初一数学(上册)期中考试试卷及答案
人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)人教版七年级上册数学期中考试试卷(含答案)一、选择题1. 以下哪个数是整数?A. √2B. 3/4C. -5D. 0.752. 下列有理数中,绝对值最大的是:A. -3B. 1/3C. 0D. -5/63. 对于非零有理数a,以下等式成立的是:A. a^2 = -aB. a * a = -aC. a * a = aD. a^2 = a二、填空题1. 计算:5/6 + 2/3 = ____2. 将72cm^2写成平方分米为____(注:1平方分米=100平方厘米)3. 若a = -2/3,b = 1/2,求ab的值。
三、解答题1. 线段AB的长度为3.2厘米,线段CD的长度为7.5厘米,求AB与CD的比值。
2. 小明从家到学校的距离为4千米,他刚走了2千米,这时他离学校还有多远?3. 将小数-0.125改写成分数。
四、应用题1. 一块长方形花坛长为12米,宽为8米,小明要用花砖铺满这个花坛。
每块花砖的正方形面积为0.25平方米,小明需要多少块花砖?2. 甲乙两个人同时从A地出发,以相同的速度向B地行驶,甲车开车时图示速度为75千米/小时,乙车开车时图示速度为80千米/小时。
若甲车到达B地用时比乙车早30分钟,求A到B地的距离。
五、解答题1. 有理数运算的要点是什么?请分析有理数的加法、减法、乘法和除法运算的规律和特点。
2. 计算题:5/12 + 4/9 - 1/3 + 2/5 = ____ ---答案:一、选择题1. C2. D3. A二、填空题1. 11/62. 0.723. -1/3三、解答题1. AB与CD的比值为 32/752. 离学校还有 2千米3. -0.125可以写成 -1/8四、应用题1. 需要 384 块花砖2. A到B地的距离为 100 千米五、解答题1. 有理数运算的要点是:符号相同的有理数相加减,绝对值大的数保留符号;符号相反的有理数相加减,先求绝对值相加减,再给结果加上原来的符号;有理数相乘除,符号相同为正,符号不同为负。
七年级上册数学期中考试试卷(含答案)

七年级上册数学期中考试试卷一、填空(每小题3分,共30分) 1.-1-(-3)= 。
2.-0.5的绝对值是 ,相反数是 ,倒数是 。
3.单项式22xy π的系数是 ,次数是 。
4.若逆时针旋转90o 记作+1,则-2表示 。
5.如果a 、b 互为相反数,x 、y 互为倒数,那么(a+b )xy+a 2-b 2= 。
6.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 。
7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。
将这个数字用科学计数法表示并保留三个有效数字为 元。
8.长方形的长是a 米,宽比长的2倍少b 米,则宽为 米。
9.若m 、n 满足2)3(2++-n m =0,则.__________=m n10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x 万元,则可列出的方程为二、选择题(每小题3分,共30分)11.如果向东走2km 记作+2km ,那么-3km 表示( ).A.向东走3kmB.向南走3kmC.向西走3kmD.向北走3km12.下列说法正确的是( )A.x 的系数为0B. a1是一项式 C.1是单项式 D.-4x 系数是413.下列各组数中是同类项的是( )A.4x 和4yB.4xy 2和4xyC.4xy 2和-8x 2yD.-4xy 2和4y 2x14.下列各组数中,互为相反数的有( ) ①2)2(----和 ②221)1(--和 ③2332和 ④332)2(--和 A.④ B.①② C.①②③ D.①②④15.若a+b<0,ab<0,则下列说法正确的是( )A.a 、b 同号B.a 、b 异号且负数的绝对值较大C.a 、b 异号且正数的绝对值较大D.以上均有可能16.下列计算正确的是( )A.4x-9x+6x=-xB.xy-2xy=3xyC.x 3-x 2=xD.21a-21a=0 17.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. -6B. 2C. -6或2D.都不正确18.若x 的相反数是3,5y =,则x+y 的值为( ).A.-8B. 2C. 8或-2D.-8或219.若 3x=6,2y=4则5x+4y 的值为( )A.18B.15C.9D. 620.若-3xy 2m 与5x 2n-3y 8是同类项,则m 、n 的值分别是( )A.m =2,n =2B.m =4,n =1C.m =4,n =2D.m =2,n =3三、解答题(共60分)21.(20分)计算(1) -26-(-15) (2)(+7)+(-4)-(-3)-14(3)(-3)×31÷(-2)×(-21) (4)-(3-5)+32×(-3)22.解方程(本题10分)(1)x+3x= -12 (2)3x+7=32-2x23.(6分)将下列各数用“<”连接:-22, -(-1), 0, -2.524.(6分)若a 是绝对值最小的数,b 是最大的负整数。
七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。
七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是( ) A .0.15- B . 1.3+ C .0 D .32- 2.计算()32-,正确结果是( )A .-6B .-8C .6D .83.1x =-是下列哪个方程的解( ) A .56x -= B .1262x += C .314x += D .440x += 4.2||3-的相反数是( ) A .32 B .23- C .32- D .23 5.下列去括号正确的是( )A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是( )A .单项式235xy 的系数是3,次数是2 B .单项式15ab -的系数是15,次数是2 C .12xy -是二次多项式 D .多项式243x -的常数项是3 7.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是( ) A .ab B .a b + C .10a b + D .100a b 8.代数式227y y ++的值是6,则2485y y +-的值是( )A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是( )A .a+b <0B .a+b >0C .a+b=0D .ab=0 10.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于( )A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370 000km 2,用科学记数法表示370 000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数 63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中 12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==. (1)试猜想:135720052007++++++的值? (2)推广:13579(21)(21)++++++-++n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵30.15<2--, ∵30.15>2--, ∵这四个数中,最小的数是32-. 故选:D .【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B .