(井控技术)第二章 压力的概念

合集下载

井控基础知识

井控基础知识

目录1.1 第一章井控及相关概念 (4)第一条、井控的概念 (4)第二条、地层三个压力及其概念 (4)第三条、静液压力、循环压力、抽汲压力、激动压力的概念 (4)第四条、井内液柱压力与静液压力、循环压力、抽汲压力、激动压力之间的关系: (4)第五条、压差的概念 (4)第六条、井侵、溢流、井涌、井喷、地下井喷、井喷失控的概念 (4)第七条、关井的概念 (4)第八条、井控的目的和主要内容 (4)第九条、近、欠平衡压力钻井的概念 (4)第十条、正循环、反循环、节流循环的概念 (5)1.2 第二章井控装备 (5)第一条、井控装备的概念及共功用 (5)第二条、环形防喷器的组成、工作原理、特点及功用 (5)第三条、现场正确使用环形防喷器 (5)第四条、闸板防喷器的组成、工作原理、特点及功用 (5)第五条、闸板防喷器达到有效封井必须实现的四处密封 (6)第六条、闸板防喷器锁紧装置的作用 (6)第七条、闸板防喷器手动关井的步骤 (6)第八条、闸板防喷器开、关井的步骤 (6)第九条、闸板防喷器手动关井后手轮回旋1/4——1/2圈的目的 (6)第十条、目前我国液压防喷器的压力等级与公称通径的分类 (6)第十一条、正确判断闸板防喷器锁紧轴的锁紧状况 (6)第十二条、现场正确使用闸板防喷器 (6)第十三条、闸板锁紧装置在使用中应注意的问题 (6)第十四条、使用活塞杆二次密封装置时应注意的事项 (6)第十五条、更换液压闸板防喷器闸板的操作步骤 (6)第十六条、控制系统的组成与作用 (7)第十七条、司钻控制台的组成、功用及关井操作 (7)第十八条、远程控制台的组成、功能及特点 (7)第十九条、蓄能器的组成、功用、特点及主要技术参数 (7)第二十条、电泵的作用及主要技术参数 (7)第二十一条、气泵的的作用 (7)第二十二条、减压调压阀、溢流阀的功用 (7)第二十三条、压力继电器和压力继气器的功用及调定值 (7)第二十四条、气动压力变送器的功用 (7)第二十五条、气控液型控制系统的特点 (7)第二十六条、远程控制台空负荷运转前应做的准备工作 (7)第二十七条、远程控制台处于“待命”工况的具体要求 (8)第二十八条、现场正确使用三位四通换向阀 (8)第二十九条、实现超高压关井的操作步骤 (8)第三十条、节流、压井管汇主要功用 (8)第三十一条、钻具内防喷工具的功用 (8)第三十二条、目前油田所用内防喷工具的种类 (8)第三十三条、钻井工艺对节流管汇的要求 (8)第三十四条、旋转防喷器的组成及配套使用 (8)1.3 第三章井控技能 (9)第一条、井内液柱压力变化的原因 (9)第二条、抽汲压力的形成过程及其发生变化的原因 (9)第三条、激动压力产生的原因 (9)第四条、井底压差大的危害 (9)第五条、近平衡钻井的优点 (9)第六条、搞下短起下钻检查油气侵的时机 (9)第七条、起钻灌钻井液的原则 (9)第八条、下钻中途和到底开泵的原则 (9)第九条、求测油气上窜速度 (9)第十条、dc指数监测地层压力的原理 (9)第十一条、井侵的方式 (9)第十二条、溢流产生的原因 (9)第十三条、溢流的显示和征兆 (10)第十四条、井喷多发生在起钻时的原因 (10)第十五条、发现溢流后的主要做法 (10)第十六条、硬、软关井区别及各自的优缺点 (10)第十七条、果断迅速关井的优点 (10)第十八条、允许关井最高压力的确定 (10)第十九条、关井时最关键的问题 (10)第二十条、圈闭压力及其产生原加与消除 (10)第二十一条、长期关井的两种放压方法及长期关井后套压升高时利用立管压力法和套管压力法的放压过程. 