贵州省黔南州2020年中考数学试卷

合集下载

2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南州中考试卷数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误;故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥, '30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab -【解析】解:3222a a b ab -+, ()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD =10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为,AB ∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴, 222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。

2020贵州省黔东南州中考数学试卷(解析版)

2020贵州省黔东南州中考数学试卷(解析版)

B.x3+x4=x7 D.(﹣3x)2=9x2
【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运 算法则分别计算得出答案. 【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误; B、x3+x4,不是同类项,无法合并,故此选项错误; C、x3•x2=x5,故此选项错误; D、(﹣3x)2=9x2,正确.
【分析】根据平行四边形是中心对称图形,再根据▱ABCD 对角线的交点 O 为原点和点 A 的坐标,即可得到点 C 的坐标. 【解答】解:∵▱ABCD 对角线的交点 O 为原点,A 点坐标为(﹣2,1), ∴点 C 的坐标为(2,﹣1), 故答案为:(2,﹣1). 18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺 序,则出场顺序恰好是甲、乙、丙的概率是 .
【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找” =﹣1,
可确定不等式组的解集.
∴抛物线与 x 轴的另一个交点为(1,0),
【解答】解:解不等式 5x﹣1>3(x+1),得:x>2,
由图象可知,当 y<0 时,x 的取值范围是﹣3<x<1.
解不等式 x﹣1≤4﹣ x,得:x≤6,
胁.截止 6 月份,全球确诊人数约 3200000 人,其中 3200000 用科学记数法表示为 15.把直线 y=2x﹣1 向左平移 1 个单位长度,再向上平移 2 个单位长度,则平移后所得
3.2×106 . 【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数

贵州省黔东南州2020年中考数学试题(Word版,含答案与解析)

贵州省黔东南州2020年中考数学试题(Word版,含答案与解析)

贵州省黔东南州2020年中考数学试卷一、选择题(共10题;共20分)1.﹣2020的倒数是()A. ﹣2020B. ﹣12020 C. 2020 D. 12020【答案】B【考点】有理数的倒数【解析】【解答】解:﹣2020的倒数是﹣12020.故答案为:B.【分析】根据“乘积为1的两个数互为倒数”即可判断求解。

2.下列运算正确的是()A. (x+y)2=x2+y2B. x3+x4=x7C. x3•x2=x6D. (﹣3x)2=9x2【答案】 D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,故此选项正确.故答案为:D.【分析】(1)由完全平方公式展开后的结果应该是一个三项式,从而即可判断;(2)x3与x4不是同类项,无法合并,从而即可判断;(3)由“同底数幂相乘底数不变指数相加”即可判断;(4)由“积的乘方等于把每一个因式分别乘方,再把所得的幂相乘”即可判断D.3.实数2 √10介于()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【考点】估算无理数的大小【解析】【解答】解:∵2 √10=√40,且6<√40<7,∴6<2 √10<7.故答案为:C.【分析】首先由二次根式的性质将2 √10变形为√40,再估算出√40的大小即可判断求解.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A. ﹣7B. 7C. 3D. ﹣3【答案】A【考点】一元二次方程的根与系数的关系【解析】【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故答案为:A.”可得关于另一个根的方程,解这个方程即可求解.【分析】根据根与系数的关系“两根之和等于−ba5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠l=25°,则∠2等于()A. 25°B. 30°C. 50°D. 60°【答案】C【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠的性质可知:∠ACB′=∠1=25°.∵四边形ABCD为矩形,∴AD∥BC,∴∠2=∠1+∠ACB′=25°+25°=50°.故答案为:C.【分析】由折叠的性质可得∠ACB′=∠1,由矩形的性质可得出AD∥BC,再根据“两直线平行,内错角相等”可求出∠2的度数.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 12个B. 8个C. 14个D. 13个【答案】 D【考点】由三视图判断几何体【解析】【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故答案为:D.【分析】由主视图知:左右两边最高有3层,中间最高有2层;由左视图知第一排和第三排最高有3层,中间最高有2层;由此可判断出各行各列最多有几个正方体组成即可求解.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长为()A. 8B. 12C. 16D. 2 √91【答案】C【考点】垂径定理【解析】【解答】解:连接OA,∵⊙O的直径CD=20,OM:OD=3:5,∴OD=10,OM=6,∵AB⊥CD,∴AM=√OA2−OM2=√102−62=8,∴AB=2AM=16.故答案为:C.【分析】连接OA,先根据已知条件OM:OD=3:5易求出OD及OM的长,再用勾股定理可求出AM的长,然后结合垂径定理可求解.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A. 16B. 24C. 16或24D. 48【答案】B【考点】因式分解法解一元二次方程,菱形的性质【解析】【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,∴菱形ABCD的周长=4AB=24.故答案为:B.【分析】用因式分解法解一元二次方程可得x=4,或x=6,分两种情况:①当AB=AD=4时,根据三角形三边关系定理可知不能构成三角形;②当AB=AD=6时,6+6>8,符合题意,再根据菱形的性质即可求得菱形ABCD的周长.9.如图,点A是反比例函数y═6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为()A. 2B. 4C. 6D. 8【答案】A【考点】反比例函数系数k的几何意义【解析】【解答】解:如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC=12×|6|=3,S△BPC=S△BOC=12×|2|=1,∴S△PAB=S△APC﹣S△BPC=2.故答案为:A.【分析】连接OA、OB、PC.由于AC⊥y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S△APC=S△AOC=3,S△BPC=S△BOC=1,然后根据图形的构成S△PAB=S△APC﹣S△APB进行计算即可求解. 10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧BD⌢,再分别以E、F为圆心,1为半径作圆弧BO⌢、OD⌢,则图中阴影部分的面积为()A. π﹣1B. π﹣2C. π﹣3D. 4﹣π【答案】 B【考点】正方形的性质,扇形面积的计算【解析】【解答】解:由题意可得,阴影部分的面积是: 14 •π×22﹣ 12·π×12 ﹣2(1×1﹣ 14 •π×12)=π﹣2,故答案为:B.【分析】根据题意和图形的构成,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,代入计算即可求解. 二、填空题:(每小题3分,10个小题,共30分)(共10题;共30分)11.cos60°=________.【答案】 0.5【考点】特殊角的三角函数值【解析】【解答】特殊角的锐角三角函数值求解即可.cos60°=0.5.【分析】根据特殊角的三角函数值即可求解。