【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x =-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.【详解】解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意; C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】 −2-3的相反=-2-3= -23. 故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 原式=−2a−2b ,故本选项错误;B. 原式=−2a−2b ,故本选项错误;C. 原式=−2a−2b ,故本选项正确;D. 原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号. 6.C【解析】【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意; B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意; D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍, b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B【解析】【详解】∵227y y ++=6,∵22y y +=-1,∵2485y y +-=2425y y +-() =4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∵a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370 000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】解:∵单项式3mab和4-n a b是同类项,∵n=1,m=1,+=2,∵m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∵a=5或−5,b=7或−7,又∵|a+b|=a+b ,∵a+b∵0,∵a=5或−5,b=7,∵a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12- 【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∵2a+3=0,3b -1=0,,∵3123a b =-=,, ∵311232ab =-⨯=-. 故答案为12-. 17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18. 17 21n ##12n +【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n .【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-. 【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】 解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦, =4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦, =312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦, =21258()52⎡⎤---+⨯-⎢⎥⎣⎦, =12585⎛⎫---- ⎪⎝⎭, =12585-++, =4165-. 【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-. 【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-, 把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-. 23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可. 【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式, ∵2430m n ⎧+=⎨-=⎩, 解得23m n =±⎧⎨=⎩, 当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=. 【点睛】 本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键. 24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∵|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∵|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:∵正数都大于0;∵负数都小于0;∵正数大于一切负数;∵两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:∵当a 是正有理数时,a的绝对值是它本身a;∵当a是负有理数时,a的绝对值是它的相反数﹣a;∵当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.26.(1)1008016;(2)()21n+.【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++=221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭, 221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭, ∵135720052007++++++=221200710042+⎛⎫= ⎪⎝⎭=1008016; (2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭, 由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭, 【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭. 27.(1)()2πa b +米 (2)2π44b ab +平方米 (3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和; (2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2) 两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米), 长方形的面积为ab (平方米), 因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。
初一数学上册期中考试卷及答案