11 第二十二条、利用顶开回压阀法测定关井立压的步骤 (11)第二十三条、确定立、套管压力放压法操作的上、下限值 (11)第二十四条、求取压井排量下的立管压力 (11)第二十五条、压井的原理 (11)第二十六条、常规压井法的种类 (11)第二十七条、压井液密度的确定 (11)第二十八条、关井立压为零时的压井步骤 (11)第二十九条、司钻法(二次循环法)的压井步骤 (12)第三十条、工程师法(一次循环法)的压井步骤 (12)第三十一条、边循环边加重法的压井步骤 (12)第三十二条、常规压井法采用低排量压井的原因 (12)第三十三条、几种常规压井法的优缺点 (12)第三十四条、特殊压井法的种类 (12)第三十五条、井内钻井液喷空后的天然气井的压井 (12)第三十六条、井内无钻具的压井 (13)第三十七条、井内钻井液喷空且井内无钻具的压井 (13)第三十八条、又喷又漏压井 (13)第三十九条、浅井段溢流的处理 (13)第四十条、压井过程中异常情况的判断与处理 (14)第四十一条、井控作业中易出现的错误做法 (14)1.4 第四章井喷失控的危害及原因 (15)第一条、井喷失控的危害 (15)第二条、井喷失控的原因 (16)1.5 第五章井喷失控的处理 (17)第一条、成立现场抢险组,制订抢险方案 (17)第二条、未着火的失控井应严防着火,无论着火与否皆要保护好井口装置 (17)第三条、划分安全区 (17)第四条、清除井口周围的障碍物 (17)第五条、灭火 (18)第六条、设计和换装新的井口装置 (19)第七条、不压井强行起下管柱、压井或不压井完井 (19)1.6 第六章硫化氢及相关安全知识 (19)第一条、硫化氢的物理化学性质 (19)第二条、硫化氢气体的主要来源 (19)第三条、根据天然气中硫化氢含量,进行的气藏分类 (19)第四条、硫化氢对人体造成的危害 (19)第五条、人员进入含硫地区工作应做的准备 (20)第六条、氢脆 (20)第七条、硫化氢对金属材料腐蚀的表现 (20)第八条、硫化氢对金属腐蚀破坏的影响因素 (20)第九条、硫化氢对非金属材料的无破坏作用 (20)第十条、硫化氢对钻井液的污染 (20)第十一条、含硫油气田对井场及钻机设备布置的要求 (20)第十二条、正确监测含硫油气井的做法 (21)第十三条、含硫油气田对井控设备安装的要求 (21)第十四条、含硫油气田对井控设备材质的要求 (21)第十五条、含硫气田钻井设计特殊要求 (21)第十六条、含硫油气田钻井的安全操作 (21)第十七条、钻井过程中对硫化氢气体的处理 (21)第十八条、施工现场硫化氢的应急程序主要有: (21)第十九条、硫化氢防护演习 (22)第二十条、发现硫化氢后对人员的疏散 (22)第二十一条、硫化氢中毒后的早期抢救 (22)第二十二条、硫化氢中毒后的一般护理知识 (22)第二十三条、胸外心脏按压术的操作要领 (22)第二十四条、人工呼吸的操作要领 (22)第二十五条、当中毒者呼吸和心跳都停止时的现场抢救 (22)第二十六条、正压式空气呼吸器(以RHZK型为例)使用前的准备工作 (23)第二十七条、正压式空气呼吸器(RHZK型为例)佩带使用方法 (23)第二十八条、检查正压式空气呼吸器(以RHZK型为例)全面罩气密性的方法 (23)第二十九条、正压式空气呼吸器(以RHZK型为例)使用后的维护保养 (23)1.7 第七章怎样做好井控工作 (23)第一条、准确认识井控工作 (23)第二条、做好井控工作的原则 (23)第三条、严格履行职责和义务 (24)第四条、加强井控培训 (25)1.8 第八章修井与钻井井控的区别 (25)第一条、修井工艺 (25)第二条、钻井工艺 (26)第三条、修井与钻井井控的区别 (26)1.9 第九章有关计算 (27)第一章井控及相关概念第一条、井控的概念井控,有的叫做井涌控制,还有的叫做压力控制。

