心电数据处理与去噪(DOC)
(完整版)心电数据处理与去噪(DOC)

燕山大学课程设计说明书题目心电数据处理与去噪学院(系):电气工程学院年级专业: 11级仪表一班学号: 110103020036学生姓名:张钊指导教师:谢平杜义浩教师职称:教授讲师燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
2014年7月 5 日摘要 (2)第1章设计目的、意义 (3)1.1 设计目的 (3)1.2设计内容 (3)第2章心电信号的频域处理方法及其分析方法 (4)2.1小波分析分析 (4)2.2 50hz工频滤波分析 (10)第3章 GUI界面可视化 (14)学习心得 (15)参考文献 (15)信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。
心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。
心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。
在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。
心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。
关键字:信号处理心电信号Matlab第一章设计目的、意义1 设计目的进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。
课程设计的主要目的:(1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
(2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。
(3)培养学生综合分析问题、发现问题和解决问题的能力。
(4)培养学生用maltab处理图像与数据的能力。
心电信号预处理原理

心电信号预处理原理
心电信号预处理是指在对心电信号进行分析和处理之前,对原始心电信号进行一系列的处理步骤,以提高信号质量、减少噪音和干扰,使信号更适合后续的分析和应用。
预处理的原理涉及到多个方面:
1. 滤波,心电信号通常包含各种频率的噪音和干扰,滤波是预处理的重要步骤。
常用的滤波器包括高通滤波器和低通滤波器,用于去除基线漂移和高频噪音。
滤波的原理是通过设定合适的截止频率,只保留心电信号中有用的频率成分。
2. 去噪,心电信号可能受到各种干扰,如肌肉运动、电源干扰等,需要采用去噪技术。
常用的去噪方法包括小波变换去噪、均值滤波、中值滤波等,去噪的原理是通过数学模型或统计学方法,将噪音信号与心电信号分离或抑制。
3. 基线漂移校正,心电信号中常常存在基线漂移,即信号整体偏离基准线的现象。
基线漂移校正的原理是通过计算信号的均值或斜率,将信号整体平移或调整,使得信号整体回归到基准线附近。
4. 放大,在预处理中,有时需要对心电信号进行放大,以增强信号的幅度,使得信号更易于观察和分析。
放大的原理是通过调节放大倍数或增益,使得信号幅度适合后续处理和分析的要求。
总的来说,心电信号预处理的原理是通过滤波、去噪、基线漂移校正和放大等技术手段,对原始心电信号进行处理,以提高信号质量,减少干扰和噪音,为后续的心电信号分析和诊断提供更可靠的数据基础。
研究生科研项目实验数据处理技巧

研究生科研项目实验数据处理技巧随着科研项目的不断深入,实验数据的处理成为了研究生必备的技巧之一。
正确高效的数据处理方法能够帮助研究生更好地分析实验结果,得出准确的结论。
本文将介绍一些研究生科研项目实验数据处理的常见技巧,旨在提高数据处理效率和结果可信度。
一、数据采集与整理在实验过程中,准确地采集和整理数据是数据处理的第一步。
以下是一些常用的数据采集与整理技巧:1.1 选择合适的采集工具:根据实验需求,选择合适的采集工具,如传感器、仪器仪表或软件系统等。
确保所选工具能够准确地记录实验数据。
1.2 样本数量和分布:在实验设计阶段,需要合理安排样本数量和分布。
