最新初一数学上册期中考试试卷及答案(人教版)

合集下载

2024年全新七年级数学上册期中试卷及答案(人教版)

2024年全新七年级数学上册期中试卷及答案(人教版)

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 下列哪个数是偶数?A. 23B. 27C. 33D. 363. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 19B. 20C. 21D. 224. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 下列哪个是无理数?A. √9B. √16C. √25D. √26二、判断题(每题1分,共5分)1. 两个质数相乘一定是合数。

()2. 0是偶数。

()3. 1是等差数列的首项。

()4. 平行四边形的对边相等。

()5. 所有的无理数都是开方开不尽的数。

()三、填空题(每题1分,共5分)1. 100的平方根是______。

2. 一个等差数列的公差是3,第5项是17,那么首项是______。

3. 下列图形中,______是轴对称图形。

4. 下列数中,______是立方数。

5. 如果a+b=12,ab=4,那么a和b的值分别是______和______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请简述平行四边形的性质。

3. 请简述无理数的概念。

4. 请简述勾股定理的内容。

5. 请简述一次函数的图像特点。

五、应用题(每题2分,共10分)1. 一个等差数列的前5项和是35,求这个数列的第10项。

2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的面积。

3. 如果一个数的平方是64,那么这个数的立方是多少?4. 如果a=5,b=3,求a²+b²的值。

5. 请画出一个一次函数y=2x+1的图像。

六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5厘米的正方形。

2. 请用直尺和圆规画出一个半径为3厘米的圆。

八、专业设计题(每题2分,共10分)1. 设计一个等差数列,其首项为3,公差为2,求前10项的和。

2023-2024学年全国初一上数学人教版期中试卷(含答案解析)

2023-2024学年全国初一上数学人教版期中试卷(含答案解析)

一、选择题(每题1分,共5分)1. 在有理数中,下列哪个数是负数?A. 0B. 1/2C. 3/4D. 22. 一个等腰三角形的底边长是10cm,腰长是8cm,那么这个三角形的周长是多少?A. 18cmB. 26cmC. 28cmD. 36cm3. 下列哪个数是整数?A. 1/3B. 0.5C. 2D. 2.54. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/25. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么这个长方体的体积是多少?A. 24cm³B. 24cm²C. 12cm³D. 12cm²二、判断题(每题1分,共5分)1. 有理数包括整数和分数,对错?2. 等腰三角形的两腰相等,底边也相等,对错?3. 0既不是正数也不是负数,对错?4. 一个长方体的体积等于它的长、宽、高的乘积,对错?5. 任何数的平方都是正数,对错?三、填空题(每题1分,共5分)1. 一个等边三角形的周长是15cm,那么它的边长是__________cm。

2. 一个长方体的长、宽、高分别是5cm、4cm、3cm,那么它的体积是__________cm³。

3. 下列数中,最大的是__________:2, 0, 1/2, 3。

4. 一个等腰三角形的底边长是10cm,腰长是8cm,那么这个三角形的周长是__________cm。

5. 一个数的绝对值等于它本身,那么这个数是__________。

四、简答题(每题2分,共10分)1. 简述有理数的定义。

2. 简述等腰三角形的性质。

3. 简述长方体的体积计算公式。

4. 简述平方根的定义。

5. 简述分数的定义。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是4cm、3cm、2cm,求它的表面积。

2. 一个等腰三角形的底边长是10cm,腰长是8cm,求它的面积。

3. 一个数的平方是25,求这个数。

人教版七年级上册数学期中考试试题带答案

人教版七年级上册数学期中考试试题带答案

人教版七年级上册数学期中考试试卷一、选择题。

(每小题只有一个答案正确)1.在体育课立定跳远测试中,以2.00m 为标准,若李超宇跳出了2.32m,可记作+0.32m,则曹艺豪跳出了1.85m,应记作()A .+0.15mB .-0.15mC .+0.22mD .-0.22m2.|﹣2|的倒数是()A .12B .-12C .2D .﹣23.对于下列四个式子:321,,,25a b x π+,其中不是整式的是()A .①B .②C .③D .④4.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A .6.7×104B .6.7×105C .6.7×106D .67×1045.单项式-22a b的系数和次数分别为()A .-12,3B .-1,3C .-1,2D .-12,26.下列运算结果正确的是()A .5x ﹣x =5B .2x 2+2x 3=4x 5C .﹣n 2﹣n 2=﹣2n 2D .a 2b ﹣ab 2=07.下列去括号正确的是()A .a+(b+c)=a+b-cB .a+(b-c)=a+b+cC .a-(b+c)=a-b+cD .a-(b-c)=a-b+c8.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c9.若m 是-6的相反数,且m +n =-11,则n 的值是()A .-5B .5C .-17D .1710.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A .6055B .6056C .6057D .6058二、填空题11.某天最低气温是-1℃,最高气温比最低气温高9℃,则这天的最高气温是________℃.12.已知x =3是关于x 的方程2x ﹣m =7的解,则m 的值是___.13.多项式0.3xy ﹣2x 3y ﹣7xy 2+1的次数是_____.14.若4m x y -与3112nx y 是同类项,则9()m n -=____.15.若x ,y 互为相反数,a 、b 互为倒数,则代数式3x+3y ﹣2ab的值是_____.16.如图所示的运算程序中,若开始输入的x 值为15,则第1次输出的结果为18,第2次输出的结果为9,…,第2017次输出的结果为(_____).三、解答题17.计算:(1)(-7)+(+5)-(-13)-(+10)(2)1.5÷55848⨯---(()18.先化简,再求值(1)()()22542542x x x x -++--+,其中1x =-。