初一数学上册期中考试卷及答案一、选择题:本大题共12小题,每小题3分,共36分,请你将认为正确答案前面的代号填入括号内1.﹣22=()A.1B.﹣1C.4D.﹣42.若a与5互为倒数,则a=()A.B.﹣C.﹣5D.53.在式子:,m﹣3,﹣13,﹣,2b2中,单项式有()A.1个B.2个C.3个D.4个4.下列等式不成立的是()A.(﹣3)3=﹣33B.﹣24=(﹣2)4C.|﹣3|=|3|D.(﹣3)100=31005.如果2某2y3与某2yn+1是同类项,那么n的值是()A.1B.2C.3D.46.经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A.1.5104美元B.1.5105美元C.1.51012美元D.1.51013美元7.下列结论正确的是()A.近似数1.230和1.23精确度相同B.近似数79.0精确到个位C.近似数5万和50000精确度相同D.近似数3.1416精确到万分位8.若|某﹣1|+|y+2|=0,则(某+1)(y﹣2)的值为()A.﹣8B.﹣2C.0D.89.一种金属棒,当温度是20℃时,长为5厘米,温度每升高或降低1℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10℃时金属棒的长度为()A.5.005厘米B.5厘米C.4.995厘米D.4.895厘米11.若k是有理数,则(|k|+k)k的结果是()A.正数B.0C.负数D.非负数12.四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=()A.0B.1C.2D.3二、填空题.本大题共8小题,每小题3分,满分24分.请将答案直接写在题中的横线上13.﹣5的相反数是.14.﹣4=.15.请写出一个系数为3,次数为4的单项式.16.三个连续整数中,n是最小的一个,这三个数的和为.17.若a2+2a=1,则2a2+4a﹣1=.18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是.19.若多项式a2+2kab与b2﹣6ab的和不含ab项,则k=.20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有米.三、本大题共3小题,每小题4分,满分12分21.计算:22﹣4+|﹣2|22.利用适当的方法计算:﹣4+17+(﹣36)+73.23.利用适当的方法计算:+.四、本大题共2小题,每小题5分,满分10分24.已知:若a,b互为倒数,c,d互为相反数,e的绝对值为1,求:(ab)2022﹣3(c+d)2022﹣e2022的值.25.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.五、本大题共2小题,每小题5分,满分10分26.已知全国总人口约 1.41109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食(结果用科学记数法表示)27.某市出租车的收费标准为:不超过2前面的部分,起步价7元,燃油税1元,2千米到5千米的部分,每千米收1.5元,超过5千米的部分,每千米收2.5元,若某人乘坐了某(某大于5)千米的路程,请求出他应该支付的费用(列出式子并化简)六、本大题共1小题,满分9分28.学校对七年级女生进行了仰卧起坐的测试,以能做40个为标准,超过的次数用正数表示,不足的次数用负数表示,其中6名女生的成绩如下(单位:个):2﹣103﹣21(1)这6名女生共做了多少个仰卧起坐(2)这6名女生的达标率是多少(结果精确到百分位)八、本大题共1小题,满分10分30.一振子从A点开始左右水平来回的震动8次后停止,如果规定向右为正,向左为负,这8次震动的记录为(单位:毫米):+10,﹣9,+8,﹣7,+6,﹣5,+5,﹣4.(1)该振子停止震动时在A点哪一侧距离A点有多远(2)若该振子震动1毫米需用0.02秒,则完成上述运动共需多少秒一、选择题:本大题共12小题,每小题3分,共36分,请你将认为正确答案前面的代号填入括号内1.﹣22=()A.1B.﹣1C.4D.﹣4考点:有理数的乘方.分析:﹣22表示2的2次方的相反数.解答:解:﹣22表示2的2次方的相反数,﹣22=﹣4.故选:D.点评:本题主要考查的是有理数的乘方,明确﹣22与(﹣2)2的区别是解题的关键.2.若a与5互为倒数,则a=()A.B.﹣C.﹣5D.5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:由a与5互为倒数,得a=.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.(3分)(2022秋北流市期中)在式子:,m﹣3,﹣13,﹣,2b2中,单项式有()A.1个B.2个C.3个D.4个考点:单项式.分析:直接利用单项式的定义得出答案即可.解答:解:,m﹣3,﹣13,﹣,2b2中,单项式有:﹣13,﹣,2b2,共3个.故选:C.点评:此题主要考查了单项式,正确把握单项式的定义是解题关键.4.下列等式不成立的是()A.(﹣3)3=﹣33B.﹣24=(﹣2)4C.|﹣3|=|3|D.(﹣3)100=3100考点:有理数的乘方;绝对值.分析:根据有理数的乘方分别求出即可得出答案.解答:解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.点评:此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.5.如果2某2y3与某2yn+1是同类项,那么n的值是()A.1B.2C.3D.4考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.解答:解:∵2某2y3与某2yn+1是同类项,n+1=3,解得:n=2.故选B.点评:此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.(3分)(2022秋北流市期中)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A.1.5104美元B.1.5105美元C.1.51012美元D.1.51013美元考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:将15000亿用科学记数法表示为:1.51012.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列结论正确的是()A.近似数1.230和1.23精确度相同B.近似数79.0精确到个位C.近似数5万和50000精确度相同D.近似数3.1416精确到万分位考点:近似数和有效数字.分析:近似数的有效数字,就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,并且对一个数精确到哪位,就是对这个位后边的数进行四舍五入进行四舍五入.解答:解:A、近似数1.230有效数字有4个,而1.23的有效数字有3个.故该选项错误;B、近似数79.0精确到十分位,它的有效数字是7,9,0共3个.故该选项错误;C、近似数5万精确到万位,50000精确到个位.故该选项错误;D、近似数3.1416精确到万分位.故该选项正确.故选C.点评:本题考查了近似数与有效数字,主要考查了精确度的问题.8.若|某﹣1|+|y+2|=0,则(某+1)(y﹣2)的值为()A.﹣8B.﹣2C.0D.8考点:非负数的性质:绝对值.分析:根据绝对值得出某﹣1=0,y+2=0,求出某、y的值,再代入求出即可.解答:解:∵|某﹣1|+|y+2|=0,某﹣1=0,y+2=0,某=1,y=﹣2,(某+1)(y﹣2)=(1+1)(﹣2﹣2)=﹣8,故选A.点评:本题考查了绝对值,有理数的加法的应用,能求出某、y的值是解此题的关键,难度不大.9.一种金属棒,当温度是20℃时,长为5厘米,温度每升高或降低1℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10℃时金属棒的长度为()A.5.005厘米B.5厘米C.4.995厘米D.4.895厘米考点:有理数的混合运算.专题:应用题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:5﹣(20﹣10)0.0005=5﹣0.005=4.995(厘米).则温度为10℃时金属棒的长度为4.995厘米.故选C.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.