样本数量过少可能导致数据不具备统计学意义,而样本分布不均匀可能引起结果的偏差。
1.3 数据格式标准化:为了方便后续的数据处理与分析,建议统一采用特定的数据格式。
例如,使用逗号或制表符分隔的CSV文件,或者使用Excel等常见的数据表格软件。
二、数据清洗与去噪实验数据采集过程中会存在各种干扰因素,如噪声、异常值等。
因此,在进行数据处理之前,需要进行数据清洗与去噪操作,以保证数据的准确性和可靠性。
以下是一些常用的数据清洗与去噪技巧:2.1 缺失值处理:对于存在缺失值的数据,可以选择删除该样本或使用合适的插补方法填充缺失值,如均值填充、插值法等。
选择合适的方法需要根据实际情况进行判断。
2.2 异常值检测:通过数据分析方法或可视化手段,可以检测并排除异常值。
例如,使用箱线图、散点图等工具识别和删除异常值。
2.3 噪声处理:噪声可以对数据的统计性质和分析结果造成较大影响。
可采用平滑、滤波等方法对数据进行去噪处理,如移动平均法、中值滤波法等。
三、数据分析与统计在进行数据分析与统计之前,需要明确研究目的和假设,以选择合适的分析方法和统计工具。
以下是一些常用的数据分析与统计技巧:3.1 描述性统计分析:通过计算数据的均值、方差、标准差、偏度等描述性统计量,可以对数据的分布特征进行概括和分析。
ECG信号处理技术在心电图分析上的应用研究

ECG信号处理技术在心电图分析上的应用研究概述:心电图(Electrocardiogram,简写ECG)是记录心脏电活动的一种常用方法,对临床诊断和研究心脏疾病具有重要意义。
ECG信号处理技术的应用可以进一步提取和分析心电图中所包含的信息,为医生提供准确的诊断依据和治疗建议。
一、ECG信号的特点和采集ECG信号具有低频和高频成分,低频成分代表心脏的基线漂移和缓慢变化,高频成分代表心脏的快速变化。
为了获取准确的ECG信号,需要正确采集和预处理。
1. 信号采集设备:常见的ECG信号采集设备包括心电图仪、移动式监护设备和可穿戴设备。
这些设备通过电极与患者身体接触,记录心脏的电活动。
2. 信号预处理:采集到的ECG信号通常伴有噪声和干扰。
为了准确分析ECG信号,需要经过滤波、去噪和放大等预处理步骤。
滤波可以消除噪声和干扰,去噪可以提高信号质量,放大可以增加信号的幅度。
二、ECG信号处理技术ECG信号处理技术主要包括特征提取、分类和诊断等方法,可以帮助医生更好地理解和分析ECG信号。
1. 特征提取:特征提取是ECG信号处理中的关键步骤,用于提取出ECG信号中的重要特征。
常见的特征包括R峰和QRS波群等。
R峰代表心脏的收缩,QRS波群代表心脏的除极和复极。
特征提取可以通过时域分析、频域分析和小波变换等方法实现。
2. 分类和诊断:特征提取之后,需要通过分类和诊断算法对ECG信号进行分析。
分类算法可以将ECG信号分为正常和异常,并对异常信号进行进一步分析。
诊断算法可以根据ECG信号的特征判断心脏疾病的类型和严重程度。
三、ECG信号处理技术的应用ECG信号处理技术在心电图分析上有着广泛的应用,可以帮助医生更准确地进行心脏疾病的诊断和治疗。
1. 心律失常检测:通过ECG信号处理技术,可以实时检测心律失常,并及时提供警报。
心律失常的早期检测和干预可以有效预防心脏猝死等严重后果。
2. 缺血性心脏病诊断:ECG信号处理技术可以提取出ST段变化和T波形态等特征,进而判断心脏是否存在缺血性病变。
心电去噪方法研究

仿真结果
图(2) 波形对比
图(1) 滤波器特性
小波分析去噪
设计方案:
选择‘db5’小波,对心电信号S进 行3层分解(小波分解各层小波系数 如图(3)所示)。
利用MATLAB提供的默认阈值命令对 各层的高频系数CD1、CD2、CD3进行 阈值处理后。
IMF有2个特点:一是在整个信号长度上 极大值点数与极小值点数和过零点数相等 或相差为1;二是在任意一点,由包络线 定义的极大值与极小值的均值为零。
EMD的实质是对一个时间序列信号进行平 稳化处理,其结果是将信号中不同尺度的 波动或趋势逐级分解开来,产生一系列具 有不同特征尺度的数据序列,每一个序列 称为IMF分量 。