2023-2024学年人教新版七年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版七年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一个数的相反数为6,则这个数为( )A.B.±6C.6D.﹣62.下列各组中的两个项不属于同类项的是( )A.3x2y和﹣2x2y B.﹣xy和2yxC.﹣1和1D.a2b和ab23.在下列有理数中:9,﹣3,0,,3.14,﹣(+5.3),﹣(﹣6)中,正数的个数为( )A.3个B.4个C.5个D.6个4.若5个有理数的积是负数,则5个因数中正因数的个数可能是( )A.1个B.3个C.1或3或5个D.以上答案都不对5.太阳的半径大约是696 000千米,用科学记数法可表示为( )A.696×103千米B.6.96×105千米C.6.96×106千米D.0.696×106千米6.如图,将7张相同的长方形纸片不重叠的放在长方形ABCD内,已知小长方形纸片的长为a,宽为b,且a>b,若未被覆盖的两个长方形周长相等,则( )A.B.a=3b C.D.a=4b7.在同一数轴上表示数﹣0.5,0.2,﹣2,+2,其中表示0.2的点的左边的点有( )A.1个B.2个C.3个D.4个8.若数轴上A,B两点之间的距离为8个单位长度,点A表示的有理数是﹣10,并且A,B 两点经折叠后重合,此时折线与数轴的交点表示的有理数是( )A.﹣6B.﹣9C.﹣6或﹣14D.﹣1或﹣99.单项式﹣a2b3的系数和次数分别是( )A.2、3B.﹣1、3C.﹣1、5D.0、510.在矩形ABCD内,将一张边长为a和两张边长为b(a>b)的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为l,若要知道l的值,只要测量图中哪条线段的长( )A.AB B.AD C.a D.b二.填空题(共8小题,满分24分,每小题3分)11.如果关于x的多项式ax2+x+b与多项式(2﹣3a)x2+2x﹣3的和是一个单项式,那么a+b 的值是 .12.某商店三月份的销售额为a万元,三月份比二月份减少10%,二月份比一月份增加10%,则一月份的销售额为 万元.13.若单项式3x m+5y2与x3y n是同类项,则m+n= ,合并同类项后得到 .14.数学考试成绩以90分为标准,老师将5位同学的成绩简单记作:+15,﹣4,+11,﹣7,0,则这五名同学的平均成绩为 .15.已知|a+3|+|b+2|=0,则= .16.当|x|=2,|y|=4,且xy<0,则x+y= .17.﹣22的读法是 .18.a与3b互为倒数,x与y互为相反数,那么2000ab﹣2001(x+y)= .三.解答题(共9小题,满分66分)19.(1)计算:12﹣(﹣8)+(﹣6)﹣15;(2)计算:4+(﹣2)3×5﹣(﹣28)÷4+(﹣6)2;(3)化简:3x2+x﹣5﹣x﹣2x2+4;(4)化简:(2x2+1)﹣2(5﹣x2).20.把下列各数填在相应的大括号里:+2,﹣|﹣2|,﹣3,0,﹣3,﹣1.414,17,,(﹣1)2正整数:{}整数:{}负分数:{}正有理数:{}.21.根据题意列出式子计算.(1)一个加数是1.8,和是5.9,求另一个加数;(2)求5的绝对值与﹣6的相反数的差.22.点A,B在数轴上的位置如图①所示,表示的数分别为a,b.(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是 ;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是 .(2)将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.①求点P表示的数;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,那么m n.(填“>,<或=”)(3)点C在数轴上的位置如图②所示,表示的数为c.若a+b=4,请用刻度尺或圆规在图②中画出点D,使点D表示的数为(4﹣c).(保留画图痕迹,写出必要的文字说明)23.已知a=﹣1,求(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣6)的值.24.有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )25.先简化,再求值:(2a 2﹣5a )﹣2(a 2+3a ﹣5),其中a =﹣.26.出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,+11,﹣15,﹣3.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?27.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:与标准重量的差值(单位:千克)﹣0.5﹣0.2500.250.30.5箱数1246n2(1)求n 的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵6的相反数为﹣6,∴这个数为﹣6.故选:D.2.解:A、字母相同且相同字母的指数也相同,故A正确;B、字母相同且相同字母的指数也相同,故B正确;C、字母相同且相同字母的指数也相同,故C正确;D、相同字母的指数不同,故D错误;故选:D.3.解:﹣(+5.3)=﹣5.3,﹣(﹣6)=6.∴大于0的数有9,﹣(﹣6),3.14,共3个.故选:A.4.解:∵5个有理数的积是负数,则5个因数中负因数的个数为1个,3个或5个,∴正因数的个数为4个或2个.故选:D.5.解:696000=6.96×105;故选:B.6.解:依题意,小长方形纸片的长为a,宽为b,如图所示,长方形AEFJ的周长为:2(JH+HF+EF)=2(3b+HF+4b)=14b+2HF,长方形HGCJ的周长为:2(GF+HF+HI)=2(a+HF+a)=4a+2HF,∵长方形AEFJ的周长与长方形HGCJ的周长相等,∴4a+2HF=14b+2HF,∴4a=14b,∴,故选:C.7.