若k是有理数,则(|k|+k)k的结果是()A.正数B.0C.负数D.非负数考点:有理数的混合运算.分析:分k0,k0及k=0分别进行计算.解答:解:当k0时,原式=(k+k)k=2;当k0时,原式=(﹣k+k)k=0;当k=0时,原式无意义.综上所述,(|k|+k)k的结果是非负数.故选D.点评:本题考查的是有理数的混合运算,在解答此题时要注意进行分类讨论.12.四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=()A.0B.1C.2D.3考点:有理数的乘法;有理数的加法.分析:a,b,c,d为四个互不相等的整数,它们的积为4,首先求得a、b、c、d的值,然后再求得a+b+c+d.解答:解:∵a,b,c,d为四个互不相等的整数,它们的积为4,这四个数为﹣1,﹣2,1,2.a+b+c+d=﹣1+(﹣2)+1+2=0.故选;A.点评:本题主要考查的是有理数的乘法和加法,根据题意求得a、b、c、d的值是解题的关键.二、填空题.本大题共8小题,每小题3分,满分24分.请将答案直接写在题中的横线上13.﹣5的相反数是 5 .考点:相反数.分析:根据相反数的定义直接求得结果.解答:解:﹣5的相反数是5.故答案为:5.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.14.﹣4= ﹣.考点:有理数的除法;有理数的乘法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=﹣4=﹣.故答案为:﹣.点评:此题考查了有理数的除法,有理数的乘法,熟练掌握运算法则是解本题的关键.15.请写出一个系数为3,次数为4的单项式3某4 .考点:单项式.专题:开放型.分析:根据单项式的概念求解.解答:解:系数为3,次数为4的单项式为:3某4.故答案为:3某4.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.16.三个连续整数中,n是最小的一个,这三个数的和为3n+3 .考点:整式的加减;列代数式.专题:计算题.分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解答:解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.故答案为:3n+3点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.17.若a2+2a=1,则2a2+4a﹣1= 1 .考点:因式分解的应用;代数式求值.分析:先计算2(a2+2a)的值,再计算2a2+4a﹣1.解答:解:∵a2+2a=1,2a2+4a﹣1=2(a2+2a)﹣1=1.点评:主要考查了分解因式的实际运用,利用整体代入求解是解题的关键.18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是 3 .考点:数轴.分析:根据数轴的特点进行解答即可.解答:解:终点表示的数=0+7﹣4=3.故答案为:3.点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.19.若多项式a2+2kab与b2﹣6ab的和不含ab项,则k= 3 .考点:整式的加减.专题:计算题.分析:根据题意列出关系式,合并后根据不含ab项,即可确定出k 的值.解答:解:根据题意得:a2+2kab+b2﹣6ab=a2+(2k﹣6)ab+b2,由和不含ab项,得到2k﹣6=0,即k=3,故答案为:3点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有2(n﹣1) 米.考点:列代数式.分析:第一棵树与第n棵树之间的间隔有n﹣1个间隔,每个间隔之间是2米,由此求得间隔的米数即可.解答:解:第一棵树与第n棵树之间的间隔有2(n﹣1)米.故答案为:2(n﹣1).点评:此题考查列代数式,求得间隔的个数是解决问题的关键.三、本大题共3小题,每小题4分,满分12分21.计算:22﹣4+|﹣2|考点:有理数的混合运算.分析:先算乘法,再算加减即可.解答:解:原式=4﹣1+2=5.点评:本题考查的是有理数的混合运算,熟知有理数混合运算顺序是解答此题的关键.22.利用适当的方法计算:﹣4+17+(﹣36)+73.考点:有理数的加法.分析:先去括号,然后计算加法.解答:解:原式=﹣4+17﹣36+73=﹣4﹣36+17+73=﹣40+90=50.点评:本题考查了有理数的加法.同号相加,取相同符号,并把绝对值相加.23.利用适当的方法计算:+.考点:有理数的乘法.分析:逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.解答:解:原式=(﹣9﹣18+1)=(﹣26)=﹣14.点评:本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.四、本大题共2小题,每小题5分,满分10分24.已知:若a,b互为倒数,c,d互为相反数,e的绝对值为1,求:(ab)2022﹣3(c+d)2022﹣e2022的值.考点:代数式求值;相反数;绝对值;倒数.分析:由倒数、相反数,绝对值的定义可知:ab=1,c+d=0,e=1,然后代入求值即可.解答:解:由已知得:ad=1,c+d=0,∵|e|=1,e=1.e2022=(1)2022=1原式=12022﹣30﹣1=0.点评:本题主要考查的是求代数式的值,相反数、倒数、绝对值的定义和性质,掌握互为相反数的两数之和为0、互为倒数的两数之积为1是解题的关键.25.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,把a=﹣1,b=2代入得:6+4=10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、本大题共2小题,每小题5分,满分10分26.已知全国总人口约 1.41109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食(结果用科学记数法表示)考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:1.411090.5=0.705109=7.05108(kg).答:全国每天大约需要7.05108kg粮食.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.27.某市出租车的收费标准为:不超过2前面的部分,起步价7元,燃油税1元,2千米到5千米的部分,每千米收1.5元,超过5千米的部分,每千米收2.5元,若某人乘坐了某(某大于5)千米的路程,请求出他应该支付的费用(列出式子并化简)考点:列代数式.分析:某人乘坐了某(某5)千米的路程的收费为W元,则W=不超过2km的费用+2km至5km的费用+超过5前面的费用就可以求出某与W的代数式.解答:解:7+1+31.5+2.5(某﹣5)=8+4.5+2.5某﹣12.5.=2.5某(元).答:他应该支付的费用为2.5某元.点评:本题考查了列代数式,解答时表示出应付费用范围划分.六、本大题共1小题,满分9分28.学校对七年级女生进行了仰卧起坐的测试,以能做40个为标准,超过的次数用正数表示,不足的次数用负数表示,其中6名女生的成绩如下(单位:个):2﹣103﹣21(1)这6名女生共做了多少个仰卧起坐(2)这6名女生的达标率是多少(结果精确到百分位)考点:正数和负数.分析:(1)由已知条件直接列出算式即可;(2)根据题意可知达标的有4人,然后用达标人数除以总人数即可.解答:解:(1)406+(2﹣1+0+3﹣2+1)=240+3=243(个).答:这6名女生共做了243个仰卧起坐;(2)100%0.67=67%.答:这6名女生的达标率是67%.点评:本题考查了正数和负数,解题关键是理解正和负的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.八、本大题共1小题,满分10分30.一振子从A点开始左右水平来回的震动8次后停止,如果规定向右为正,向左为负,这8次震动的记录为(单位:毫米):+10,﹣9,+8,﹣7,+6,﹣5,+5,﹣4.(1)该振子停止震动时在A点哪一侧距离A点有多远(2)若该振子震动1毫米需用0.02秒,则完成上述运动共需多少秒考点:正数和负数.分析:(1)根据有理数的加法,可得答案;(2)根据距离的和乘以单位距离所需的时间,可得总时间.解答:解:(1)10﹣9+8﹣7+6﹣5+5﹣4=1+1+2=4(毫米).答:该振子停止震动时在A点右侧.距离A点有4毫米.(2)(|+10|+|﹣9|+|+8|+|﹣7|+|+6|+|﹣5|+|+5|+|﹣4|)0.02=540.02=1.08(秒).答:完成上述的运动共需1.08秒.点评:本题考查了正数和负数,利用距离的和乘以单位距离所需的时间等于总时间,注意第二问计算的是距离的和.。