2020年贵州省黔西南州中考数学试卷(解析版)

2020年贵州省黔西南州中考数学试卷(解析版)

2020年贵州省黔西南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.(4分)2的倒数是()A.﹣2 B.2 C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:2的倒数是,故选:D.2.(4分)某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:360000=3.6×105,故选:B.3.(4分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得四个并排的正方形,如图所示:故选:D.4.(4分)下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3+a2,不是同类项,无法合并,故此选项错误;B、a3÷a=a2,故此选项错误;C、a2•a3=a5,正确;D、(a2)4=a8,故此选项错误;故选:C.5.(4分)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,这组数据的中位数为4;众数为5.故选:A.6.(4分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°【分析】根据平行线的性质,可以得到∠2和∠3的关系,从而可以得到∠3的度数,然后根据∠1+∠3=90°,即可得到∠1的度数.【解答】解:∵AB∥CD,∠2=37°,∴∠2=∠3=37°,∵∠1+∠3=90°,∴∠1=53°,故选:C.7.(4分)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米【分析】过点A′作A′C⊥AB于点C,根据锐角三角函数的定义即可求出答案.【解答】解:过点A′作A′C⊥AB于点C,由题意可知:A′O=AO=4,∴sinα=,∴A′C=4sinα,故选:B.8.(4分)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2 B.m≤2C.m<2且m≠1D.m≤2且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2x+1=0有实数根,∴,解得:m≤2且m≠1.故选:D.9.(4分)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y═的图象上,∴=,得k=﹣,即y=﹣,故选:B.10.(4分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC =∠ACB,从而可知AB=AD;过点B作BE⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由双根式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.二、填空题(本题10小题,每题3分,共30分)11.(3分)把多项式a3﹣4a分解因式,结果是a(a+2)(a﹣2).【分析】首先提公因式a,再利用平方差进行二次分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).12.(3分)若7a x b2与﹣a3b y的和为单项式,则y x=8.【分析】直接利用合并同类项法则进而得出x,y的值,即可得出答案.【解答】解:∵7a x b2与﹣a3b y的和为单项式,∴7a x b2与﹣a3b y是同类项,∴x=3,y=2,∴y x=23=8.故答案为:8.13.(3分)不等式组的解集为﹣6<x≤13.【分析】首先分别计算出两个不等式的解集,再确定不等式组的解集即可.【解答】解:,解①得:x>﹣6,解②得:x≤13,不等式组的解集为:﹣6<x≤13,故答案为:﹣6<x≤13.14.(3分)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为2.【分析】首先证明DB=AD=CD,然后再由条件BC=3可得答案.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.15.(3分)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是y=﹣2x.【分析】根据图象和题意,可以得到点P的纵坐标,然后代入一次函数解析式,即可得到点P的坐标,然后代入正比例函数解析式,即可得到这个正比例函数的解析式.【解答】解:∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=﹣x+1上,∴2=﹣x+1,得x=﹣1,∴点P的坐标为(﹣1,2),设正比例函数解析式为y=kx,则2=﹣k,得k=﹣2,∴正比例函数解析式为y=﹣2x,故答案为:y=﹣2x.16.(3分)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为.【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,∴∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=∠4=×90°=30°,∵四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,∴AE=AD=BC=1,∴AG=2,∴EG==,故答案为:.17.(3分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…依此类推,以5,1循环,(2020﹣2)÷2=1009,能够整除,所以输出的结果是1,故答案为:118.(3分)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了10个人.【分析】设每轮传染中平均每人传染了x人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x人,则第一轮后共有(1+x)人患了流感;第二轮传染中,这些人中的每个人又传染了x人,则第二轮后共有[1+x+x(x+1)]人患了流感,而此时患流感人数为121,根据这个等量关系列出方程.【解答】解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=﹣12(舍去).