解:根据数轴上,左边的数小于右边的数的原则可知:﹣2<﹣0.5<0.2<2,所以,表示0.2的点的左边的点有﹣2,﹣0.5共2个.故选:B.8.解:当点B在点A的左侧时,点B表示的有理数是﹣10﹣8=﹣18,∴折线与数轴的交点表示的有理数是=﹣14;当点B在点A的右侧时,点B表示的有理数是﹣10+8=﹣2,∴折线与数轴的交点表示的有理数是=﹣6.故选:C.9.解:单项式﹣a2b3的系数和次数分别是:﹣1,5.故选:C.10.解:图1中阴影部分的周长=2AD+2AB﹣4b,图2中阴影部分的周长=2AD﹣2b+4AB﹣2b,l=2AD﹣4b+4AB﹣(2AD+2AB﹣4b)=2AD﹣4b+4AB﹣2AD﹣2AB+4b=2AB.故若要知道l的值,只要测量图中线段AB的长.故选:A.二.填空题(共8小题,满分24分,每小题3分)11.解:根据题意得:ax2+x+b+(2﹣3a)x2+2x﹣3=(a+2﹣3a)x2+3x+(b﹣3)=(2﹣2a)x2+3x+(b﹣3),∵和为单项式,∴2﹣2a=0,解得:a=1,b﹣3=0,解得:b=3,∴a+b=1+3=4.故答案为:4.12.解:设一月份的销售额为x,由题意可得,x(1+10%)(1﹣10%)=a解得,x=故答案为.13.解:由同类项的定义可知,m+5=3,n=2,解得:m=﹣2,∴m+n=﹣2+2=0,根据m=﹣2,n=2,得出单项式:3x3y2与x3y2,合并同类项得:3x3y2+x3y2=4x3y2,故答案为:0,4x3y2.14.解:90+×(15﹣4+11﹣7+0),=90+×15,=90+3,=93(分).故答案为:93分.15.解:∵|a+3|+|b+2|=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,∴===.故答案为:.16.解:∵|x|=2,|y|=4,∴x=±2,y=±4,又∵xy<0,∴当x=2,y=﹣4时,x+y=﹣2;当x=﹣2,y=4时,x+y=2.∴x+y=±2.故答案为:±2.17.解:﹣22读作2的2次方的相反数.故答案为:2的2次方的相反数.18.解:由题意得:a•3b=1,即ab=1,x+y=0,则原式=2000﹣0=2000,故答案为:2000三.解答题(共9小题,满分66分)19.解:(1)原式=12+8﹣6﹣15=﹣1;(2)原式=4+(﹣8)×5﹣(﹣7)+36=4﹣40+7+36=7;(3)原式=(3x2﹣2x2)+(x﹣x)+(4﹣5)=x2﹣1;(4)原式=2x2+1﹣10+2x2=4x2﹣9.20.解:正整数:{+2,17,(﹣1)2};整数:{+2,﹣|﹣2|,﹣3,0,(﹣1)2};负分数:{﹣3,﹣1.414};正有理数:{+2,17,,(﹣1)2};故答案为:+2,17,(﹣1)2;+2,﹣|﹣2|,﹣3,0,(﹣1)2;﹣3,﹣1.414;+2,17,,(﹣1)2.21.解:(1)5.9﹣1.8=4.1,∴另一个加数为4.1;(2)|5|﹣[﹣(﹣6)]=5﹣6=﹣1.22.解:(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是a+1;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是b﹣2.故答案为:a+1,b﹣2;(2)①将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.∴点P表示的数为:a+3b﹣3a+2﹣b+a﹣2=b+a;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,∴a=(a+b)﹣m,b=n+(a+b),∴m=(b﹣a),n=(b﹣a),∴m=n.故答案为:=.(3)如图,点D即为所求.方法:①作出AB的中点E;②在EB上取一点D,使得ED=EC,点D即为所求.23.解:原式=4a2﹣2a﹣6﹣4a2+4a+12=2a+6,当a=﹣1时,原式=﹣2+6=4.24.解:第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,∵(6a+6b+4c)﹣(4a+4b+8c)=2a+2b﹣4c,又a+b>2c,得到2a+2b>4c,故第(3)比(1)长;∵(6a+6b+4c)﹣(4a+4b+4c)=2a+2b>0,故第(3)比(2)长,又(4a+4b+8c)﹣(4a+4b+4c)=4c>0,故第(3)种方法绳子最长,第(2)种方法绳子最短.25.解:原式=2a2﹣5a﹣2a2﹣6a+10=﹣11a+10,当a=﹣时,原式=3+10=13.26.解:(1)∵约定向东为正,向西为负,当天的行驶记录为+17,﹣9,+7,+11,﹣15,﹣3,∴出租司机最后到达的地方为(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)=8>0,∴在出发点的东边,距离8km;(2)∵第1次送旅客位置出发点的距离为|+17|=17,第2次送旅客位置出发点的距离为|+17+(﹣9)|=8,第3次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)|=15,第4次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)|=26,第5次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)|=11,第6次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)|=8,∴出租司机最远处离出发点最远的距离为26;(3)∴出租司机实际行驶的路程为:|+17|+|﹣9|+|+7|+|+11|+|﹣15|+|﹣3|=62,∴这天共耗油量为:62×0.08=4.96(升)27.解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱),10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5,这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的,盈利466元.。