初一上册期中数学综合试卷附答案

初一上册期中数学综合试卷附答案一、选择题1.2-的相反数是( ) A .2-B .2C .12D .12-2.我国某年石油产量约为180000000吨,将180000000用科学记数法表示为_____________.3.下列各式中运算正确的是( ) A .321a a -= B .(1)1a a --+=- C .223(3)0-+-=D .131244⎛⎫--=- ⎪⎝⎭4.若代数式2(3)7m x m x -++是关于x 的三次二项式,那么m 的值为( ) A .-3B .3C .±3D .05.如图所示是一个数值转换机,若输入数2x =-,则输出结果是( ).A .13-B .0C .13D .16.多项式2835x x -+与多项式323253x mx x +-+相加后不含二次项,则m 等于( )A .2B .-2C .-4D .-87.有理数a ,b 在数轴上的位置如图所示,则下列各式一定成立的个数有( ) ①a ﹣b >0; ②|b |>a ; ③ab <0; ④1ab>-.A .4个B .3个C .2个D .1个8.设记号*表示求,a b 算术平均数的运算,即*2a ba b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22aa b c b c +=+ A .①②③B .①②④C .①③④D .②④9.如图,已知点A ,B ,C ,D 将周长为4的圆周4等分,现将点A 与数轴上表示-1的点重合,将圆沿数轴向右连续滚动,则点A ,B ,C ,D 中与表示2020的点重合的是( )A .点AB .点BC .点CD .点D10.24816(21)(21)(21)(21)(21)1++++++的计算结果的个位数字是()A.8 B.6 C.4 D.2二、填空题11.在一次立定跳远测试中,合格的标准是1.50m,小红跳出了1.85m,记为0.35m+,小敏跳出了1.46m,记为_________m.12.45πax的系数是_____,多项式xy-pqx2+95p3+p+1是____次_____项式.13.如图所示的运算程序中,若开始输入的x值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2019次输出的结果为_____.14.如图所示,一扇窗户的上部都是由4个扇形组成的半圆形,下部是边长相同的4个小正方形,小正方形的边长为a,则这扇窗户的面积为________________;(用含a的式子表示)15.已知|a|=5,b2=16,且ab<0,那么a﹣b的值为_____.16.已知a、b、c在数轴上对应的点如图所示,则|a|-|a-b|+|c-a|化简后的结果为_________.17.观察下面四个点阵图,按照图形的变化规律,第n个点阵图中有_________个“•”.18.在下表从左到右的每个小格子中填入一个有理数,使得其中任意四个相邻格子中所填的有理数之和为﹣5,则第2018个格子中应填入的有理数是___.a-7b-4c d e f2……19.在数轴上画出表示下列各数的点,并用“<”号连接下列各数:3 --,122+,()20201-,()2+-.20.计算:(1)﹣12016﹣(﹣2)3﹣|2﹣(﹣3)2|; (2)1481(2)(16).49-÷-⨯+-21.先化简,再求值,(3x 2﹣2xy )﹣[x 2﹣2(x 2﹣xy )],其中x =12,y =2. 22.计算:(1)()()2x y 33x 2y 6x +--+; (2)()()214a 2a 8b a 2b 4-+----. 23.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3 ﹣2 ﹣1 0 1.5 3 筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数) 24.一块三角尺的形状和尺寸如图所示,直角边的边长为a ,圆孔的半径为r .(1)求阴影部分的面积S ;(2)当8cm a =,2cm r =时,求S 的值(结果保留π).25.如图,长方形的长都为a ,宽都为b ,图①中内部空白部分为半圆,图②中2个圆与图③中8个圆大小分别相等,三个图形中阴影部分的面积分别记为1S 、2S 、3S .(结果保留π)(1)计算1S ( 用含a ,b 的代数式表示);(2)根据(1)问的结果,求当4a =,2b =时1S 的值;(3)分别用含a ,b 的代数式表示2S 、3S ,然后判断3个图形中阴影部分面积的大小关系.二26.已知,A ,B 在数轴上对应的数分用a ,b 表示,且()220100a b -++=,数轴上动点P 对应的数用x 表示.(1)在数轴上标出A 、B 的位置,并直接写出A 、B 之间的距离; (2)写出x a x b -+-的最小值;(3)已知点C 在点B 的右侧且BC =9,当数轴上有点P 满足PB =2PC 时, ①求P 点对应的数x 的值;②数轴上另一动点Q 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q 能移动到与①中的点P 重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。
初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试题一、单选题1.下列说法正确的个数有()①0是整数;② 1.2-是负分数;③1π是分数;④自然数一定是正数;⑤负分数一定是负有理数.A .1个B .2个C .3个D .4个2.3-的倒数是()A .3B .13C .13-D .3-3.有下列式子:①2;②2a ;③31x -;④39s t+;⑤12S ab =;⑥4x y +>;⑦2x .其中代数式有()A .4个B .5个C .6个D .7个4.在﹣(﹣8),(﹣1)2017,﹣32,0,﹣|﹣1|,﹣23中,负数的个数有()A .2个B .3个C .4个D .5个5.如图,是一个正方体的平面展开图,把展开图折成正方体后,“党”字一面相对的字是()A .一B .百C .周D .年6.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为()A .316410⨯B .416.410⨯C .51.6410⨯D .60.16410⨯7.下面图形经过折叠不能围成棱柱的是()A .B .C .D .8.数轴上,到原点距离是8的点表示的数是()A .8和﹣8B .0和﹣8C .0和8D .﹣4和49.下列各组数中,数值相等的是()A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A .4B .﹣2C .8D .311.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .12.已知()29320x y z -++++=,则2x y z-+=()A .4B .6C .10D .13二、填空题13.