答:每轮传染中平均每人传染了10人.19.(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为57.【分析】根据图形的变化规律即可得第⑦个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.20.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.三、解答题(本题6小题,共80分)21.(12分)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(+),其中a=﹣1.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;(2)原式=[+]•=•=,当a=﹣1时,原式==.22.(12分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是B;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(1)(3)(5)(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有C个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:23.(14分)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40名;(2)扇形统计图中表示A级的扇形圆心角α的度数是54°,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为75人;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.【分析】(1)由题意可得本次抽样测试的学生人数是:12÷30%=40(人),(2)首先可求得A级人数的百分比,继而求得∠α的度数,然后补出条形统计图;(3)根据A级人数的百分比,列出算式即可求得优秀的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(人);(2)∵A级的百分比为:×100%=15%,∴∠α=360°×15%=54°;C级人数为:40﹣6﹣12﹣8=14(人).如图所示:(3)500×15%=75(人).故估计优秀的人数为75人;(4)画树状图得:∵共有12种等可能的结果,选中小明的有6种情况,∴选中小明的概率为.故答案为:40;54°;75人.24.(14分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a 的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y有最大值∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.25.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.【分析】(1)连接OD、DB,由已知可知DE垂直平分OB,则DB=DO,再由圆的半径相等,可得DB=DO=OB,即△ODB是等边三角形,则∠BDO=60°,再由等腰三角形的性质及三角形的外角性质可得∠CDB =30°,从而可得∠ODC=90°,按照切线的判定定理可得结论;(2)连接OP,先由已知条件得OP=OB=BC=2OE,再利用两组边成比例,夹角相等来证明△OEP∽△OPC,按照相似三角形的性质得出比例式,则可得答案.【解答】解:(1)连接OD、DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴DB=DO.∵在⊙O中,DO=OB,∴DB=DO=OB,∴△ODB是等边三角形,∴∠BDO=∠DBO=60°,∵BC=OB=BD,且∠DBE为△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴CD是⊙O的切线;(2)答:这个确定的值是.连接OP,如图:由已知可得:OP=OB=BC=2OE.∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==.26.(16分)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC 于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.【分析】(1)将点A,B坐标代入抛物线解析式中,解方程组即可得出结论;(2)先求出OA=OC=6,进而得出∠OAC=45°,进而判断出PD=PE,即可得出当PE的长度最大时,PE+PD取最大值,设出点E坐标,表示出点P坐标,建立PE=﹣t2+6t=﹣(t﹣3)2+9,即可得出结论;(3)先判断出NF∥x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(﹣1,0),∴,∴,∴抛物线的解析式为y=﹣x2+5x+6=﹣(x﹣)2+,∴抛物线的解析式为y=﹣x2+5x+6,顶点坐标为(,);(2)由(1)知,抛物线的解析式为y=﹣x2+5x+6,∴C(0,6),∴OC=6,∵A(6,0),∴OA=6,∴OA=OC,∴∠OAC=45°,∵PD平行于x轴,PE平行于y轴,∴∠DPE=90°,∠PDE=∠DAO=45°,∴∠PED=45°,∴∠PDE=∠PED,∴PD=PE,∴PD+PE=2PE,∴当PE的长度最大时,PE+PD取最大值,∵A(6,0),C(0,6),∴直线AC的解析式为y=﹣x+6,设E(t,﹣t+6)(0<t<6),则P(t,﹣t2+5t+6),∴PE=﹣t2+5t+6﹣(﹣t+6)=﹣t2+6t=﹣(t﹣3)2+9,当t=3时,PE最大,此时,﹣t2+5t+6=12,∴P(3,12);(3)如图(2),设直线AC与抛物线的对称轴l的交点为F,连接NF,∵点F在线段MN的垂直平分线AC上,∴FM=FN,∠NFC=∠MFC,∵l∥y轴,∴∠MFC=∠OCA=45°,∴∠MFN=∠NFC+∠MFC=90°,∴NF∥x轴,由(2)知,直线AC的解析式为y=﹣x+6,当x=时,y=,∴F(,),∴点N的纵坐标为,设N的坐标为(m,﹣m2+5m+6),∴﹣m2+5m+6=,解得,m=或m=,∴点N的坐标为(,)或(,).。