项c 1 h 变1 k,成r 1 单 调X ( 函t)数 c 时1 ,,X 原(t) 始 信r 1 号的EMD分解结束。最后得到
rn c n
rn
n
X(t) ci rn i1
经验模态分析去噪
经验模态去噪步骤:
首先,利用EMD对原始信号进行分解,得到不同尺度的IMF分量
和剩余信号。
然后,对各尺度上的IMF分量进行类似于小波去噪的阈值处理 。 最后,信号重构 。即:阈值处理后的各尺度上的IMF分量以及
经验模态分析去噪
(结4果)的以标准h1差1 代:替 X (t) ,重复以上三步,直到连续两次筛选
2
T
SD
h k1
(t)hk
(t)
t0
hk21(t)
小于指定的标准(一般为0.2至0.3之间)时,即可认为
符合IFM分量的要求,为一IFM分量,则记作:
h1k
(5)重复以上四步,直到 或 比预定值小;或剩余
心电监护技术操作理论考试试题及答案

心电监护技术操作理论考试试题及答案一、选择题(每题2分,共40分)1. 以下哪项不是心电监护的目的是:()A. 连续监测患者的心电活动B. 及时发现心律失常C. 提供心电信息,指导治疗D. 提高患者的生活质量答案:D2. 心电监护仪的哪个部分负责将心电信号转换成数字信号?()A. 信号放大器B. 模数转换器C. 显示器D. 记录器答案:B3. 心电监护时,以下哪个导联用于监测心律失常?()A. Ⅰ导联B. Ⅱ导联C. Ⅲ导联答案:B4. 心电监护时,以下哪个参数表示心率?()A. HRB. PRC. QTD. RR答案:A5. 心电监护时,以下哪个情况需要立即报告医生?()A. 心率减慢B. 心率加快C. 心律失常D. 心率波动答案:C6. 心电监护时,以下哪个导联主要用于诊断心肌梗死?()A. Ⅰ导联B. Ⅱ导联C. Ⅲ导联答案:D7. 心电监护仪的报警阈值设置过高会导致:()A. 假阳性报警B. 假阴性报警C. 报警不及时D. 报警过于频繁答案:B8. 心电监护时,以下哪个参数表示心电信号的振幅?()A. HRB. PRC. QTD. R波振幅答案:D9. 心电监护仪的哪个部分负责显示心电信号?()A. 信号放大器B. 模数转换器C. 显示器D. 记录器答案:C10. 心电监护时,以下哪个导联用于监测心脏的激动顺序?()A. Ⅰ导联B. Ⅱ导联C. Ⅲ导联D. V1导联答案:D二、填空题(每题2分,共20分)1. 心电监护仪主要由________、________、________和________四部分组成。
答案:信号放大器、模数转换器、显示器、记录器2. 心电监护时,常用的导联有________、________、________、________和________。
答案:Ⅰ导联、Ⅱ导联、Ⅲ导联、aVR导联、V1导联3. 心电监护仪的报警阈值包括________、________和________。
心电信号预处理

《生物医学信号处理》实习报告次!其特征值包括初始瞬态的幅值和工频成分的幅值!衰减的时间常数;其持续时间一般为15左右,幅值可达记录仪的最大值"。
(3)人为运动人为运动是瞬时的(但非阶跃)基线改变,由电极移动中电极与皮肤阻抗改变所引起"人为运动由病人的运动和振动所引起,造成的基线干扰形状可认为类似周期正弦信号,其峰值幅度和持续时间是变化的,幅值通常为几十毫伏"。
(4)肌电干扰(EMG)肌电干扰来自于人体的肌肉颤动,肌肉运动产生毫伏级电势"EMG基线通常在很小电压范围内"所以一般不明显"肌电干扰可视为瞬时发生的零均值带限噪声,主要能量集中在30一300Hz范围内"。
(5)基线漂移和呼吸时ECG幅值的变化基线漂移和呼吸时ECG幅值的变化一般由人体呼吸!电极移动等低频干扰所引起,频率小于5Hz;其变化可视为一个加在心电信号上的与呼吸频率同频率的正弦分量,在0.015一0.3Hz处基线变化变化幅度的为ECG峰峰值的15%"。
上面的电极接触噪声与人为运动所产生的噪声是人为因素造成的,当然也可以通过人为因素来避免。
然而工频干扰、肌电干扰(EMG)与基线漂移和呼吸时ECG幅值的变化就不是人为因素所能消除的了。
为了滤除掉上述三种噪声,我按照实验要求设计了三种不同的滤波器。
分别是巴特沃斯滤波器与切比雪夫滤波器。