如果一个棱柱共有15条棱,那么它一定是______棱柱.14.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作______.15.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.16.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),c 和f 的关系是:()5329c f =-,某日兰州和银川的最高气温分别是72℉和88℉,则他们的摄氏温度分别是:______℃和______℃.三、解答题17.计算:(1)()281510---+;(2)22523963⎛⎫-⨯+-⎪⎝⎭;(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭;18.如图所示,a 、b 是有理数,请化简式子|a|﹣|b|+|a+b|+|b ﹣a|.19.a 的绝对值2b+1,b 的相反数是其本身,c 与d 互为倒数,求23cd a b ++的值.20.人体血液的质量约占人体体重的6%-7.5%.(1)如果某人体重是a kg ,那么他的血液质量大约在什么范围?(2)亮亮体重是35kg ,他的血液质量大约在什么范围?21.商店出售甲、乙两种书包,甲种书包每个38元,乙种书包每个26元,现已售出甲种书包a 个,乙种书包b 个.(1)用代数式表示销售这两种书包的总金额;(2)当a=2,b=10时,求销售总金额.22.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m-6)2+|n-8|=0,求出该广场的面积.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“-”表示出库)日期星期日星期一星期二星期三星期四星期五星期六吨数+22-29-15+37-25-21-19(1)若星期日开始时仓库内有货物465吨,则星期六结束时仓库内还有货物多少吨?(2)如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元装卸费?26.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a>b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?27.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分①面积的一半,部分③是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++ 的值吗?参考答案1.C 【解析】【分析】根据有理数的意义,逐一判断即可.【详解】①0是整数,故①正确;②-1.2是负分数,故②正确;③1π是无理数,故③错误;④自然数一定是非负数,故④错误;⑤负分数一定是负有理数,故⑤正确;综上,正确的有3个,故选:C .【点睛】本题考查了有理数的分类,熟记有理数的意义是解题关键.2.C 【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C 3.B 【解析】【分析】根据代数式的定义,即可求解.【详解】解:代数式有2;2a ;31x -;39s t+;2x ,共5个.故选:B 【点睛】本题主要考查了代数式的定义,熟练掌握用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式是解题的关键.4.C 【解析】【分析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.【详解】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,负数有:(-1)2017,-32,-|-1|,23-,负数的个数有4个,故选:C .【点睛】本题考查了有理数的乘方、绝对值、相反数和负数,解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.5.B 【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定隔着一个正方形,据此作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“周”是相对面,“党”与“百”是相对面,“一”与“年”是相对面.故选:B .【点睛】本题考查了正方体的展开图,解题的关键是从相对面入手进行分析及解答问题.6.C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:16.4万=51.6410 ,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D 【解析】【详解】A 可以围成四棱柱,B 可以围成五棱柱,C 可以围成三棱柱,D 选项侧面上只有三个长方形,而两个底面都是长方形,因此从图形中看少了一个侧面,故不能围成长方体,故选D .【点睛】本题考查了展开图,解决此题的关键是要有一定的空间想象能力.8.A 【解析】【分析】根据数轴上的点到原点的距离的意义解答.数a 到原点的距离为a .【详解】解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A .【点睛】本题考查了数轴上点到原点的距离,根据数轴的意义解答.9.C 【解析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=- ,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=- ,211(24-=,2211(22-≠-,∴选项B 不符合题意;2(2)4-= ,224=,22(2)2-=,∴选项C 符合题意;211(24--=- ,21122-=-,2211(22--≠-,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.10.A 【解析】【详解】根据题意中的计算程序,可直接计算为:12×2-4=-2<0,把-2输入可得(-2)2×2-4=4>0,所以输出的数y=4.故选A.11.D 【解析】【详解】只有D,可以还原回去,所以选D.12.D 【解析】【分析】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,分别求出x,y,z 的值,然后代入2x y z -+求值.【详解】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,所以x=9,y=-3,z=-2,2x y z -+=9-2×(-3)+(-2)=13,故选:D.【点睛】本题考查了绝对值和平方的非负性以及代数式求值,熟练掌握非负数和为0的解题方法是本题的解题关键.13.五【解析】【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五楼柱.【详解】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【点睛】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.14.-0.15米【解析】【分析】根据多于标准记为正,可得少于标准记为负.【详解】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作-0.15米,故答案为:-0.15米.【点睛】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.15.﹣2916.20092809【解析】【分析】把兰州和银川的最高气温的华氏温度代入c 和f 的关系式()5329c f =-,即可求出最高气温的摄氏温度.