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。

()2. 任何两个整数的积都是整数。

()3. 任何两个无理数的积都是无理数。

()4. 任何两个实数的和都是实数。

()5. 任何两个实数的积都是实数。

()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。

2. 两个整数的积是______数。

3. 两个无理数的积是______数。

4. 两个实数的和是______数。

5. 两个实数的积是______数。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明整数的定义。

3. 请简要说明无理数的定义。

4. 请简要说明实数的定义。

5. 请简要说明有理数和无理数的区别。

五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。

2. 请分析并解释为什么π是无理数。

七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。

人教版七年级上册数学期中考试试卷及答案

人教版七年级上册数学期中考试试卷及答案

人教版七年级上册数学期中考试试题一、单选题1.实数2021的相反数是()A .2021B .2021-C .12021D .12021-2.下列单项式中,23a b 的同类项是()A .32a b B .233a b C .2a b D .3ab 3.下列各组数中,数值相等的一组是()A .﹣(﹣2)与|﹣2|B .(﹣2)2与﹣22C .32与23D .(23)2与(32)24.下列判断中错误的是()A .1a ab --是二次三项式B .22a b c -是单项式C .2a b+是多项式D .234r π中,系数是345.将数1.4960用四舍五入法取近似数,若精确到百分位,则得到的近似数是()A .1.49B .1.50C .1.496D .1.46.有理数a ,b 在数轴上的位置如图所示,则在下列结论中正确的个数有()0ab <,0a b +>,22a b >,a b b a<-<<-A .1个B .2个C .3个D .4个7.下列等式变形正确的是()A .由a =b ,得4+a =4﹣bB .如果2x =3y ,那么262933--=x yC .由mx =my ,得x =yD .如果3a =6b ﹣1,那么a =2b ﹣18.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③111236-+=-④11()122÷-=-请你帮他检查一下,他一共做对了()A .1题B .2题C .3题D .4题9.一个多项式减去x 2﹣2x+1得多项式3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .x 2+x ﹣1C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣1310.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是()A .a b >B .0ab <C .0b a ->D .0a b +>二、填空题11.将12000用科学记数法表示应为_____.12.已知x=1是方程x+2m=7的解,则m=__.13.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.14.如果x ﹣1=3,则x 的值是_____.15.若代数式x 2﹣3x+5的值为5,则代数式﹣3x 2+9x ﹣1的值是_____.16.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.三、解答题17.计算:(1)(﹣4)×(﹣347)+(﹣6)×(﹣347)+10×(﹣347)(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)18.先化简,再求值:x2﹣4xy﹣y2﹣2(2x2﹣2y+y2),其中x=﹣1,y=2.19.有20箱橘子,以每箱25千克为标准质量,超过的千克数用正数表示,不足的千克数用负数表示,结果记录如表:与标准质量的差值(单位:千克)﹣3﹣2﹣1.501 2.5箱数143327(1)在这20箱橘子中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量比较,20箱橘子总计超过或不足多少千克?(3)若橘子每千克售价6元,则全部售完这20箱橘子共有多少元?20.新学期开学,由于疫情防控的需要,某学校统一购置口罩,本周该学校给七(1)班全体学生配备了一定数量的口罩,若给每个学生发2个口罩,则多30个口罩,若给每个学生发4个口罩,则少40个口罩.(1)该班有多少名学生?(2)给七(1)班配备了多少个口罩?21.仔细观察下列三组数:第一组:﹣1,8,﹣27,64,﹣125,….第二组:1,﹣4,9,﹣16,25,…第三组:﹣2,﹣8,﹣18,﹣32,﹣50,…(1)第一组的第6个数是;(2)第二组的第n个数是;(3)分别取每一组的第10个数,计算这三个数的和.22.老师写出一个整式(ax2+bx﹣4)﹣(3x2+2x)(其中a、b为常数,且表示为系数),然后让同学给a、b赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为2x2﹣3x﹣4.则甲同学给出a、b的值分别是a=,b=;(2)乙同学给出了a=2,b=﹣1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x的取值无关,请直接写出丙同学的计算结果.AC=. 23.如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且8(1)直接写出数轴上点C表示的数;(2)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t>秒,动点R从点C出发,以每秒2个单位长度沿数轴向左匀速运动,求当t为何值时P,R两点会相遇.