2020年贵州省黔东南州中考数学试题及参考答案(word解析版)

2020年贵州省黔东南州中考数学试题及参考答案(word解析版)

2020年贵州省黔东南州中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(每小题4分,10个小题,共40分) 1.2020-的倒数是( ) A .2020- B .12020-C .2020D .120202.下列运算正确的是( )A .222()x y x y +=+B .347x x x +=C .326x x x =D .22(3)9x x -= 3.实数210介于( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 4.已知关于x 的一元二次方程250x x m +-=的一个根是2,则另一个根是( )A .7-B .7C .3D .3-5.如图,将矩形ABCD 沿AC 折叠,使点B 落在点B '处,B C '交AD 于点E ,若25l ∠=︒,则2∠等于( )A .25︒B .30︒C .50︒D .60︒6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有( )A .12个B .8个C .14个D .13个7.如图,O 的直径20CD =,AB 是O 的弦,AB CD ⊥,垂足为M ,:3:5OM OC =,则AB 的长为( )A .8B .12C .16D .2918.若菱形ABCD 的一条对角线长为8,边CD 的长是方程210240x x -+=的一个根,则该菱形ABCD 的周长为( ) A .16 B .24 C .16或24 D .489.如图,点A 是反比例函数6(0)y x x=>上的一点,过点A 作AC y ⊥轴,垂足为点C ,AC 交反比例函数2y x=的图象于点B ,点P 是x 轴上的动点,则PAB ∆的面积为( )A .2B .4C .6D .810.如图,正方形ABCD 的边长为2,O 为对角线的交点,点E 、F 分别为BC 、AD 的中点.以C 为圆心,2为半径作圆弧BD ,再分别以E 、F 为圆心,1为半径作圆弧BO 、OD ,则图中阴影部分的面积为( ) A .1π- B .2π- C .3π- D .4π- 二.填空题:(每小题3分,10个小题,共30分) 11.cos60︒= .12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 . 13.在实数范围内分解因式:24xy x -= . 14.不等式组513(1)111423x x x x ->+⎧⎪⎨--⎪⎩的解集为 .15.把直线21y x =-向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为 .16.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为(3,0)-,对称轴为1x =-,则当0y <时,x 的取值范围是 .17.以ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(2,1)-,则C 点坐标为 .18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是 . 19.如图,AB 是半圆O 的直径,AC AD =,2OC =,30CAB ∠=︒,则点O 到CD 的距离OE 为 .20.如图,矩形ABCD 中,2AB =,2BC =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ = .三、解答题:(6个小题,共80分)21.(14分)(1)计算:201()|23|2tan 45(2020)2π---+︒--;(2)先化简,再求值:2234(1)121a a a a a --+÷+++,其中a 从1-,2,3中取一个你认为合适的数代入求值.22.(12分)某校对九年级学生进行一次综合文科中考模拟测试,成绩x 分(x 为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A 、B 、C 、D 表示),A 等级:90100x ,B 等级:8090x <,C 等级:6080x <,D 等级:060x <.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a = ,b = ,m = . (2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D 等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.23.(12分)如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得ACQ ABC ∠=∠. (1)求证:直线PQ 是O 的切线.(2)过点A 作AD PQ ⊥于点D ,交O 于点E ,若O 的半径为2,1sin 2DAC ∠=,求图中阴影部分的面积. 24.(14分)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元. (1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x (单位:元/件),在销售过程中发现:当1119x 时,甲商品的日销售量y (单位:件)与销售单价x 之间存在一次函数关系,x 、y 之间的部分数值对应关系如表:销售单价x (元/件) 11 19 日销售量y (件)182请写出当1119x 时,y 与x 之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w 元,当甲商品的销售单价x (元/件)定为多少时,日销售利润最大?