井控技术培训

井控技术培训

lg 0.0547Vm 0 n
lg 0.0684W 0 D
p Pb Pp
四、dc指数法
d 指数与钻速 Vm 的变化关系:
∴ Vm
lg 0.0547 Vm n
∴ Vm
d
Vm
d
分析: 在基本假设的条件下,有:
Pp↑
△P↓
Vm↑
d↓
p Pb Pp
四、dc指数法
Po [r g H (1) h g H ] Pr Ph
式中:
Po 上覆岩层压力 千帕 ( MPa )
r 基岩密度 克/厘米3 ( g/cm3 ) h 流体密度 克/厘米3 ( g/cm3 )
地下各种压力概念
八、上覆岩层压力与地层压力的关系
Po Pp
地层空隙不连通时,在外力(Po)的作用下,地
层压力大于正常地层压力,即: p h
异常高压成因及地层压力检测
通过以上分析,形成异常高压的成因为: 1、地层有储存流体的空间(孔隙度) 2、地层不连通(圏闭) 3、外力的作用(沉积、构造运动等)
二、异常高压的种类 (略)
异常高压成因及地层压力检测
即: p h
那么,为什么经常出现地层压力大于地层水静液 压力,也就是地层压力当量密度大于地层水密度的情 况。即:
p h
其原因的根本是:
地层岩石的空隙被阻断,不是连通的 。
分析:
异常高压成因及地层压力检测
地层空隙连通时,在外力(Po)的作用下,地层 压力为正常地层压力,即: p h
井喷是钻井施工过程中危害极大地灾难 性事故。
绪论
二、井喷失控的原因及危害
3.井底压差太大造成的危害

井控习题集(答案)

井控习题集(答案)
8、× 9、√ 10、√ 11、× 12、√ 13、√ 14、× 15、√ 16、√
17、× 18、√ 19、× 20、√ 21、×
22、√ 23、√ 24、√ 25、√ 26、×
27、√ 28、× 29、√ 30、× 31、√
32、× 33、√ 34、×
第三章 地层压力检测
35、√ 36、× 37、√ 38、× 39、√ 40、× 41、√ 42、×
第五章 溢流的原因、预防与显示
60、B 61、A 62、B 63、A 64、D 65、A 第六章 关井程序 66、D 67、C 68、B 69、A 70、C 71、D 72、A 73、B 74、D 75、A 第七章 井内气体的膨胀和运移 76、A 77、D 78、D 79、A 80、B 81、B 82、B
第十八章 井控相关设备
190、× 191、× 192、× 193、√ 194、
√ 195、× 196、√
第十九章 井控装置现场安装、试压与维护
197、√ 198、× 199、√ 200、× 201、
√ 202、√
第二十章 硫化氢的危害、防护和监测
203、√ 204、× 205、× 206、√ 207、
170、C 171、C 172、B 173、A 174、A 第十五章 套管头 175、B 176、C 177、A 178、D 179、C 180、A 第十六章 节流、压井管汇
181、D 182、A 183、A 184、B 185、C
186、C
187、D 188、D 189、D
第十七章 钻具内防喷工具 190、A 191、A 192、C 193、C 194、D 195、A 第十八章 井控相关设备 196、B 197、C 198、B 199、B 200、C 201、A 202、B 203、A

第2章 井下各种压力的概念及其相互关系

第2章 井下各种压力的概念及其相互关系

第二章 井下各种压力的概念及其相互关系一 压力压力是井控工作中最主要的概念之一。

正确理解井下各种压力的概念及其相互关系对于掌握井控技术和防止井喷是非常重要的。

1、压力的定义压力也称压强,是指物体单位面积上所受的垂直力。

2、压力的数学表达式SF P 式中:P —压力,N/m 2F —作用于面积S 上的垂直力,NS —面积,m 23、压力的单位及换算压力的国际标准制单位是帕斯卡,简称帕,符号是Pa 。