(3)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t>秒,动点R从点C出发,以每秒2个单位长度沿数轴向左匀速运动,动点Q从点A,,三点同时出发,当点P 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若P Q R遇上点R后立即返回向点Q运动,遇到点Q后则停止运动.求点P从开始运动到停止运动,行驶的路程是多少个单位长度?24.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a米,宽为b米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.25.已知A =x 2﹣mx+2,B =nx 2+2x ﹣1,且化简2A ﹣B 的结果与x 无关.(1)求m 、n 的值;(2)求式子﹣3(m 2n ﹣2mn 2)﹣[m 2n+2(mn 2﹣2m 2n )﹣5mn 2]的值.26.已知:数轴上A ,B 两点表示的有理数为a ,b ,且()21a -与2b +互为相反数.(1)A ,B 各表示哪一个有理数?(2)点C 在数轴上表示的数是c ,且与A ,B 两点的距离和为11,求数c 的值.(3)小蚂蚁甲以1个单位长度/秒的速度从点B 出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A 的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D 点相遇,则点D 表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?参考答案1.B 2.B3.A4.D5.B6.C7.B8.B9.B10.C11.1.2×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:12000=1.2×104.故答案为:1.2×104【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.12.3【解析】【详解】解:∵x=1是方程x+2m=7的解,∴1+2m=7,解得,m=3.故答案为:3.13.656【分析】根据规定的运算程序分别把x=5代入求值,考查结果是否大于500,不大于500,则把前一次的结果作为x的值再计算,直至结果第一次大于500时即可.【详解】根据规定的运算程序计算得,当x=5时,5x+1=26,当x=26时,5x+1=131,当x=131时,5x+1=656,故答案为656.【点睛】本题考查了对给出的计算程序的理解以及代入数值计算,根据运算程序正确代入数值计算是解决问题的关键..14.4【解析】【分析】移项、合并同类项,据此求出方程的解即可.【详解】解:移项,可得:x=3+1,合并同类项,可得:x=4.故答案为:4.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.15.-1【解析】【分析】由代数式x2﹣3x+5的值为5,可得代数式x2﹣3x=0,再将﹣3x2+9x﹣1化成﹣3(x2﹣3x)﹣1后,整体代入计算即可得答案.【详解】∵x2﹣3x+5的值为5,即x2﹣3x+5=5,∴x2﹣3x=0,∴﹣3x2+9x﹣1=﹣3(x2﹣3x)﹣1=﹣3×0﹣1=﹣1.故答案为:﹣1【点睛】本题考查代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.16.2n+1【解析】【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.17.(1)0;(2)﹣57.5【解析】【详解】解:(1)(﹣4)×(﹣347)+(﹣6)×(﹣347)+10×(﹣347)=(﹣347)×[(﹣4)+(﹣6)+10]=(﹣347)×0=0;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=(﹣8)+(﹣3)×(16+2)﹣9÷(﹣2)=(﹣8)+(﹣3)×18+4.5=﹣8+(﹣54)+4.5=﹣57.5.【点睛】本题考查了有理数的混合运算,熟知有理数的运算法则,运算律是解题关键.18.﹣3x2﹣4xy+4y﹣3y2,1【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:x2﹣4xy﹣y2﹣2(2x2﹣2y+y2),=x2﹣4xy﹣y2﹣4x2+4y﹣2y2=﹣3x2﹣4xy+4y﹣3y2,当x=﹣1,y=2时,原式=﹣3×(﹣1)2﹣4×(﹣1)×2+4×2﹣3×22=﹣3×1+8+8﹣3×4=﹣3+16﹣12=1.【点睛】此题考查了整式的加减-化简求值,含乘方的有理数混合运算,熟练掌握运算法则是解本题的关键.19.(1)最重的一箱比最轻的一箱重5.5千克;(2)20箱橘子总计超过4千克;(3)全部售完这20箱橘子共有3024元.【解析】【分析】(1)最重的一箱橘子比标准质量重2.5kg,最轻的一箱橘子比标准质量轻3kg,则两箱相差5.5kg;(2)将这20个数据相加,和为正表示比标准质量超过,和为负表示比标准质量不足,再相加即可;(3)先求得总质量,再乘以单价6元即可.【详解】解:(1)2.5﹣(﹣3)=5.5(千克);答:最重的一箱比最轻的一箱重5.5千克;(2)1×(﹣3)+4×(﹣2)+3×(﹣1.5)+3×0+2×1+7×2.5=﹣3﹣8﹣4.5+0+2+17.5=4(千克);答:20箱橘子总计超过4千克;(3)(20×25+4)×6=3024(元);答:全部售完这20箱橘子共有3024元.【点睛】本题主要考查有理数的加减法的实际应用,有理数四则混合运算的实际应用,根据题意列出算式,是解题的关键.20.(1)该班有35名学生;(2)给七(1)班配备了100个口罩.【解析】【分析】(1)设该班有x名学生,根据每个学生发2个口罩,则多30个口罩,若给每个学生发4个口罩,则少40个口罩列方程求出x的值即可得答案;(2)根据(1)中所求学生人数计算即可得答案.