最大利润是多少?25.(14分)如图1,ABC ∆和DCE ∆都是等边三角形. 探究发现(1)BCD ∆与ACE ∆是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用(2)若B 、C 、E 三点不在一条直线上,30ADC ∠=︒,3AD =,2CD =,求BD 的长.等级频数(人数)频率 A a20% B16 40%CbmD 4 10%(3)若B 、C 、E 三点在一条直线上(如图2),且ABC ∆和DCE ∆的边长分别为1和2,求ACD ∆的面积及AD 的长.26.(14分)已知抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点(0,3)C -,顶点D 的坐标为(1,4)-. (1)求抛物线的解析式.(2)在y 轴上找一点E ,使得EAC ∆为等腰三角形,请直接写出点E 的坐标.(3)点P 是x 轴上的动点,点Q 是抛物线上的动点,是否存在点P 、Q ,使得以点P 、Q 、B 、D 为顶点,BD 为一边的四边形是平行四边形?若存在,请求出点P 、Q 坐标;若不存在,请说明理由.参考答案与解析一、选择题(每小题4分,10个小题,共40分) 1.2020-的倒数是( ) A .2020- B .12020- C .2020 D .12020【知识考点】倒数【思路分析】根据倒数的概念解答. 【解题过程】解:2020-的倒数是12020-, 故选:B .【总结归纳】本题考查的是求一个数的倒数,掌握求一个整数的倒数,就是写成这个整数分之一是解题的关键.2.下列运算正确的是( )A .222()x y x y +=+B .347x x x +=C .326x x x =D .22(3)9x x -= 【知识考点】同底数幂的乘法;合并同类项;完全平方公式;幂的乘方与积的乘方【思路分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解题过程】解:A 、222()2x y x xy y +=++,故此选项错误;B 、34x x +,不是同类项,无法合并,故此选项错误;C 、325x x x =,故此选项错误;D 、22(3)9x x -=,正确.故选:D .【总结归纳】此题主要考查了完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算,正确掌握相关运算法则是解题关键.3.实数( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【知识考点】估算无理数的大小【思路分析】首先化简【解题过程】解:210=,且67<,67∴<.故选:C .【总结归纳】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.已知关于x的一元二次方程250+-=的一个根是2,则另一个根是()x x mA.7-B.7 C.3 D.3-【知识考点】一元二次方程的解;根与系数的关系【思路分析】根据根与系数的关系即可求出答案.【解题过程】解:设另一个根为x,则x+=-,25解得7x=-.故选:A.【总结归纳】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.5.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B C'交AD于点E,若25∠等l∠=︒,则2于()A.25︒B.30︒C.50︒D.60︒【知识考点】平行线的性质【思路分析】由折叠的性质可得出ACBAD BC,再利用“两直线∠'的度数,由矩形的性质可得出//平行,内错角相等”可求出2∠的度数.【解题过程】解:由折叠的性质可知:125∠'=∠=︒.ACB四边形ABCD为矩形,AD BC∴,//∴∠=∠+∠'=︒+︒=︒.ACB21252550故选:C.【总结归纳】本题考查了平行线的性质以及矩形的性质,牢记“两直线平行,内错角相等”是解题的关键.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【知识考点】由三视图判断几何体【思路分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可. 【解题过程】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个. 故选:D .【总结归纳】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最多正方体的个数.7.如图,O 的直径20CD =,AB 是O 的弦,AB CD ⊥,垂足为M ,:3:5OM OC =,则AB 的长为( )A .8B .12C .16D . 【知识考点】垂径定理;勾股定理【思路分析】连接OA ,先根据O 的直径20CD =,:3:5OM OD =求出OD 及OM 的长,再根据勾股定理可求出AM 的长,进而得出结论. 【解题过程】解:连接OA ,O 的直径20CD =,:3:5OM OD =, 10OD ∴=,6OM =,AB CD ⊥,8AM ∴=, 216AB AM ∴==.故选:C .【总结归纳】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 8.