能用回溯法方便的搜索整个解空间。

在组织解空间时常用到两种典型的解空间树,即子集树和排列树。

确定了解空间的组织结构后,回溯法从开始结点出发,以深度优先方式搜索整个解空间。

这个开始结点成为活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

此时,应往回移动至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法以这种工作方式递归的在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。

3、分支限界法的基本思想用分支限界法解问题时,同样也应明确定义问题的解空间。

之后还应将解空间很好的组织起来。

分支限界法也有两种组织解空间的方法,即队列式分支限界法和优先队列式分支限界法。

回溯法和分支限界法解决背包题

回溯法和分支限界法解决背包题

0-1背包问题计科1班朱润华 32方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。

由此得一个解为[1,,1,1],其相应价值为22。

尽管这不是一个可行解,但可以证明其价值是最优值的上界。

算法设计中的回溯与分支限界

算法设计中的回溯与分支限界

算法设计中的回溯与分支限界在算法设计中,回溯(backtracking)和分支限界(branch and bound)是两个重要的技术手段。

它们在解决一些求解最优化问题或搜索问题时具有广泛的应用。

本文将介绍回溯和分支限界的基本概念、原理和应用,并探讨它们在算法设计中的意义和作用。

一、回溯算法回溯算法是一种穷举搜索算法,通过遍历问题的解空间来求解问题。

其基本思想是从初始解开始,逐步地扩展解的空间,直到找到满足问题要求的解。

如果扩展到某一步时发现无法继续扩展,那么就回溯到上一步,并继续向其他可能的解空间进行扩展。

回溯算法通常使用递归的方式实现。

回溯算法的应用非常广泛,适用于求解组合优化、满足约束条件的问题,例如八皇后问题、0-1背包问题、图的哈密顿路径等。

回溯算法虽然简单直观,但由于其穷举搜索的性质,时间复杂度较高,因此在面对问题规模较大时不一定是最优的选择。

二、分支限界算法分支限界算法是一种在解空间中搜索最优解的算法。

它通过在搜索过程中设定上、下界限制来避免对无效解的搜索,从而提高搜索效率。

分支限界算法通常使用优先队列(priority queue)来存储待扩展的节点,并按照一定的优先级进行扩展,每次选择优先级最高的节点进行扩展。

在扩展过程中,通过修剪(pruning)无效解的策略,可以进一步提高搜索效率。

分支限界算法的应用范围广泛,适用于求解组合优化问题、图论问题等。

通过合理的界限设定和剪枝策略,分支限界算法能够大幅减少搜索空间,提高求解效率。

但需要注意的是,分支限界算法并不能保证一定能够找到最优解,只能保证找到满足要求的解。

三、回溯与分支限界的比较回溯算法和分支限界算法都是基于搜索的算法,二者都可以求解组合优化问题和搜索问题。

回溯算法在搜索过程中对解空间进行穷举,而分支限界算法通过设定界限和剪枝策略来减少搜索空间。

因此,相较于回溯算法,分支限界算法具有更高的搜索效率。

然而,回溯算法也有其优点。

回溯法与分支限界法

回溯法与分支限界法

回溯法与分支限界法
回溯法和分支限界法是两种常见的搜索算法,它们被广泛应用于解决优化问题、约束满足问题以及决策问题等。

1. 回溯法:
回溯法是一种基于试错的搜索算法。

它通过搜索解空间树来寻找问题的解。

在搜索过程中,回溯法会尝试不同的分支,也就是不同的可能解,直到找到解或者确定无解。

如果一条路径上无法得到解,回溯法就会回溯到上一步,尝试其他的分支。

回溯法的优点是它可以找到问题的所有解,而且对于一些问题,它能够找到最优解。

然而,它的缺点是如果问题的解空间树太大,那么回溯法可能会需要大量的时间和空间。

2. 分支限界法:
分支限界法是一种有约束的深度优先搜索算法。

它也是一种用于求解优化问题的算法。

在分支限界法中,搜索过程被分为两个阶段:扩展阶段和限界阶段。

在扩展阶段,算法会生成所有可能的候选解,并将它们加入到候选解集中。

在限界阶段,算法会根据一些启发式信息对候选解进行排序,并只考虑排在最前面的候选解。

这样可以大大减少搜索的时间和空间复杂度。

分支限界法的优点是它可以找到问题的最优解,而且它的时间复杂度是可以控制的。

然而,它的缺点是如果问题的解空间树太大,那么它可能需要大量的内存来存储候选解。