为了对比他们的滤波效果,又设计了一个维纳滤波器。
最后运用SNR指标定量分析了不同滤波器的去噪能力。
以下是3种滤波器的原理:1.巴特沃斯滤波器的设计原理其特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零(对理想低通滤波的逼近:巴特沃思滤波器是以原点附近的最大平坦响应来逼近理想低通滤波器)。
而滤波器的幅频特性是随着滤波器的阶次N的增加而变得越来越好,在截止频率有:(1)衰减具有不变性。
通带、阻带均具有单调下降的特性。
心音信号的去噪

心音信号去噪方法比较研究2016 年 01 月 06 日摘要 (1)关键词 (1)第一章绪论 (2)1.1研究背景 (2)1.1.1心音信号基础知识 (2)1.1.1.1心音的形成机制 (2)1.2心音信号的特性 (3)1.2.1心音的时域特性 (3)1.2.2心音的频率特性 (3)第二章去噪方法分析 (4)2.1 巴特沃斯滤波器 (4)2.2 切比雪夫低通滤波器 (5)2.3 小波变换 (6)第三章心音信号的获取及预处理 (12)3.1 心音信号的采集 (13)3.2 心音信号的预处理 (14)第四章心音信号去噪的实验过程 (14)4.1 常规方法 (14)4.2 小波去噪 (17)第五章滤波方法比较 (21)第六章实验总结 (21)参考文献 (22)附录 (24)摘要心音是最重要的信号之一。
然而,许多外界因素会影响心音信号的采集。
心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。
因此对心音信号去噪的研究非常重要。
本文研究并比较了几种基于matlab的心音去噪的方法。
首先我们采用经典的butterworth低通滤波器和切比雪夫低通滤波器对心音信号进行去噪,结果表明这两种滤波器对高频噪声的消除效果明显,但不能滤除低频噪声。
其次,我们采用了小波变换对含噪心音信号进行处理。
一种方法中丢弃分解信号的高频部分和部分细节,将分解后的信号近似和第四层细节相加作为样本信号的代替。
这种方法简单且能有效的消除高频噪声,但由于丢失了部分细节,易使信号失真。
然后,我们采用haar小波阈值法对信号去噪,取得的较好的去噪效果,但高频噪声残留较多。
最后,我们db6小波进行去噪,得到了很好的信号波形,而且高频噪声残留较少。
通过实验,我们得出结论,无论哪种去噪方式都有其自身的局限性,单独的使用一种去噪方法很难将噪声完全滤除。
应该采用综合滤波方法,结合各个方法的优势联合滤波。
首先使用巴特沃斯低通滤波器或切比雪夫滤波器低通滤波器滤除高频噪声,再用db小波阈值或haar小波阈值法去噪法进行去噪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕山大学课程设计说明书题目心电数据处理与去噪学院(系):电气工程学院年级专业: 11级仪表一班学号: 110103020036学生姓名:张钊指导教师:谢平杜义浩教师职称:教授讲师燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
2014年7月 5 日摘要 (2)第1章设计目的、意义 (3)1.1 设计目的 (3)1.2设计内容 (3)第2章心电信号的频域处理方法及其分析方法 (4)2.1小波分析分析 (4)2.2 50hz工频滤波分析 (10)第3章 GUI界面可视化 (14)学习心得 (15)参考文献 (15)信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。
心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。
心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。
在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。
心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。