1帕就是1 m 2面积上受到1N 的垂直力时形成的压力,即 1Pa = 1 N/m 2压力的单位帕是一个相对较小的单位。

为了现场应用的方便,常使用千帕(KPa)和兆帕(MPa)两个单位,即1 MPa=1000 KPa=106 Pa与过去常用的工程大气压(kgf/cm 2)的换算关系是1 MPa= 10.194 kgf/cm2 1 kgf/cm 2= 98.067 KPa粗略计算时,可认为1 kgf/cm 2 = 100 KPa = 0.1MPa另外,压力的国际工程单位是巴(bar),1bar=1.01972kgf/cm 2 英制中,压力的单位是psi 。

1psi 即1平方英寸面积上受到1磅的垂直力。

与兆帕的换算关系是 1000psi= 6.895MPa二静液压力1、静液压力的定义静液压力是由静止液体的重力产生的压力。

其大小取决于液体的密度和液体的垂直高度,与液体的断面形状无关。

2、静液压力的计算P=ρgH式中:P--静液压力,MPaρ--液体密度,g/cm3g--重力加速度,0.00981H--液柱的垂直高度,m在陆上钻井作业中,H为井眼的垂直深度,起始点自转盘面算起,液体的密度为钻井液的密度。

例1 某井钻至井深2000米处,所用钻井液密度为1.2 g/cm3,求井底处的静液压力。

解:P=ρgH = 1.2×0.00981×2000 = 23.5 MPa三地层压力1、地层压力的定义地层压力是指地下岩石孔隙内流体的压力,也称孔隙压力。

第二章井下各种压力的概念

第二章井下各种压力的概念
10 江苏油田井控技术培训学校
在井下作业中,井内液柱压力的下限要与地层 压力相平衡,即不污染油气层,又能保证井控安 全。而其上限则不应超过地层的破裂压力,以避 免压裂地层造成井漏。尤其是地层压力差别较大 的裸眼井段,如措施不当会造成先漏后喷的问题。 破裂压力是制定施工措施、确定最大关井套压的 重要依据。
19 江苏油田井控技术培训学校
压力的表示方法
我国石油作业现场有4种压力的表示方法。
1.用压力单位表示:
这是一种直接表示法,如100 kPa、10 MPa。
2.用压力梯度表示:
压力梯度是指单位深度或高度地层压力的变化量, 即单位井深压力的变化值。计算公式为: G=p/H=10-3ρg=0.009 81ρ (2-2)
1 江苏油田安全培训中心
井下各种压力的概念
静液压力,地层压力,上覆岩层压力,地层破裂 压力,井底压力,压差,压力损失,激动压力和 抽吸压力。
压力的表示方法
2 江苏油田井控技术培训学校
静液压力
静液压力是由静止液体重力产生的压力。
3 江苏油田井控技术培训学校
如图2-1所示。静液压力是液柱密度 和垂直高度的函数,其大小取决于 液柱密度和垂直高度。 ph=10-3gH =0.009 8H (2-1) 式中 ph——静液压力,MPa; g——重力加速度,9.81 m/s2; ——液体密度,g/cm3; H——液柱的垂直高度,m。
4 江苏油田井控技术培训学校
例2-1:如图2-1所示,井内井液的密度为1.20 g/cm3,地层水的密度为1.07 g/cm3,求3 000 m 处的静液压力及地层孔隙内流体的压力。
解:井液静液压力: pm=10-3gH=10-3×1.20×9.81×3 000=35.316 (MPa) 地层孔隙内流体的压力: pp=10-3gH=10-3×1.07×9.81×3 000=31.49(MPa)