总的来说,回溯法和分支限界法都是非常重要的搜索算法,它们在不同的场景下都有各自的优势和适用性。

回溯法和分支限界法解决0-1背包题要点教学内容

回溯法和分支限界法解决0-1背包题要点教学内容

回溯法和分支限界法解决0-1背包题要点0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。

简述回溯法和分支限界法的异同

简述回溯法和分支限界法的异同

回溯法和分支限界法是解决问题时常用的两种算法。

它们都是一种搜索算法,用于在问题空间中寻找问题的解。

虽然它们有着相似的目的,但它们在实现过程和特点上有着不同之处。

下面将对回溯法和分支限界法进行简要的比较,以便更好地理解它们的异同点。

一、回溯法回溯法,又称试探法,是一种通过深度优先搜索的方式来解决问题的算法。

其基本思想是从问题的解空间树根节点出发,按深度优先的方式搜索整个解空间树。

在搜索过程中,当发现到达某个节点时,如果这个节点不满足约束条件,那么就进行回溯,返回到上一层节点继续搜索。

回溯法在寻找解的过程中,常常使用递归进行实现。

回溯法的特点:1. 深度优先搜索:回溯法使用深度优先搜索的方式遍历解空间树,这意味着它会尽可能深地探索每一个节点,直到找到问题的解或者发现无解。

2. 适用范围广:回溯法可以解决非常多种类的问题,比如八皇后问题、0-1背包问题等等。

只要问题可以建模成解空间树的形式,就可以使用回溯法进行解决。

3. 隐式的剪枝:在回溯法的搜索过程中,由于采用了深度优先搜索的方式,所以会自带一定的隐式剪枝效果。

即在搜索到某一节点时,如果发现不满足约束条件,就会立即回溯,从而避免继续搜索无效的节点。

二、分支限界法分支限界法也是一种搜索算法,它与回溯法有相似之处,但在实现细节上有所不同。

分支限界法通过不断将解空间树中的节点分支并进行评估,然后根据当前状态的下界限定来减少搜索范围,从而达到快速寻找最优解的目的。

分支限界法的特点:1. 显式的剪枝:与回溯法不同,分支限界法会显式地在搜索过程中对节点进行剪枝。

这是因为分支限界法在每次分支后都会对节点进行评估,并根据评估结果进行剪枝操作,从而避免不必要的搜索。

2. 寻找最优解:相比于回溯法,分支限界法更适合寻找最优解。

由于它能够通过不断地削减搜索空间来加速搜索过程,因此更适合解决那些需要找到最优解的问题。

3. 需要维护优先队列:在分支限界法的实现过程中,通常需要维护一个优先队列,用于存储待扩展的节点,并根据评估函数的结果进行排序。

分支限界法

分支限界法

#include<stdio.h> struct colornode { int row; int col; int color; int direction; int num; }; int search(); 小步数 void readdata(); void init();

//该状态的行 // 列 // 颜色 // 方向 0,1,2,3 // 最小步数 //广搜返回目标结点的最
//读入数据 //初始化
struct colornode moveahead(struct colornode u); //返回u 向前走一格得到的结点 int used(struct colornode v); //判断该结点是否是到 达过的结点 void addtoopen(struct colornode v); //加入到open表 int islegal(struct colornode v); //如果该结点是合法的 结点(未越界且是空格) int isaim(struct colornode v); //判断该结点是否是目 标结点 struct colornode takeoutofopen(); //从open表中取出一 个结点并把该结点从open表中删除 struct colornode turntoleft(struct colornode u); //u向左 转得到新结点v struct colornode turntoright(struct colornode u); //u向左 转得到新结点v
int isaim(int row, int col) { if(row*n+col==t) return(1); else return(0); }
int used(int row, int col) { if(a[row][col]==0) // 0表示空格 return(0); else return(1); }