关键字:信号处理心电信号Matlab第一章设计目的、意义1 设计目的进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。
课程设计的主要目的:(1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
(2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。
(3)培养学生综合分析问题、发现问题和解决问题的能力。
(4)培养学生用maltab处理图像与数据的能力。
2 设计内容2.1 设计要求:要求设计出心电数据处理的处理与分析程序。
(1) 处理对象:心电数据;(2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据);(3) 结果:得到处理结果。
2.2 设计内容:(1)心电数据仿真;(2)心电数据处理;(3)分析处理结果。
(4)可视化界面设计2.3 实验原理2.3.1心电产生原理我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。
正常人体的每一个心动周期中,各部分兴奋过程中出现的电变化的方向、途径、次序和时问都有一定的规律,这种生物电变化通过心脏周围的导电组织和体液,反映到身体表面,使身体各部位在每一心动周期中也出现有规律的电变化。
在人体不同部位放置电极,并通过电联线与心电图机的正负极相连,在心电图机上便可以记录到周期变化的心电图。
心电图是通过二次投影形成的。
整体心肌细胞的除极和复极所产生的每一瞬l ’日J 的除极、复极综合向量轨迹,在立体心脏的三维空『日J 内按时问顺序将其顶端相连,便构成立体心向量环。
立体心向量环在额面和横面的投影,形成平面的心向量环;将平面向量环在导联轴上进行二次投影,就形成相应的心电图。
对于标准的12导联来说,额面心向量环在肢体导联上的投影,形成I 、II 、Ill 、avR 、avL 、avF 导联心电图,而横面心向量环在胸导联轴上的投影便形成了V1~V6导联心电图m 。
不同导联记录到的心电图,在波形上有所不同,但基本上都包括一个P 波,一个QRS 波和一个T 波,有时候在T 波后还出现一个小u 波。
第二章 心电信号的时域处理及其分析方法1.小波分析理论传统的信号分析建立在傅里叶变换基础之上,它运用数学言将信号表示为一组正弦函数或余弦函数之和并把信号分解众多的频率成分,这些频率又可以重构原来的信号,而且这种变换能量不变,因此她把它在信号处理领域长期处于统治地位。
但它是一种纯频域的分析方法,反映信号在整个时间轴上的频域特性,并且只适合时不变信号,对于非平稳信号有局限性。
在实际工程应用中,通常所分析的信号具有非线性,非平稳,并且奇异点较多的特点。
含噪的一维信号模型可表示为:其中,f(t)为真实信号,s(t)为含噪信号,e(t)为噪声, 为噪声标 准偏差。
)(*)()(t e t f t s σ+=1_,,1,0n t =1.2小波去噪理论有用信号通常表现为低频信号或是相对比较平稳而噪声信号通常现为高频信号。
利用小波对含噪的原始信号分解后,含噪部分主要集中在高频小波系数中,并且,包含有用信号的小波系数幅值较大,但数目少;而噪声对应的小波系数幅值小,数目较多。
基于上述特点,可以应用门限阈值法对小波系数进行处理。
(即对较小的小波系数置为0,较大的保留或削弱),然后对信号重构即可达到消噪的目的。
小波分解的结构示意图小波分解系数示意图1.3小波变换去噪的流程示意图1.4小波去噪matlab程序clear;close all;a=load('D:\Documents\Desktop\ECG\ECG_A.txt');data=a(1:200,3);figure,plot(data);xlabel('时间(s)');ylabel('被测变量y');title('原始信号(时域)');% mallet_wavelet.m% 此函数用于研究Mallet算法及滤波器设计% 