若菱形ABCD 的一条对角线长为8,边CD 的长是方程210240x x -+=的一个根,则该菱形ABCD 的周长为( )A .16B .24C .16或24D .48【知识考点】菱形的性质;解一元二次方程-因式分解法【思路分析】解方程得出4x =,或6x =,分两种情况:①当4AB AD ==时,448+=,不能构成三角形;②当6AB AD ==时,668+>,即可得出菱形ABCD 的周长.【解题过程】解:如图所示:四边形ABCD 是菱形, AB BC CD AD ∴===,210240x x -+=,因式分解得:(4)(6)0x x --=, 解得:4x =或6x =, 分两种情况:①当4AB AD ==时,448+=,不能构成三角形; ②当6AB AD ==时,668+>,∴菱形ABCD 的周长424AB ==.故选:B .【总结归纳】本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB 是解决问题的关键.9.如图,点A 是反比例函数6(0)y x x=>上的一点,过点A 作AC y ⊥轴,垂足为点C ,AC 交反比例函数2y x=的图象于点B ,点P 是x 轴上的动点,则PAB ∆的面积为( )A .2B .4C .6D .8【知识考点】反比例函数图象上点的坐标特征;反比例函数系数k 的几何意义【思路分析】连接OA 、OB 、PC .由于AC y ⊥轴,根据三角形的面积公式以及反比例函数比例系数k 的几何意义得到3APC AOC S S ∆∆==,1BPC BOC S S ∆∆==,然后利用PAB APC APB S S S ∆∆∆=-进行计算. 【解题过程】解:如图,连接OA 、OB 、PC .AC y ⊥轴,1|6|32APC AOC S S ∆∆∴==⨯=,1|2|12BPC BOC S S ∆∆==⨯=,2PAB APC BPC S S S ∆∆∆∴=-=.故选:A .【总结归纳】本题考查了反比例函数(0)ky k x=≠系数k 的几何意义:即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即1||2S k =.也考查了三角形的面积.10.如图,正方形ABCD 的边长为2,O 为对角线的交点,点E 、F 分别为BC 、AD 的中点.以C 为圆心,2为半径作圆弧BD ,再分别以E 、F 为圆心,1为半径作圆弧BO 、OD ,则图中阴影部分的面积为( )A .1π-B .2π-C .3π-D .4π- 【知识考点】正方形的性质;扇形面积的计算【思路分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.【解题过程】解:由题意可得, 阴影部分的面积是:222111212(111)2424ππππ⨯-⨯-⨯-⨯=-, 故选:B .【总结归纳】本题考查扇形的面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二.填空题:(每小题3分,10个小题,共30分) 11.cos60︒= . 【知识考点】特殊角的三角函数值 【思路分析】根据记忆的内容,1cos602︒=即可得出答案. 【解题过程】解:1cos602︒=. 故答案为:12. 【总结归纳】此题考查了特殊角的三角函数值,属于基础题,注意掌握特殊角的三角函数值,这是需要我们熟练记忆的内容.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 . 【知识考点】科学记数法-表示较大的数【思路分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数. 【解题过程】解:63200000 3.210=⨯. 故答案为:63.210⨯.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.在实数范围内分解因式:24xy x -= . 【知识考点】实数范围内分解因式【思路分析】本题可先提公因式x ,再运用平方差公式分解因式即可求解. 【解题过程】解:24xy x -2(4)x y =-(2)(2)x y y =+-. 故答案为:(2)(2)x y y +-.【总结归纳】本题考查了提公因式法,平方差公式分解因式的方法,正解运用公式法分解因式是关键14.不等式组513(1)111423x x x x ->+⎧⎪⎨--⎪⎩的解集为v .【知识考点】解一元一次不等式组【思路分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.【解题过程】解:解不等式513(1)x x ->+,得:2x >, 解不等式111423x x --,得:6x ,则不等式组的解集为26x <, 故答案为:26x <.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.把直线21y x =-向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为 .【知识考点】一次函数图象与几何变换【思路分析】直接利用一次函数的平移规律进而得出答案.【解题过程】解:把直线21y x =-向左平移1个单位长度,得到2(1)121y x x =+-=+,再向上平移2个单位长度,得到23y x =+. 故答案为:23y x =+.【总结归纳】此题主要考查了一次函数与几何变换,正确掌握平移规律是解题关键.16.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为(3,0)-,对称轴为1x =-,则当0y <时,x 的取值范围是 .【知识考点】二次函数的性质;抛物线与x 轴的交点【思路分析】根据物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当0y <时,x 的取值范围.