井控技术培训教程

井控技术培训教程

使油气资源受 到严重破坏
四川长原大气田长1井井喷日喷 气量超过1千万方,累计损失天然 气达4.6亿方致使该井所在气田 几乎失去开采价值。 1983年2月,伊朗海岸外的瑙鲁滋油 田发生井喷,每天7000桶(111.7万 升)原油 白白地流入海里;
造成油气井报废经济损失惨重
• 1990年10月11日,大港油田王15-33井井喷,井架倒塌井 眼报废。 •1996年,中原油田文13-120井井喷,损失φ158.8mm钻铤2根, 因井喷造成技术套管变形,致使该井报废,直接经济损失163 万元。 •2003年,四川油田罗家16H井井喷直接经济损失6000多万元。
酿成火灾
2003年2月18日,大港油田滩海 工程公司承钻的中4-72井在 起钻过程中发生井喷失控,40分 钟后井架朝大门方向倒塌。井架、 绞车及大量 钻具工具报废。 1990年10月11日,大港油田王 15-33井井喷,大火烧了38天, 井架倒塌油井报废报废。
造成环境污染
1983年 2月,伊朗一油井和伊拉克一油井发生井喷,对野 生动物的打击是惨重的,据世界野生动物基金报道,波斯 湾的儒艮到1983年7月几乎全部死亡。 1979年6月3日,墨西哥石油公司的伊斯托克1号平台,突 然发生严重井喷,这次井喷造成10毫米厚的原油顺潮北流, 涌向墨西哥和美国海岸。黑油带长480公里,宽40公里,覆 盖1.9万平方公里的海面,使这一带的海洋环境受到严重污 染。
井 控 技 术
例题、某定向井钻至井深H3820米,相应垂深 H13210米,起钻前钻井液密度为1.46 g/cm3,若 起钻抽汲压力p抽为1.57 Mpa,起钻未及时灌钻井 液引起静液压力减小值p减为0.3 Mpa,求起钻时井 底压力pb为多少Mpa?
解:pb=gH1-p抽-p减

A02压力概念与相互关系-第二章讲解

A02压力概念与相互关系-第二章讲解

图2-1-1 静液压力与地层压力第2章 井下各种压力的概念及其相互关系井控问题实际上是井内油气压力控制问题,了解和掌握各种压力的概念及其各种井下压力之间的关系,对于学习和掌握井下作业井控工艺技术非常必要。

2.1 井下各种压力的概念压力是指物体单位面积上受到的垂直力,物理学上叫压强,在石油工程上习惯称为压力。

单位是帕斯卡,符号是Pa 。

在1平方米(m 2)面积上垂直作用1牛顿(N)的力时所形成压力是1帕(Pa),即1Pa=lN/m 2。

根据需要,常用千帕(KPa )或兆帕(MPa )表示压力。

1KPa=103Pa 1MPa=106Pa与工程大气压的换算关系是:1MPa=10.194kgf/cm 2或 1kgf/cm 2=0.098MPa 粗略计算时,可认为:1kgf/cm 2≈100KPa=0.1MPa 其误差约为2%。

英制中,压力的单位用1平方英寸(in 2)面积上受多少磅(bf)的力来衡量,单位符号是psi ,换算关系是1psi ≈6.895kPa=0.006895MPa 。