【详解】当f=72℉时,()5329c f =-=()572329-=2009,当f=88℉时,()5329c f =-=()588329-=2809,所以兰州和银川的最高摄氏温度分别是2009℃和2809℃.【点睛】本题考查了代数式的求值,会进行代数式的代入求值是本题的解题关键.17.(1)3-(2)72-(3)0(4)16【解析】(1)解:28(15)10---+281510=-++3=-(2)解:22523963⎛⎫-⨯+- ⎪⎝⎭415129181818⎛⎫=-⨯+- ⎝⎭7918=-⨯72=-(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭1188⎛⎫=-+ ⎪⎝⎭0=(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭()113292=--÷⨯-()11372=--÷⨯-()111723=--⨯⨯-761=-+16=【点睛】本题考查有理数的加、减、乘、除、乘方运算,熟练掌握运算顺序和运算法则是解决本题的关键.18.b ﹣a【解析】【分析】先根据a 、b 两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.【详解】∵由数轴上a 、b 两点的位置可知,﹣1<a <0,b >1,∴a+b >0,b ﹣a >0,∴原式=﹣a ﹣b+a+b+b ﹣a=b ﹣a .【点睛】本题考查了绝对值与数轴的知识点,解题的关键是根据数轴确定取值范围去绝对值.19.1或3【解析】【分析】根据题意可知:b=0,所以|a|=1,又因为cd=1,分别代入原式即可求出答案.【详解】解:由题意可知:cd =1,b =0,∴|a|=2b+1=1,∴a =±1,当a =1时,∴原式=2+1+0=3,当a =-1时,∴原式=2-1=1【点睛】本题考查代数式求值,涉及绝对值,相反数与倒数的性质.20.(1)0.06a kg -0.075a kg(2)2.1kg -2.625kg【解析】【分析】(1)根据人体血液的质量占人体体重的6%-7.5%,再根据人体体重a kg ,分别相乘即可.(2)根据人体血液的质量占人体体重的6%-7.5%,再根据亮亮体重35kg ,分别相乘求解即可.(1)解:6%0.06a a ⨯=,7.5%0.075a a⨯=答:血液质量大约在0.06a kg -0.075a kg 范围.(2)解:356% 2.1kg ⨯=,357.5% 2.625kg⨯=答:血液质量大约在2.1kg -2.625kg 范围.【点睛】本题主要考查列代数式的问题,解题关键是找出所求量的等量关系.21.(1)(38a+26b )元;(2)336元.【解析】【分析】(1)根据“销售总金额=销售甲种书包的金额+销售乙种书包的金额”列代数式即可;(2)将a,b的值代入(1)中代数式求解即可.【详解】解:(1)根据题意得,销售这两种书包的总金额为:(38a+26b)元;(2)将a=2,b=10代入38a+26b得,38a+26b=38×2+26×10=336.答:销售总金额为336元.【点睛】本题主要考查列代数式以及求代数式的值,解题关键是根据题意正确列出代数式.22.(1)3.5mn;(2)168.【解析】【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【详解】(1)S=2m×2n–m(2n–n–0.5n)=4mn–0.5mn=3.5mn;(2)由题意得m–6=0,n–8=0,∴m=6,n=8,∴原式=3.5×6×8=168.【点睛】此题考查了整式的加减-化简求值,非负数的性质,不规则图形的面积等知识,解本题的关键是学会利用分割法求不规则图形的面积.23.(1)见解析(2)7千米(3)3.4【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)可直接进行求解;(3)先求出货车总的路程,然后再进行求解即可.(1)解:如图所示:(2)解:由(1)数轴可知:小明家与小刚家相距:4-(-3)=7(千米);答:小明家与小刚家相距7千米(3)解:这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.2=3.4(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油3.4升.【点睛】本题主要考查数轴及有理数混合运算的应用,熟练掌握数轴上数的表示及有理数的运算是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.(1)415吨(2)840元【解析】【分析】(1)首先计算出表格中的数据的和,再利用465加上表格中的数据的和即可;(2)首先计算出表格中数据绝对值的和,再乘以5元即可.(1)22-29-15+37-25-21-19=-50(吨),465-50=415(吨).答:星期六结束时仓库内还有货物415吨;(2)5×(22+|-29|+|-15|+37+|-25|+|-21|+|-19|)=840(元).答:这一周内共需付840元装卸费.【点睛】此题主要考查了正负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【解析】【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.27.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分⑥的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分①面积是1 2,部分②面积是(12)2,部分③面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是1 64;(2)原式=12+23456611111163122222264 ++++=-=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2006~2007学年度上学期七年级数学期中调考试卷满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出の四个选项中,只有一项是符合题目要求の)1.12-の绝对值是( ). (A) 12 (B)12- (C)2 (D) -22.长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m 3.如果收入15元记作+15元,那么支出20元记作( )元. (A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1の个数是( ). (A)3个 (B)4个 (C)5个 (D)6个 5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确の是( ).(A).1p q = (B)1qp= (C) 0p q += (D) 0p q -= 6.方程5-3x=8の解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337.下列变形中, 不正确の是( ).(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d (C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d 8.如图,若数轴上の两点A 、B 表示の数分别为a 、b ,则下列结论正确の是( ). (A) b -a>0(B) a -b>0(C) ab >0(D) a +b>0 9.按括号の要求,用四舍五入法,对1022.0099(A)1022.01(精确到0.01) (B)1.0×103(保留2个有效数字) (C)1020(精确到十位) (D)1022.010(精确到千分位)10.