五年级上册多边形的面积
新人教版五年级上册数学多边形的面积知识点

多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
人教版五年级上册《多边形的面积》要点知识及易错点解析

人教版五年级上册《多边形的面积》要点知识及易错点解析《多边形的面积》要点知识一、公式:多边形面积公式面积公式的变式说明正方形正方形的面积=边长X边长S正=aXa=a2已知:正方形的面积,求边长长方形长方形的面积=长X宽S长=aXb已知:长方形的面积和长,求宽平行四边形平行四边形的面积=底X高S平=aXh已知:平行四边形的面积和底,求高h=S平÷a三角形三角形的面积=底X宽高÷2S三=aXh÷2已知:三角形的面积和底,求高H=S三X2÷a梯形梯形形的面积=(上底+下底)X高÷2S梯=(a+b)X2已知:梯形的面积与上下底之和,求高高=面积×2÷(上底+下底)上底=面积×2÷高-下底组合图形当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
二、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
三、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2四、梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2五、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
小学五年级上册数学《多边形的面积》知识点及练习题

【导语】当物体占据的空间是⼆维空间时,所占空间的⼤⼩叫做该物体的⾯积,⾯积可以是平⾯的也可以是曲⾯的。
平⽅⽶,平⽅分⽶,平⽅厘⽶,是公认的⾯积单位,以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学五年级上册数学《多边形的⾯积》知识点 1、公式 长⽅形:周长=(长+宽)×2;字母公式:C=(a+b)×2 ⾯积=长×宽;字母公式:S=ab 正⽅形:周长=边长×4;字母公式:C=4a ⾯积=边长×边长;字母公式:S=a 平⾏四边形:⾯积=底×⾼;字母公式:S=ah 三⾓形:⾯积=底×⾼÷2;字母公式:S=ah÷2 底=⾯积×2÷⾼;⾼=⾯积×2÷底 梯形:⾯积=(上底+下底)×⾼÷2;字母公式:S=(a+b)h÷2 上底=⾯积×2÷⾼-下底;下底=⾯积×2÷⾼-上底;⾼=⾯积×2÷(上底+下底) 2、单位换算的⽅法 ⼤化⼩,乘进率;⼩化⼤,除以进率。
3、常⽤单位间的进率 1千⽶=1000⽶1⽶=10分⽶ 1分⽶=10厘⽶1厘⽶=10毫⽶ 1平⽅千⽶=100公顷1公顷=10000平⽅⽶ 1平⽅⽶=100平⽅分⽶1平⽅分⽶=100平⽅厘⽶ 4、图形之间的关系 (1)、平⾏四边形可以转化成⼀个长⽅形;两个完全相同的三⾓形可以拼成⼀个平⾏四边形。
两个完全相同的梯形可以拼成⼀个平⾏四边形。
(2)、等底等⾼的平⾏四边形⾯积相等;等底等⾼的三⾓形⾯积相等。
(3)、等底等⾼的平⾏四边形⾯积是三⾓形⾯积的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等底,则三⾓形的⾼是平⾏四边形的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等⾼,则三⾓形的底是平⾏四边形的2倍。
(4)、把长⽅形框架拉成平⾏四边形,周长不变,⾯积变⼩了。
五年级数学上册人教版第六单元《多边形的面积》(单元解读)

第六单元多边形的面积单元解读一、链接课标《义务教育数学课程标准(2022年版)》指出在小学阶段“图形与几何”领域所对应的核心素养侧重于空间观念,几何直观,量感和推理意识。
学生要结合生活情境认识平面图形及特征,会计算图形的周长和面积,并解决一定的实际问题。
多边形的面积是图形与几何领域测量中的重要内容。
通过本单元的教学,要引导学生探索并掌握平行四边形、三角形和梯形的面积公式,会计算组合图形的面积,在观察、实验、猜想、验证等活动中,渗透平移、旋转、转化等数学思想方法,发展合情推理能力,促进学生空间观念的进一步发展、感受几何直观和符号意识的作用,渗透估测意识、策略,了解解决问题方法的多样性,培养学生的应用意识和创新意识。
二、单元目标学生已经在生活中积累了有关图形认识和图形测量的经验,同时已经研究了长方形、正方形、三角形的特征以及长方形、正方形的面积计算。
在研究本单元中,教师应引导学生紧密联系生活实际,从已有的认知基础和生活经验出发,让学生在数、剪、拼、摆等操作活动中,完成对新知的构建。
引导学生利用转化的数学思想,在操作中研究新知是本单元教学的重要环节。
通过实际操作活动,发展学生的空间观念,培养动手操作能力,为接下来研究圆的面积作好铺垫。
根据学情及教材内容制定了教学目标:1.理解并掌握各种图形的面积计算公式。
2.引导学生运用转化的方式来探索规律,认识新旧知识之间的联系。
3.会拼、摆、拆分各种组合图形,并正确计算组合图形的面积。
4.通过实验、操作、拼摆、割补等方法,使学生经历计算公式的推导过程,进一步发展学生的思维。
5.应用面积的计算公式,使学生运用转化的方法解决实际问题,发展学生的空间观念。
沟通知识与生活的联系,激发学生的学习兴趣,培养学生探究意识和创新能力,发展学生的空间观念。
三、单元教学重点、难点:教学重点:掌握平行四边形、三角形和梯形的面积计算公式,并能正确运用。
教学难点:通过探索活动,能够掌握平行四边形、三角形和梯形的面积计算公式推导的过程。
五年级上册多边形的面积