第10讲分支限界法

第10讲分支限界法

背包问题的一个实例如下: 例:考虑n =3 时0-1背包问题的一个实例如下: 考虑 背包问题的一个实例如下 w =[16,15,15], p= [45, 25,25],c = 30。其子集树 。
7
用队列式分支限界法解此问题 队列式分支限界法解此问题
队列式分支限界法搜索解空间树的方式与 解空间树的广度优先遍历算法极为相似, 解空间树的广度优先遍历算法极为相似, 唯一的不同之处是队列式分支限界法不搜 索以不可行结点为根的子树。 索以不可行结点为根的子树。
13
算法思想
2. 队列式分支限界法
用一个队列Q来存放活结点表 来存放活结点表, 中 用一个队列 来存放活结点表 , Q中weight表示每个活结 表示每个活结 =-1时 点所相应的当前载重量。 点所相应的当前载重量。当weight=- 时,表示队列已达 =- 到解空间树同一层结点的尾部 同一层结点的尾部。 到解空间树同一层结点的尾部。 算法首先检测当前扩展结点的左儿子结点是否为可行结点。 算法首先检测当前扩展结点的左儿子结点是否为可行结点 。 如果是则将其加入到活结点队列中。 如果是则将其加入到活结点队列中 。 然后将其右儿子结点 加入到活结点队列中(右儿子结点一定是可行结点 右儿子结点一定是可行结点)。 个儿 加入到活结点队列中 右儿子结点一定是可行结点 。 2个儿 子结点都产生后,当前扩展结点被舍弃。 子结点都产生后,当前扩展结点被舍弃。 活结点队列中的队首元素被取出作为当前扩展结点 • 取出元素不是 时,活结点队列一定不空。由于队列中每一 取出元素不是-1时 活结点队列一定不空。 层结点之后都有一个尾部标记-1。 层结点之后都有一个尾部标记 。 • 取出的元素是 时,判断当前队列是否为空。如果队列非空, 取出的元素是-1时 判断当前队列是否为空。如果队列非空, 则将尾部标记-1加入活结点队列 加入活结点队列, 则将尾部标记 加入活结点队列 , 算法开始处理下一层的活 结点。 结点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
迭代回溯
采用树的非递归深度优先遍历算法,可将回溯法表示为一个非 递归迭代过程。
void iterativeBacktrack () { int t=1; while (t>0) { if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) { if (solution(t)) output(x); else t++;} } else t--; }
10
•解向量:(x1, x2, … , xn) •显约束:xi=1,2, … ,n •隐约束: 1)不同列:xixj 2)不处于同一正、反对角线:|i-j||xi-xj|
int n=8; int x[9]; int num = 0; //解的个数 //判断第k个皇后能否放在第x[k]列 bool Place(int k) { int i = 1; while( i < k) { if( x[i]==x[k] || (abs(x[i]-x[k]) == abs(i-k)) ) return false; i++; } return true; }
14
回溯法效率分析
通过前面具体实例的讨论容易看出,回溯算法的 效率在很大程度上依赖于以下因素: (1)产生x[k]的时间; (2)满足显约束的x[k]值的个数; (3)计算约束函数constraint的时间; (4)计算上界函数bound的时间; (5)满足约束函数和上界函数约束的所有x[k]的个 数。 好的约束函数能显著地减少所生成的结点数。但 这样的约束函数往往计算量较大。因此,在选 择约束函数时通常存在生成结点数与约束函数 计算量之间的折衷。
• 扩展结点:一个正在产生儿子的结点称为扩展结点 • 活结点:一个自身已生成但其儿子还没有全部生成的节点 • •
称做活结点 死结点:一个所有儿子已经产生的结点称做死结点 深度优先的问题状态生成法:如果对一个扩展结点R,一 旦产生了它的一个儿子C,就把C当做新的扩展结点。在 完成对子树C(以C为根的子树)的穷尽搜索之后,将R 重新变成扩展结点,继续生成R的下一个儿子(如果存在) 宽度优先的问题状态生成法:在一个扩展结点变成死结 点之前,它一直是扩展结点 回溯法:为了避免生成那些不可能产生最佳解的问题状 态,要不断地利用限界函数(bounding function)来处 死那些实际上不可能产生所需解的活结点,以减少问题 的计算量。具有限界函数的深度优先生成法称为回溯法
n后问题
11
• • • • • • • • • • • • • • • • • • • • • • • • •
void nQueens(int n) { x[0] = x[1] =0; int k=1; while(k > 0) { x[k]+=1; //转到下一行 while (x[k]<=n && Place(k)==false) { //如果无解,最后一个皇后就会 安排到格子外面去 x[k]+=1; } if(x[k]<=n) { //第k个皇后仍被放置在格子内, 有解 if(k==n) { num++; cout << num << ":\t"; for( int i=1; i<=n; i++) { cout << x[i] << "\t"; } cout << endl; }
void backtrack (int t) { if (t>n) output(x); else for (int i=t;i<=n;i++) { swap(x[t], x[i]); if (legal(t)) backtrack(t+1); swap(x[t], x[i]); } 9 }
n后问题
0-1背包问题
13
进一步改进算法的建议
•选择合适的搜索顺序,可以使得上界函数更有效的 发挥作用。例如在搜索之前可以将顶点按度从小到大 排序。这在某种意义上相当于给回溯法加入了启发性。 •定义Si={vi,vi+1,...,vn},依次求出Sn,Sn-1,...,S1的解。 从而得到一个更精确的上界函数,若cn+Si<=max则 剪枝。同时注意到:从Si+1到Si,如果找到一个更大 的团,那么vi必然属于找到的团,此时有Si=Si+1+1, 否则Si=Si+1。因此只要max的值被更新过,就可以确 定已经找到最大值,不必再往下搜索了。