井控中的压力是由液体、气体或液体与气体共同产生的,但压力的概念是一样的。

2.1.1 静液压力P m静液压力是由静止液体重力产生的压力。

是液体密度和垂直高度的函数,其大小取决于液体密度和垂直高度。

图2-1-1表示出了井内井液压力与地层孔隙水的静液压力。

静液压力的数学表达式:P m =10-3g ρm H m (2-1)式中:P m -静液压力,MPa 。

ρm -液体密度,g/cm 3。

g-重力加速度(一般取9.81),m/s 2。

H m -液柱垂直高度,m 。

井控工艺技术中常用压力梯度表示压力。

压力梯度是指每增加单位垂直深度压力变化的量。

静液压力梯度的数学表达式:G m=P m/H m=10-3gρm (2-2)式中:G m-静液压力梯度,MPa/m。

需要特别注意的是井深是垂深而不是斜(测量)深。

[例2-1]如图2-1-1所示,井内钻井液的密度为1.20g/cm3,地层水的密度为1.07g/cm3,求3000m处的静液压力及地层孔隙内流体的压力。

井下各种压力的概念及相互关系

井下各种压力的概念及相互关系

九、井底压力
井底压力就是指地面和井内各种压力作用在井底 的总压力。 六种不同工况 下: 1、静止状态,井底压力=静液压力 2、正常循环时,井底压力=静液压力+环空压耗 3、节流循环时,井底压力=静液压力+环空压力损 失+节流阀回压 4、起钻时,井底压力=静液压力-抽汲压力 5、下钻时,井底压力=静液压力+激动压力 6、关井时,井底压力=静液压力+地面回压
互动交流
通过交流互动,了解学员对以上教 学内容的掌握程度,对普遍问题、重点 难点问题需加以强化,进行“再次教 学”。
小结ቤተ መጻሕፍቲ ባይዱ
1、静液压力和静液压力梯度的定义 2、静液压力的计算 3、地层压力的定义 4、地层压力的表示方法 5、地层破裂压力的定义 6、激动压力和抽汲压力 7、井底压力 8、钻井液密度安全附加值
成反比 3、地层压力的表示方法有( )。 A、用压力的单位表示 B、用压力梯度表示 C、用当量钻井液密度表示 D、用压力系数表示
练习题
二、多项选择题(每题4个选项,将正确的选项号填入括号内) 4、在做地层破裂压力试验时,在( )的共同作用下,使地
层发生破裂产生漏失而计算求得地层破裂压力当量密度。 A、套管鞋以上钻井液的静液压力 B、地面回压 C、环空压耗 D、地层压力 5、对于正常压力的( )等处,往往地层漏失压力比破裂压
2、激动压力是由于下放钻柱而使井底压力增加的 压力,其数值就是阻挠钻井液向上流动的流动阻力 值。
八、激动压力和抽汲压力
3、影响因素 激动压力和抽汲压力主要
受以下因素影响: 1)管柱结构、尺寸以及管柱在 井内的实际长度; 2)井身结构与井眼直径; 3)起下钻速度; 4)钻井液密度、粘度、静切力; 5)钻头或扶正器泥包程度。
A、地层压力 B、基岩应力 C、液柱压力 D、地面压力 11、地层漏失压力是指某一深度的地层产生( )时的压力。 A、地层破裂 B、钻井液漏失 C、岩石变形 D、地层坍塌
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m =102(Pp+ Psb +Pdp)/H 目前,国内现场设计多采用附加当量钻井液密度的方 法来确定钻井液密度。 油井:0.05—0.1 g / cm 3(1.5-3.5MPa)
气井: 0.07-0.15g / cm 3 (3-5MPa)
第二章 井下各种压力的概念 及其相互关系
第二章 井下各种压力的概念及其相互关系 第一节 压力的基本概念 一、压力的四种表示方法
1、压力 压力是物体单位面积上所受的垂直力。 压力的单位是帕,符号是 pa;1pa是1m2面积上受到1N (牛顿)的力时形成的压力即1Pa=1N/m2, 1KPa(千帕)=1*103Pa , 1MPa=1*106Pa 。
(3)调整好泥浆性能
第二章 井下各种压力的概念及其相互关系 四、井底压力
定义:地面和井内各种压力作用在井底的总压力。这个压力随 工况不同而变化。