【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高(a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应。
2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底) 字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高-上底字母表示为:b=2s÷h-a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)=()cm2公顷=()平方米(2)一个三角形的底是米,高是米,它的面积是()平方米,和它等底等高的平行四边形的面积是()平方米。
(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是()厘米。
小学五年级上册多边形的面积

精心整理第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah要点提示2.要点提示3.要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)3.8dm 2=()cm 20.03公顷=()平方米(2)一个三角形的底是3.6米,高是2.5米,它的面积是()平方米,和它等底等高 的平行四边形的面积是()平方米。
(3(42.选择。
(1A.(2)(34 1268A.3.(1)(2)(3)4.(1) 3 5 (2) 75.15.5米,这个花园的面积是多少平方米?6.一个三角形的面积是75平方厘米,高是7.5【考点突破】类型一:平行四边形、三角形、梯形的面积。
例1.13.5 B18C 答案:=18×=243(cm 2例2.0.25答案:905400÷例3.A.C.扩大到原来的4倍D.不变 答案:D解析:平行四边形的面积=底×高, (底×2)×(高×12)=底×高×2×12=底×高,面积不变。
故选D 。
例4.一块三角形绿地的面积是13.5平方米,底是6米,高是多少米?答案:由s=ah÷2推导出h=2s÷a。
h=2s÷a=2×13.5÷6=27÷6=4.5(m)答:高是4.5米。
解析:可以先根据三角形的面积计算公式s=ah÷2推导出h=2s÷a,再计算。
五年级上册多边形的面积

第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高(a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应。
2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底) 字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高-上底字母表示为:b=2s÷h-a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)=()cm2公顷=()平方米(2)一个三角形的底是米,高是米,它的面积是()平方米,和它等底等高的平行四边形的面积是()平方米。
(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是()厘米。
五年级上册第六单元 多边形面积

第五单元多边形的面积一、基础概念及公式梳理(一)平行四边形的面积1.把平行四边形沿高剪开可以拼成长方形。
长方形的面积等于平行四边形的面积,这个长方形的长等于平行四边形的底,这个长方形的宽等于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示为:S=ah2.计算平行四边形面积时,底和高一定要相对应。
3.平行四边形的底=面积÷高 a=s÷h平行四边形的高=面积÷底 h=s÷a4.把长方形木框拉成平行四边形,周长不变,面积变小;把平行四边形木框拉成长方形,周长不变,面积变大:在长方形时面积最大5.等底等高的平行四边形面积相等。
6.两个平行四边形等底等高,面积相等两个平行四边形的面积相等,底相等,那么高也相等。
两个平行四边形的面积相等高相等,那么底也相等。
(二)三角形的面积1.两个个完全一样(完全相同)的三角形可以拼成一个平行四边形,拼成的平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,每个三角形的面积等于拼成的平行四边形的面积的一半,因为平行四边形的面积=底×高,所以三角形的面积=底×高÷2,用字母表示为S=ah÷22.计算三角形的面积时底和高要对应,不要忘记除以23.三角形的面积是和它等底等高的平行四边形的面积的一半,,平行四边形的面积是和它等底等高三角形的面积的两倍。
4.计算三角形的面积时底和高要对应,不要忘记除以2。
5.三角形的高=面积×2÷底 h=2s÷a三角形的底=面积×2÷高 a=2s÷h6.等底等高的三角形面积相等。
7.两个面积相等的三角形底和高不一定相等,形状不一定相同。
8.三角形的面积与它的底和高有关,与它的形状无关。
(三)梯形的面积1.两个完全一样(完全相同)的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2m
2m
3m
3m
3m
3m
3m
3m
3m
(方法一)
例题一
3m 3m
(方法二)
2m
3m
2m
3m
3m 3m
3m 3m (方法三)
3m (方法四) 3m
3m 3m
例题二
1.5m
40 m
60m
5㎝
4㎝
10000平方米=1公顷 1平方千米=100公顷
=1000000平方米
拉成
变化:周长不变,面 积变小(高变小)
等底等高的
15X8=10X12
两个平行四 边形,他们
10 厘米 8 厘米
的面积相等
12 厘米
平行四边形的 底和高互相对 应,高是底边 的一条垂直线 段,同一个图 形底和高变化 ,面积不变
15 厘米
高
高 底
高
长
高
高
高 底
两个完全一样(大小、 形状都相同)的三角 形可以拼成一个等底 等高的平行四边形
这个平行四边形的底等于( 梯形的上底加下底的和 ) 高等于( 梯形的高 ) 每个梯形的面积等于拼成的平行四边形面积的( 一半 )
怎么计算组合图形的面积?
1、分图形:用分割法或添补法分把组 合图形成我们会计算的简单图形。 2、找条件,算面积:分别计算简单图 形的面积。注意单位 3、最后求和或差。 “分割”与“添补”方法
两个完全相同的三角 形是拼成的等底等高 的平行四边形的面积 的一半
等底等高的两个三 角形,他们的面积 相等
高
等底等高
的两个梯
形,他们
下
的面积相
底
上
梯形的下底 梯形的上底
等
底
平行四边形的底等于梯形 的上底与下底的和。 平行四边形的高 等于 梯形的高。
两个完全一样( 大小、形状都一样 )的梯形可 以拼成一个( 平时四边形 )。