“一个数比它の相反数大-4”,若设这数是x ,则可列出关于x の方程为( ). (A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=411. 下列等式变形:①若a b =,则a b x x =;②若a bx x=,则a b =;③若47a b =,则74a b =;④若74a b =,则47a b =.其中一定正确の个数是( ).(A)1个 (B)2个 (C)3个 (D)4个12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4の2次方,则式子1()2cd a b x x ---の值为( ). (A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你の答案写在“_______”处)13.写出一个比12-小の整数: . 14.已知甲地の海拔高度是300m ,乙地の海拔高度是-50m ,那么甲地比乙地高____________m . 15.十一国庆节期间,吴家山某眼镜店开展优 惠学生配镜の活动,某款式眼镜の广告如图,请你 为广告牌补上原价.16那么,当输入数据为8时,输出の数据为 . 三、 解一解, 试试谁更棒(本大题共9小题,共72分) 17.(本题10分)计算(1)13(1(48)64-+⨯- (2)4)2(2)1(310÷-+⨯- 解: 解:18.(本题10分)解方程(1)37322x x +=- (2) 111326x x -=- 解: 解:19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加の车辆数记为正数,减少の车辆数记为负数):星期 一 二 三 四 五 六 日 增减/辆-1+3-2+4+7-5-10(1) 生产量最多の一天比生产量最少の一天多生产多少辆?(3分) (2) 本周总の生产量是多少辆?(3分) 解:20.(本题7分)统计数据显示,在我国の664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数の3倍多52座,一般缺水城市数是严重缺水城市数の2倍.求严重缺水城市有多少座? 解:21. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项の比都等于2.一般地,如果一列数从第二项起,每一项与它前一项の比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列の公比.(1)等比数列5、-15、45、…の第4项是_________.(2分)(2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===则:5a = .(用1a 与q の式子表示)(2分) (3)一个等比数列の第2项是10,第4项是40,求它の公比. (5分) 解:22.(本题8分)两种移动记费方式表(1)一个月本地通话多少分钟时,两种通讯方式の费用相同?(5分)(2)若某人预计一个月使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)解:全球通 神州行 月租费 50元/分 0 本地通话费0.40元/分0.60元/分23.(本题10分)关于x の方程234x m x -=-+与2m x -=の解互为相反数.(1)求m の值;(6分) (2)求这两个方程の解.(4分) 解:24.(本题12分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B の速度是点A の速度の4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动の速度,并在数轴上标出A 、B 两点从原点出发运动3秒时の位置;(4分) 解:(2)若A 、B 两点从(1)中の位置开始,仍以原来の速度同时沿数轴向左运动,几秒时,原点恰好处在点A 、点B の正中间?(4分) 解:(3)若A 、B 两点从(1)中の位置开始,仍以原来の速度同时沿数轴向左运动时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 点追上A 点时,C 点立即停止运动.若点C 一直以20单位长度/秒の速度匀速运动,那么点C 从开始运动到停止运动,行驶の路程是多少个单位长度?(4分) 解:2006-2007学年度上学期七年级数学期中考试参考答案与评分标准一、选一选,比比谁细心1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D 二、填一填,看看谁仔细13.-1等 14. 350 15.200 16. 865三、解一解,试试谁更棒 17.(1)解: 13(1)(48)64-+⨯- = -48+8-36 ………………………………3分 =-76 ………………………………5分 (2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4 ………………………………2分 =2-2=0 ………………………………5分 18.(1)解:37322x x +=-3x+2x=32-7 ………………………………2分5x=25 ………………………………4分 x=5 ………………………………5分(2) 解:111326x x -=- 113126x x -+=- ………………………………2分 13x -=2 ………………………………4分x=-6 ………………………………5分19. 解: (1)7-(-10)=17 ………………………………3分 (2) (-1+3-2+4+7-5-10 )+100×7=696 ………………………………6分 20.解:设严重缺水城市有x 座,依题意有: ………………………………1分 3522664x x x +++= ………………………………4分 解得x=102 ………………………………6分答:严重缺水城市有102座. ………………………………7分 21.(1)81……2分 (2) 41a q …………………4分(3)依题意有:242a a q = ………………………………6分∴40=10×2q ∴2q =4 ………………………………7分 ∴2q =± ……………………………9分 22.(1)设一个月本地通话t 分钟时,两种通讯方式の费用相同.依题意有:50+0.4t=0.6t ………………………………3分解得t=250 ………………………………4分 (2)若某人预计一个月使用本地通话费180元,则使用全球通有:50+0.4t=180 ∴1t =325 ………………………………6分 若某人预计一个月使用本地通话费180元,则使用神州行有: 0.6t=180 ∴2t =300∴使用全球通の通讯方式较合算. ………………………………8分 23.解:(1) 由234x m x -=-+得:x=112m + …………………………2分 依题意有:112m ++2-m=0解得:m=6 ………………………6分 (2)由m=6,解得方程234x m x -=-+の解为x=4 ……………8分解得方程2m x -=の解为x=-4 ………………………10分24. (1)设点A の速度为每秒t 个单位长度,则点B の速度为每秒4t 个单位长度. 依题意有:3t+3×4t=15,解得t=1 …………………………2分 ∴点A の速度为每秒1个单位长度, 点B の速度为每秒4个单位长度. …3分画图 ……………4分 (2)设x 秒时,原点恰好处在点A 、点B の正中间. ………………5分根据题意,得3+x=12-4x ………………7分 解之得 x=1.8即运动1.8秒时,原点恰好处在A 、B 两点の正中间 ………………8分 (3)设运动y 秒时,点B 追上点A 根据题意,得4y-y=15,解之得 y=5 ………………10分即点B 追上点A 共用去5秒,而这个时间恰好是点C 从开始运动到停止运动所花の时间,因此点C 行驶の路程为:20×5=100(单位长度) ………………12分。