井底压力大部分来自钻井液柱静液压力,还有钻井液的环 空流动阻力、侵入井内的地层流体的压力、激动压力、抽吸压 力、地面回压等。 1、静止:井底压力Pb=钻井液静压力Pm; 2、起钻时 井底压力Pb=钻井液静压力Pm-抽汲压力psb
与原工程大气压关系为:
1MPa=10.194kg/cm2即1兆帕约等于10个工程大气压。
第二章 井下各种压力的概念及其相互关系
2、压力梯度 压力梯度是每增加单位垂直深度压力的变化量。 计算公式为: G=p/H=0.0098H/H=0.0098
式中 G—压力梯度,Mpa/m;
p—压力,Mpa;
H—深度,m;
计算公式为:
K=0.0098 eH/0.0098水H= e 式中 K---压力系数,无单位; 水—水的密度,1.0 g/cm3; H—深度,m; e —当量流体密度,g/cm3。
第二章 井下各种压力的概念及其相互关系
四种 压力的表示法
(1)用压力值表示。如:12Mpa (2)用压力梯度表示。如:0.012MPa/m (3)用流体当量密度表示。如:1.2g/cm3
-起钻时液面下降而降小的压力Pdp
第二章 井下各种压力的概念及其相互关系
3、下钻时: 井底压力Pb =钻井液静压力Pm+激动压力Psw; 井底压力=环空静液压力+环空压力 4、正常钻进时 井底压力Pb=钻井液静压力Pm+环空流动阻力力Pbp+岩屑 入井而增加的压力Pmr 5、划眼时 井底压力Pb=钻井液静压力Pm+环空流动阻力力Pbp+激动 压力Psw 结论:同一情况下,起钻工况下井底压力最小。
第二章 井下各种压力的概念及其相互关系 抽吸压力 三、波动压力
1、抽吸压力Psb:上提钻柱时,由于钻井液粘滞作用而减小
的井底压力值。
2、激动压力Psw :下钻或下套管时,由于钻头下行挤压该处 钻井液,使钻井液流动受的阻力。
激动压力和抽吸压力是类似的概念,激动压力是正值,
抽吸压力是负值。如图2-8所示
B、岩屑引起钻井液柱压力的增加 Pmr(+)
在钻进过程中,钻头破碎的岩屑要被钻井液携带到环空, 从而使环空钻井液密度增高,环空钻井液柱压力升高。
第二章 井下各种压力的概念及其相互关系 二、环空流动阻力Pbp
定义:钻井液在环空上返过程中,克服钻柱外壁、井壁及钻井液 内摩擦力所损耗的压力。 环空泥浆向上流动,环空阻力方向向下,使井底压力升高。 停止循环,环空阻力消失,井底压力下降。 环空流动阻力取决于钻井液上返速度、环空间隙、井深和 钻井液性能等。
(4)用压力系数表示。如:1.2
第二章 井下各种压力的概念及其相互关系 二、静液压力
静液式:
p=0.0098h 式中 p—静液压力,Mpa ;
—液体密度,g/cm3 ;
H—液柱高度,m。 如图2-1所示。
第二章 井下各种压力的概念及其相互关系
第二章 井下各种压力的概念及其相互关系
2-8 压力激动
第二章 井下各种压力的概念及其相互关系 3、波动压力的影响因素
(1)管柱的起下速度; (2)钻井液粘度; (3)钻井液静切力; (4)环行空间的大小; (5)钻井液密度; (6)钻头泥包程度。
第二章 井下各种压力的概念及其相互关系 4、减少波动压力的措施
(1)控制起下钻速度.井控条例规定:到油气层后,一档起钻 (2)操作平稳
第二章 井下各种压力的概念及其相互关系
五、压差P
定义:井底压力Pb和地层压力Pp之间的差值。 P﹥0 超平衡压力钻井
P﹤0 欠平衡压力钻井
P=0 平衡压力钻井 P0 近平衡压力钻井 井底压差与钻速成反比。
第二章 井下各种压力的概念及其相互关系
近平衡钻井的优点: 1、大大提高机械钻速;
例:如图2-1所示,井内钻井液密度 为1.2g/cm2,3000m处静 液柱压力为多少? 解: p=0.0098h =0.0098×1.20×3000
=35.288MPa
而地层孔隙内流体(水)的压力为:
p=0.0098h =0.0098×1.07×3000 =31.547MPa
第二章 井下各种压力的概念及其相互关系
—流体密度,g/cm3。
第二章 井下各种压力的概念及其相互关系
3、当量密度 某点压力等于相当密度的流体在该点所形成的液柱压力。 计算公式为: e=p/0.0098H 式中 p—压力,Mpa; H—深度,m; e —当量流体密度,g/cm3 。
第二章 井下各种压力的概念及其相互关系