【详解】解:(1)设该班有x名学生,∵每个学生发2个口罩,则多30个口罩,若给每个学生发4个口罩,则少40个口罩,∴2x+30=4x﹣40,解得:x=35,答:该班有35名学生.(2)∵该班有35名学生,每个学生发2个口罩,则多30个口罩,∴2×35+30=100(个),答:给七(1)班配备了100个口罩.【点睛】本题考查一元一次方程的应用,正确找出等量关系列出方程是解题关键.21.(1)216;(2)(﹣1)n +1n 2;(3)700【解析】【分析】(1)观察各数可以得到各数的绝对值为各数序号的立方,结合符号,即可得到规律,即可求出第6个数;(2)观察各数,可以得到各数的绝对值为各数序号的平方,第奇数个数为正,偶数个数为负,即可得到规律;(3)根据观察第三组数,可以得到都是负数,绝对值是第(2)组数的绝对值的2倍,据此即可确定每一组的第10个数,相加即可求解.【详解】解:(1)因为第一组数为:﹣13,23,﹣33,43,…,所以第6个数为:63=216;故答案为:216;(2)因为第二组数为:12,﹣22,32,﹣42,…,所以第n 个数为:(﹣1)n +1n 2;故答案为:(﹣1)n +1n 2;(3)因为每组数的第10个数分别为:1000,﹣100,﹣200,所以这三个数的和为:﹣100+1000﹣200=700.【点睛】本题考查了根据数列找规律,理解题意,准确找出规律是解题关键,一般情况下,数列找规律要从数据的符号和绝对值两方面进行确定规律.22.(1)5,﹣1;(2)﹣x 2﹣3x ﹣4;(3)-4【解析】【分析】(1)整式进行整理后,利用等式的性质列方程求解即可;(2)把2a =,1b =-代入求解即可;(3)计算的最后结果与x 的取值无关,则含x 项的系数为0,据此求解即可.【详解】解:(ax 2+bx ﹣4)﹣(3x 2+2x ),=ax2+bx﹣4﹣3x2﹣2x,=(a﹣3)x2+(b﹣2)x﹣4;(1)∵甲计算的结果为2x2﹣3x﹣4,∴a﹣3=2,b﹣2=﹣3.∴a=5,b=﹣1.故答案为:5,﹣1;(2)乙同学给出了a=2,b=﹣1,∴计算结果为(2﹣3)x2+(﹣1﹣2)x﹣4,=﹣x2﹣3x﹣4.(3)∵丙同学计算的最后结果与x的取值无关,∴a﹣3=0,b﹣2=0.∴a=3,b=2.当a=3,b=2时,丙同学的计算结果﹣4.【点睛】本题考查了整式的加减运算,解一元一次方程,熟练掌握运算法则是解题的关键.23.(1)-4;(2)当t=1时,P,R两点会相遇;(3)行驶的路程是24.75个单位长度.【解析】【分析】(1)根据AC的距离和点A表示的数即可求出结论;(2)先求出BC的长度,然后根据题意列出方程即可求出结论;(3)先求出AB的长,然后求出点P遇上点R的时间,并求出此时点P与点Q的距离,从而求出P、Q的相遇时间,然后即可求出结论.【详解】AC ,点C在点A左侧解:(1)∵数轴上点A表示的数为4,8∴点C表示的数为4-8=-4;(2)∵点B表示的数为1,点C表示的数为-4∴BC=1-(-4)=5由题意可得3t+2t=5解得:t=1答:当t=1时,P,R两点会相遇;(3)由题意可得:AB=4-1=3点P 遇上点R 的时间为:5÷(3-2)=5(秒)此时点P 与点Q 的距离为3+(3-1)×5=13∴P 、Q 的相遇时间为13÷(3+1)=3.25(秒)∴点P 从开始运动到停止运动,行驶的路程是3×(5+3.25)=24.75个单位长度答:点P 从开始运动到停止运动,行驶的路程是24.75个单位长度.【点睛】此题考查的是数轴与动点问题,掌握数轴上两点之间的距离公式和行程问题公式是解题关键.24.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【解析】【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab =+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.25.(1)n =2,m =﹣1;(2)-36【解析】【分析】(1)直接利用整式的混合运算法则计算得出答案,注意整体思想及添括号与去括号法则;(2)先去小括号,再去中括号,再利用整式的加减运算法则化简进而得出答案.【详解】解:(1)∵A =x 2﹣mx+2,B =nx 2+2x ﹣1,且化简2A ﹣B 的结果与x 无关,∴2A ﹣B =2(x 2﹣mx+2)﹣(nx 2+2x ﹣1)=2x 2﹣2mx+4﹣nx 2﹣2x+1=(2﹣n )x 2﹣(2m+2)x+5,∴2﹣n =0,2m+2=0,解得:n =2,m =﹣1;(2)﹣3(m 2n ﹣2mn 2)﹣[m 2n+2(mn 2﹣2m 2n )﹣5mn 2]=﹣3m 2n+6mn 2﹣m 2n ﹣2mn 2+4m 2n+5mn 2=9mn 2,当n =2,m =﹣1时,原式=9×(﹣1)×22=﹣36.26.(1)A 、B 各表示的有理数是1,2-(2)6-或5(3)点D 表示的有理数是7-,小蚂蚁甲共用去7秒【分析】(1)根据几个非负数的和为0的性质得到10a -=,20b +=,求出a 、b 的值,然后根据数轴表示数的方法即可得到A 、B 各表示的有理数;(2)根据AB=1-(-2)=3,可得点C 不在AB 之间,分类讨论:点C 在点B 的左边时或点C 在点A 的右边,利用数轴上两点间的距离表示方法得到关于c 的方程,解方程求出c 的值即可;(3)设小蚂蚁乙收到信号后经过t 秒和小蚂蚁甲相遇,根据题意得到21(2)(6)(613)t t +=----+-⨯,解方程得4t =,点D 表示的有理数是124-⨯,小蚂蚁甲共用的时间为34+.(1)解:根据题意得()2120a b -++=,()21020a b -≥+≥,,则10a -=,20b +=,解得1a =,2b =-.答:A 、B 各表示的有理数是1,2-.(2)解:∵AB=1-(-2)=3,∴点C 不在AB 之间,①当点C 在点B 的左边时,()1211c c -+--=,解得6c =-;②当点C 在点A 的右边时,()1211c c -+--=,解得5c =.故数c 的值为6-或5.(3)解:设小蚂蚁乙收到信号后经过t 秒和小蚂蚁甲相遇,根据题意得:()()()2126613t t +=----+-⨯,∴4t =,∴1247-⨯=-,347+=(秒).故点D 表示的有理数是7-,小蚂蚁甲共用去7秒.。