分支限界法常以广度优先或以最小耗费(最大效益)优 先的方式搜索问题的解空间树。问题的解空间树是表示问 题解空间的一棵有序树,常见的有子集树和排列树。在搜 索问题的解空间树时,分支限界法与回溯法对当前扩展结 点所使用的扩展方式不同。在分支限界法中,每一个活结 点只有一次机会成为扩展结点。活结点一旦成为扩展结点, 就一次性产生其所有儿子结点。在这些儿子结点中,那些 导致不可行解或导致非最优解的儿子结点被舍弃,其余儿 子结点被子加入活结点表中。此后,从活结点表中取下一 结点成为当前扩展结点,并重复上述结点扩展过程。这个 过程一直持续到找到所求的解或活结点表为空时为止。

由于求解目标不同,导致分支限界法与回溯法 在解空间树T上的搜索方式也不相同。回溯法以深 度优先的方式搜索解空间树T,而分支限界法则以 广度优先或以最小耗费优先的方式搜索解空间树T。 分支限界法的搜索策略是:在扩展结点处,先 生成其所有的儿子结点(分支),然后再从当前 的活结点表中选择下一个扩展对点。为了有效地 选择下一扩展结点,以加速搜索的进程,在每一 活结点处,计算一个函数值(限界),并根据这 些已计算出的函数值,从当前活结点表中选择一 个最有利的结点作为扩展结点,使搜索朝着解空 间树上有最优解的分支推进,以便尽快地找出一 个最优解。
第10章 回溯法
1
回溯法
• 有许多问题,当需要找出它的解集或者要求回答什么
• •
解是满足某些约束条件的最佳解时,往往要使用回溯 法。 回溯法的基本做法是搜索,或是一种组织得井井有条 的,能避免不必要搜索的穷举式搜索法。这种方法适 用于解一些组合数相当大的问题。 回溯法在问题的解空间树中,按深度优先策略,从根 结点出发搜索解空间树。算法搜索至解空间树的任意 一点时,先判断该结点是否包含问题的解。如果肯定 不包含,则跳过对该结点为根的子树的搜索,逐层向 其祖先结点回溯;否则,进入该子树,继续按深度优 先策略搜索。
•解空间:子集树 n wi xi c1 •可行性约束函数: i 1 •上界函数:
private static double bound(int i) {// 计算上界 double cleft = c - cw; // 剩余容量 double bound = cp; // 以物品单位重量价值递减序装入物品 while (i <= n && w[i] <= cleft) { cleft -= w[i]; bound += p[i]; i++; } // 装满背包 if (i <= n) bound += p[i] / w[i] * cleft; return bound; }
15
重排原理
对于许多问题而言,在搜索试探时选取x[i]的值顺序是任意的。 在其他条件相当的前提下,让可取值最少的x[i]优先。从图中 关于同一问题的2棵不同解空间树,可以体会到这种策略的潜 力。
(a)
(b) 图(a)中,从第1层剪去1棵子树,则从所有应当考虑的3元组中 一次消去12个3元组。对于图(b),虽然同样从第1层剪去1棵子 树,却只从应当考虑的3元组中消去8个3元组。前者的效果明 16 显比后者好。

所谓“分支”就是采用广度优先的策略,依次 搜索E-结点的所有分支,也就是所有相邻结点, 抛弃不满足约束条件的结点,其余结点加入活结 点表。然后从表中选择一个结点作为下一个E-结 点,继续搜索。 选择下一个E-结点的方式不同,则会有几种不 同的分支搜索方式。 1)FIFO搜索 2)LIFO搜索 3)优先队列式搜索
分支限界法

类似于回溯法,也是一种在问题的解空间树T 上搜索问题解的算法。但在一般情况下,分支限 界法与回溯法的求解目标不同。回溯法的求解目 标是找出T中满足约束条件的所有解,而分支限界 法的求解目标则是找出满足约束条件的一个解, 或是在满足约束条件的解中找出使某一目标函数 值达到极大或极小的解,即在某种意义下的最优 解。
8
子集树与排列树
遍历子集树需O(2n)计算时间
void backtrack (int t) { if (t>n) output(x); else for (int i=0;i<=1;i++) { x[t]=i; if (legal(t)) backtrack(t+1); } }
遍历排列树需要O(n!)计算时间
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象 棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线 上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任 何2个皇后不放在同一行或同一列或同一斜线上。
1 2 3 4 5 6 7 8 Q Q Q Q Q Q Q
Q
1 2 3 4 5 6 7 8
• • • • • • • •
• • • • • • • • •
else { k++; x[k]=0; //转到下一行 } } else //第k个皇后已经被放置到格 子外了,没解,回溯 k--; //回溯 } } int _tmain(int argc, _TCHAR* argv[]) { nQueens(n); getchar(); return 0; }
相关文档
最新文档