此函数仅用于消噪a=pi/8; %角度赋初值b=pi/8;%低通重构FIR滤波器h0(n)冲激响应赋值h0=cos(a)*cos(b);h1=sin(a)*cos(b);h2=-sin(a)*sin(b);h3=cos(a)*sin(b);low_construct=[h0,h1,h2,h3];L_fre=4; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_high)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)L_signal=100; %信号长度n=1:L_signal; %信号赋值f=10;a=load('D:\Documents\Desktop\ECG\ECG_A.txt');data=a(1:200,3);figure,plot(data);xlabel('时间(s)');ylabel('被测变量y');title('原始信号(时域)');figure(1);plot(data);title('原信号');check1=sum(high_decompose); %h0(n)性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(data,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(data,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');1.5小波分析结果2. 50hz工频滤波分析陷波器也称带阻滤波器(窄带阻滤波器),它能在保证其他频率的信号不损失的情况下,有效的抑制输入信号中某一频率信息。
所以当电路中需要滤除存在的某一特定频率的干扰信号时,就经常用到陷波器。
在我国采用的是50hz频率的交流电,所以在平时需要对信号进行采集处理和分析时,常会存在50hz的工频干扰,对我们的信号处理造成很大干扰,因此50Hz陷波器在日常成产生活中被广泛应用,其技术已基本成熟。
工频陷波器不仅在通信领域里被大量应用,还在自动控制、雷达、声纳、人造卫星、仪器仪表测量及计算机技术等领域有着广泛的应用2.1 心电信号噪声分析心电信号由于受到人体诸多因素的影响,因而有着一般信号所没有的特点:(1)信号弱,心电信号是体表的电生理信号,一般比较微弱,幅度在10pV~5mV,频率为0.05~100Hz。
例如从母体腹部收取到的胎儿心电信号仅10/zV~50/IV。
(2)噪声强,由于人体自身信号弱,加之人体又是一个复杂的系统,因此信号容易受到噪声干扰。
(3)随机性强,心电信号不仅是随机的,而且是非平稳的。
同时,在心电图检测过程中极易受到各种噪声源的干扰,从而使图像质量变差,使均匀和连续变化的心电数值产生突变,在心电图上形成一些毛刺。
使原本很微弱的信号很难和噪声进行分解。
可能出现的噪声有如下的种类:(1)工频干扰工频干扰是由电力系统和人体的分布电容引起的,其频率包括50Hz(MIT-BIH 数据库数据工频因为是美国标准,所以是60Hz)的基波及其各次谐波,其幅值成分在ECG峰一峰值的0—50%范围内变化。
(2)引起基线漂移的干扰心电信号有时候会出现信号基线起伏不平的现象,造成这样的现象有很多原因,主要的有:①呼吸运动人体呼吸时胸腔内器官和组织会发生一定程度的变化,会对在体表记录到的心电图波形的幅度和形态有所影响,表现为基线随呼吸产生周期性或非周期性漂移,从而导致心电波形的幅度随呼气和吸气而分别上抬和下移。
呼吸运动是引起心电基线漂移的主要原因。
②运动伪迹运动伪迹是由于人体轻微运动造成电极与入体的接触电阻发生变化而引入的一种干扰,它的产生原因仅仅是接触电阻的变化,而不是接触的断续。
这种干扰同样导致信号基线的变化,但不是基线的跃变。
③信号记录和处理中电子设备引起的干扰这种干扰对信号影响很大,严重时可完全淹没心电信号或使得基线剧烈漂移,其中导联开路和放大器的热移是主要因素。
这种干扰往往无法通过心电分析算法来校正。
由于心电波形已经完全畸变,此时对这些数据分析已无太大意义。
所以一般跳过此段数据。
(3)高频噪声心电信号中的高频噪声主要是肌电噪声。