人教版数学初一上学期期中试卷及答案指导(2024-2025学年)

人教版数学初一上学期期中试卷及答案指导(2024-2025学年)

2024-2025学年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、计算下列算式的结果:(3×(4+5)−7)A. 17B. 18C. 19D. 202、已知线段AB的长度为6cm,点C在线段AB上,且AC的长度为AB长度的一半,则BC的长度是多少?A. 2cmB. 3cmC. 4cmD. 5cm3、小华买了一支铅笔和一支橡皮,一共花了5.6元。

已知铅笔的价格是橡皮的3倍,那么橡皮的价格是多少元?选项:A、1.2元B、1.8元D、3.6元4、一个长方形的长是宽的2倍,如果长方形的长和宽各增加5cm,那么长方形的面积将增加多少平方厘米?选项:A、25cm²B、30cm²C、40cm²D、50cm²5、已知一个正方形的边长为(3)厘米,如果将这个正方形的边长增加(2)厘米,那么新的正方形面积增加了多少平方厘米?A.(10)B.(12)C.(14)D.(16)6、如果一个等腰三角形的底边长度为(8)厘米,底角各为(70∘),那么这个等腰三角形的顶角是多少度?A.(20∘)B.(30∘)C.(40∘)D.(50∘)7、一个长方形的长是12cm,宽是5cm,那么它的周长是多少平方厘米?B、60cmC、30cm²D、50cm²8、一个正方形的对角线长度是10cm,那么这个正方形的面积是多少平方厘米?A、50cm²B、100cm²C、25cm²D、20cm²9、下列哪一个等式展示了分配律的应用?A、(3×(4+5)=3×4+3×5)B、(3+(4+5)=(3+4)+5)C、(3×4×5=5×4×3)D、(3+4+5=4+5+3) 10、如果一个正方形的边长增加3厘米,则它的面积增加了多少平方厘米?假设原正方形边长为x厘米。

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-七年级数学上册期中测试试卷一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.12-的绝对值是( ). (A) 12 (B)12- (C)2 (D) -22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m 3.如果收入15元记作+15元,那么支出20元记作( )元. (A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ). (A)3个 (B)4个 (C)5个 (D)6个 5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A).1p q = (B)1qp= (C) 0p q += (D) 0p q -= 6.方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337.下列变形中, 不正确的是( ).(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d (C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d 8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a>0 (B) a -b>0 ab >0 (D) a +b>0 91022.0099取近似值, 其中错误的是( ).(A)1022.01(精确到0.01) (B)1.0×103(保留2个有效数字) (C)1020(精确到十位) (D)1022.010(精确到千分位)10.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( ). (A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=411. 下列等式变形:①若a b =,则a b x x =;②若a b x x =,则a b =;③若47a b =,则74a b =;④若74a b =,则47a b =.其中一定正确的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( ). (A)2 (B)4 (C)-8 (D)8原价: 元国庆节8折优惠,现价:160元二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.写出一个比12-小的整数: . 14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m .15.十一国庆节期间,吴家山某眼镜店开展优 惠学生配镜的活动,某款式眼镜的广告如图,请你 为广告牌补上原价.16输入 (1)2345… 输出…12 25 310 417 526…那么,当输入数据为8时,输出的数据为 .三、 解一解, 试试谁更棒(本大题共8小题,共72分) 17.(本题10分)计算(1)13(1)(48)64-+⨯- (2)4)2(2)1(310÷-+⨯- 解: 解:18.(本题10分)解方程(1)37322x x +=- (2) 111326x x -=- 解: 解:19.(本题7分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座? 解:20. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)(2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===。