【解题过程】解:物线2(0)y ax bx c a =++≠与x 轴的一个交点坐标为(3,0)-,对称轴为1x =-,∴抛物线与x 轴的另一个交点为(1,0),由图象可知,当0y <时,x 的取值范围是31x -<<. 故答案为:31x -<<.【总结归纳】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.17.以ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(2,1)-,则C 点坐标为 .【知识考点】坐标与图形性质;平行四边形的性质【思路分析】根据平行四边形是中心对称图形,再根据ABCD 对角线的交点O 为原点和点A 的坐标,即可得到点C 的坐标. 【解题过程】解:ABCD 对角线的交点O 为原点,A 点坐标为(2,1)-,∴点C 的坐标为(2,1)-,故答案为:(2,1)-.【总结归纳】本题考查平行四边形的性质、坐标与图形性质,解答本题的关键是明确题意,利用平行四边形的性质解答.18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【知识考点】列表法与树状图法【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【解题过程】解:画出树状图得:共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为16,故答案为:16.【总结归纳】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.如图,AB是半圆O的直径,AC AD=,2OC=,30CAB∠=︒,则点O到CD的距离OE 为.【知识考点】圆周角定理;垂径定理【思路分析】在等腰ACD∆中,顶角30A∠=︒,易求得75ACD∠=︒;根据等边对等角,可得:30OCA A∠=∠=︒,由此可得,45OCD∠=︒;即COE∆是等腰直角三角形,则OE=.【解题过程】解:AC AD=,30A∠=︒,75ACD ADC∴∠=∠=︒,AO OC=,30OCA A∴∠=∠=︒,45OCD∴∠=︒,即OCE∆是等腰直角三角形,在等腰Rt OCE∆中,2OC=;因此OE.【总结归纳】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用.20.如图,矩形ABCD 中,2AB =,BC =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ = .【知识考点】矩形的性质;相似三角形的判定与性质【思路分析】根据矩形的性质得到//AB CD ,AB CD =,AD BC =,90BAD ∠=︒,根据线段中点的定义得到1122DE CD AB ==,根据相似三角形的性质即可得到结论.【解题过程】解:四边形ABCD 是矩形, //AB CD ∴,AB CD =,AD BC =,90BAD ∠=︒,E 为CD 的中点,1122DE CD AB ∴==,ABP EDP ∴∆∆∽,∴AB PBDE PD =, ∴21PBPD =, ∴23PB BD =, PQ BC ⊥, //PQ CD ∴, BPQ DBC ∴∆∆∽,∴23PQ BP CD BD ==, 2CD =, 43PQ ∴=, 故答案为:43. 【总结归纳】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 三、解答题:(6个小题,共80分)21.(14分)(1)计算:201()|23|2tan 45(2020)2π---+︒--;(2)先化简,再求值:2234(1)121a a a a a --+÷+++,其中a 从1-,2,3中取一个你认为合适的数代入求值.【知识考点】零指数幂;分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值 【思路分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解题过程】解:(1)201()|23|2tan 45(2020)2π---+︒--423211=+-+⨯- 42321=+-+- 22=+;(2)2234(1)121a a a a a --+÷+++ 23(1)(1)(1)1(2)(2)a a a a a a --++=⨯++- (2)(2)1a a a -+-=+1a =--,要使原式有意义,只能3a =, 则当3a =时,原式314=--=-.【总结归纳】此题考查了分式的化简求值,用到的知识点是分式的减法、除法,关键是利用分式的有关运算法则对要求的式子进行化简.同时考查了负整数指数幂,绝对值,特殊角的三角函数值,零指数幂的计算.22.(12分)某校对九年级学生进行一次综合文科中考模拟测试,成绩x 分(x 为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A 、B 、C 、D 表示),A 等级:90100x ,B 等级:8090x <,C 等级:6080x <,D 等级:060x <.