4、压力系数 某点压力与该点深度处的静水柱压力之比,其大小在数 值上等于其当量密度。
例 井深H=3000m,该点处地层压力PP=45.00MPa
求:(1)压力梯度 GP; (2)当量钻井液密度当量。
解:(1)压力梯度: GP= PP/ H =45MPa / 3000 =0.015MPa / m
(2)当量钻井液密度:
当量 =45/(0.01*3000) =1.5 g / cm 3
2、异常低压:一般情况下,地层压力梯度小于0.0098Mpa/m 或地层压力系数小于1的地层。
3、异常高压:一般情况下,地层压力梯度高 于0.0105Mpa/m或 地层压力系数大于1.07的地层。
第二章 井下各种压力的概念及其相互关系 四、地层破裂压力
定义:使地层原有裂缝张开延伸或形成新的裂缝时的井内流 体压力。
1、地层破裂压力实验
(一)目的
(1)确定最大允许使用钻井液密度;
(2)实测地层破裂压力; (3)确定允许关井套压。
第二章 井下各种压力的概念及其相互关系
(二)步骤 (1)井眼准备---钻开套管鞋以下第一个砂层后,循环钻井液, 使钻井液密度均匀稳定。 (2)上提钻具,关封井器。 (3)以小排量,一般以0.8--1.32L / s的排量缓慢向井内灌入钻 井液。 (4)记录不同时间(5—10分钟)的注入量和立管压力。 (5)一直到井内压力不再升高并有下降(地层已经破裂漏失), 停泵,记录数据后,从节流阀泄压。 (6)从直角坐标内做出注入量和立管压力的关系曲线。
第二章 井下各种压力的概念及其相互关系
练习题: 1、井深H=2500m.该点处液柱压力P=30.00MPa 求:压力系数K和钻井液密度当量。. 2、某井液柱的压力梯为0.012MPa/m,求在3000米处的液 柱压力和泥浆密度。
第二章 井下各种压力的概念及其相互关系
三、地层压力Pp
定义:地下岩石孔隙内流体的压力, 也称地层孔隙压力。 1、正常地层压力:地下某一深度的地层压力等于地层水 作 用于该处的静液柱压力。 正常地层压力梯度:0.0098-0.0105Mpa/m 或压力系数为1.0—1.07。
井底压力Pb=地层压力Pp
但不同工况下,井底压力不同。 二、泥浆密度确定的原则 最小的井底压力等于地层压力。在生产中以起钻时的 井底压力为条件来建立平衡关系。
第二章 井下各种压力的概念及其相互关系
地层压力Pp=钻井液静压力Pm-抽汲压力psb -起钻时液面下降而降小的压力Pdp
Pm =Pp+ Psb +Pdp=0.0098*H* m
已知井深1500米,泥浆密度为1.4 g/cm 3 。环空流动阻力
为6 kg/cm 2 ,地层压力为21.2MPa 求:1、静止时井底压力; 2、循环时井底压力; 3、循环时会井涌吗? 4、停泵时会井涌吗?
第二章 井下各种压力的概念及其相互关系 第三节 地层与井眼内的压力平衡
一、压力平衡关系 平衡压力钻井的条件:
(4)在现场作破试时求出漏失压力即可。
(5)最好用水泥车或试压泵作破试。
图3--13
pf
第二章 井下各种压力的概念及其相互关系
练习题:
已知:某井套管鞋以下第一个砂层井深2000米,泥浆密度为 1.45g /cm3,当破裂压力实验时套压为10MPa时地层破裂。
求:1.井深2000米处地层破裂压力;2.地层破裂压力梯度。
2、保护油气产层;
3、缩短建井周期,降低钻井成本;
4、降低钻井事故。
第二章 井下各种压力的概念及其相互关系 六、泵压
定义:克服井内循环系统中摩擦损失所需的压力。 泵压=地面+钻柱内+钻头水眼+环空流动损耗 如果不考虑地面管汇压力损失的情况下,泵压就等于立压。
第二章 井下各种压力的概念及其相互关系 练习题:
第二章 井下各种压力的概念及其相互关系
(三) 注意事项: (1)实验压力不应超过地面设备、套管的承压能力。 (2)在钻进几天后进行液压实验时,可能由于岩屑堵塞了岩 石孔隙,导致实验压力很高,这是假象,应注意。
(3)液压实验只适用于砂、页岩为主的地区,对于石灰岩、 白云岩等地层的液压实验尚待解决。
解:1.
2.
Pf=0.098*1.45*2000+10
=29+10 =39(MPa) Gf=Pf/H=39/2000 =0.0195(MPa/M)
相关文档
最新文档