则:5a = .(用1a 与q 的式子表示)(2分)(3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分) 解:21.(本题8分)两种移动电话记费方式表 (1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)解:22.(本题10分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(6分) (2)求这两个方程的解.(4分) 解:23.(本题8分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(4分)全球通 神州行 月租费50元/分 0 本地通话费 0.40元/分0.60元/分解:(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(4分)解:24.(本题10分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

⑴两印刷厂的收费各是多少元?(用含x的代数式表示)⑵学校要到印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由。

解:2006-2007学年度上学期七年级数学期中考试参考答案与评分标准一、选一选,比比谁细心1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D 二、填一填,看看谁仔细13.-1等 14. 350 15.200 16. 865三、解一解,试试谁更棒 17.(1)解: 13(1)(48)64-+⨯- = -48+8-36 ………………………………3分 =-76 ………………………………5分 (2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4 ………………………………2分 =2-2=0 ………………………………5分 18.(1)解:37322x x +=-3x+2x=32-7 ………………………………2分5x=25 ………………………………4分 x=5 ………………………………5分(2) 解:111326x x -=- 113126x x -+=- ………………………………2分 13x -=2 ………………………………4分x=-6 ………………………………5分19. 解: (1)7-(-10)=17 ………………………………3分 (2) (-1+3-2+4+7-5-10 )+100×7=696 ………………………………6分 20.解:设严重缺水城市有x 座,依题意有: ………………………………1分 3522664x x x +++= ………………………………4分 解得x=102 ………………………………6分答:严重缺水城市有102座. ………………………………7分21.(1)81……2分 (2) 41a q …………………4分 (3)依题意有:242a a q = ………………………………6分∴40=10×2q ∴2q =4 ………………………………7分 ∴2q =± ……………………………9分 22.(1)设一个月内本地通话t 分钟时,两种通讯方式的费用相同.依题意有:50+0.4t=0.6t ………………………………3分解得t=250 ………………………………4分 (2)若某人预计一个月内使用本地通话费180元,则使用全球通有:50+0.4t=180 ∴1t =325 ………………………………6分 若某人预计一个月内使用本地通话费180元,则使用神州行有: 0.6t=180 ∴2t =300∴使用全球通的通讯方式较合算. ………………………………8分 23.解:(1) 由234x m x -=-+得:x=112m + …………………………2分 依题意有:112m ++2-m=0解得:m=6 ………………………6分 (2)由m=6,解得方程234x m x -=-+的解为x=4 ……………8分解得方程2m x -=的解为x=-4 ………………………10分24. (1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒4t 个单位长度. 依题意有:3t+3×4t=15,解得t=1 …………………………2分 ∴点A 的速度为每秒1个单位长度, 点B 的速度为每秒4个单位长度. …3分画图 ……………4分 (2)设x 秒时,原点恰好处在点A 、点B 的正中间. ………………5分根据题意,得3+x=12-4x ………………7分 解之得 x=1.8即运动1.8秒时,原点恰好处在A 、B 两点的正中间 ………………8分 (3)设运动y 秒时,点B 追上点A 根据题意,得4y-y=15,解之得 y=5 ………………10分即点B 追上点A 共用去5秒,而这个时间恰好是点C 从开始运动到停止运动所花的时间,因此点C 行驶的路程为:20×5=100(单位长度) ………………12分一、 计算题。

( 共14题)1. 排好队,来报数,正着报数我报七,倒着报数我报九,一共多少小朋友?答:2. 海盗抓小孩去无人岛,一共抓了15个小孩,他让小孩排队报数,第一次把报单数的孩子都送去了无人岛,接着让剩下的孩子报数,又把报单数的孩子送去了无人岛,把其他孩子放回了家。

问强盗放多少个孩子回家?答:3. 小朋友们排成一队去春游,从排头往后数,小刚是第10个小朋友;从排尾往前数,小刚后有11个小朋友,问一共有多少小朋友去春游?答:4. 20个小朋友排成一队去春游,从排头往后数,小刚是第8个;从排尾往前数,小莉是第9个,问小刚和小莉中间有几个人?答:5.一队小朋友表演球操,每人都拿着一个球,其中拿篮球的比拿排球的多1人,拿排球的比拿足球的多1人。

相关文档
最新文档