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率 A a20% B16 40%CbmD 4 10%请你根据统计图表提供的信息解答下列问题:(1)上表中的a=,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【知识考点】频数(率)分布表;条形统计图;列表法与树状图法【思路分析】(1)根据题意列式计算即可得到结论;(2)用D等级人数除以它所占的百分比即可得到调查的总人数;(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解题过程】解:(1)1640%20%8a=÷⨯=,1640%(120%40%10%)12b=÷⨯---=,120%40%10%30%m=---=;故答案为:8,12,30%;(2)本次调查共抽取了410%40÷=名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,共有12种等可能的结果,恰为一男一女的有8种,∴抽得恰好为“一男一女”的概率为82 123=.【总结归纳】本题考查了列表与树状图的知识,解题的关键是能够正确的列表,用到的知识点为:概率=所求情况数与总情况数之比.23.(12分)如图,AB是O的直径,点C是O上一点(与点A,B不重合),过点C作直线PQ,使得ACQ ABC∠=∠.(1)求证:直线PQ是O的切线.(2)过点A作AD PQ⊥于点D,交O于点E,若O的半径为2,1sin2DAC∠=,求图中阴影部分的面积.【知识考点】圆周角定理;切线的判定与性质;解直角三角形;垂径定理;勾股定理;扇形面积的计算【思路分析】(1)连接OC ,由直径所对的圆周角为直角,可得90ACB ∠=︒;利用等腰三角形的性质及已知条件ACQ ABC ∠=∠,可求得90OCQ ∠=︒,按照切线的判定定理可得结论. (2)由1sin 2DAC ∠=,可得30DAC ∠=︒,从而可得ACD ∠的 度数,进而判定AEO ∆为等边三角形,则AOE ∠的度数可得;利用AEO S S S ∆=-阴影扇形,可求得答案. 【解题过程】解:(1)证明:如图,连接OC ,AB 是O 的直径,90ACB ∴∠=︒,OA OC =, CAB ACO ∴∠=∠.ACQ ABC ∠=∠,90CAB ABC ACO ACQ OCQ ∴∠+∠=∠+∠=∠=︒,即OC PQ ⊥,∴直线PQ 是O 的切线.(2)连接OE , 1sin 2DAC ∠=,AD PQ ⊥, 30DAC ∴∠=︒,60ACD ∠=︒.又OA OE =, AEO ∴∆为等边三角形, 60AOE ∴∠=︒.AEO S S S ∆∴=-阴影扇形 1602S OA OE sin =-⋅⋅︒扇形26012223602π=⨯-⨯⨯23π= ∴图中阴影部分的面积为23π. 【总结归纳】本题考查了切线的判定与性质、等边三角形的判定与性质、解直角三角形及扇形和三角形的面积计算等知识点,熟练掌握相关性质及定理是解题的关键.24.(14分)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元. (1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x (单位:元/件),在销售过程中发现:当1119x 时,甲商品的日销售量y (单位:件)与销售单价x 之间存在一次函数关系,x 、y 之间的部分数值对应关系如表:请写出当1119x 时,y 与x 之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w 元,当甲商品的销售单价x (元/件)定为多少时,日销售利润最大?最大利润是多少?【知识考点】二元一次方程组的应用;二次函数的应用【思路分析】(1)设甲、乙两种商品的进货单价分别是a 、b 元/件,由题意得关于a 、b 的二元一次方程组,求解即可.(2)设y 与x 之间的函数关系式为11y k x b =+,用待定系数法求解即可.(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.【解题过程】解:(1)设甲、乙两种商品的进货单价分别是a 、b 元/件,由题意得: 32602365a b a b +=⎧⎨+=⎩, 解得:1015a b =⎧⎨=⎩.∴甲、乙两种商品的进货单价分别是10、15元/件.(2)设y 与x 之间的函数关系式为11y k x b =+,将(11,18),(19,2)代入得: 11111118192k b k b +=⎧⎨+=⎩,解得:11240k b =-⎧⎨=⎩. y ∴与x 之间的函数关系式为240(1119)y x x =-+.(3)由题意得:(240)(10)w x x =-+-2260400x x =-+-22(15)50(1119)x x =--+.∴当15x =时,w 取得最大值50.∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.【总结归纳】本题考查了二元一次方程组和二次函数在实际问题中的应用及待定系数法求一次函数的解析式等知识点,理清题中的数量关系并明确相关函数的性质是解题的关键. 25.(14分)如图1,ABC ∆和DCE ∆都是等边三角形. 探究发现(1)BCD ∆与ACE ∆是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用(2)若B 、C 、E 三点不在一条直线上,30ADC ∠=︒,3AD =,2CD =,求BD 的长. (3)若B 、C 、E 三点在一条直线上(如图2),且ABC ∆和DCE ∆的边长分别为1和2,求ACD ∆的面积及AD 的长.【知识考点】三角形综合题【思路分析】(1)依据等式的性质可证明BCD ACE ∠=∠,然后依据SAS 可证明ACE BCD ∆≅∆; (2)由(1)知:BD AE =,利用勾股定理计算AE 的长,可得BD 的长;(3)如图2,过A 作AF CD ⊥于F ,先根据平角的定义得60ACD ∠=︒,利用特殊角的三角函数可得AF 的长,由三角形面积公式可得ACD ∆的面积,最后根据勾股定理可得AD 的长. 【解题过程】解:(1)全等,理由是: ABC ∆和DCE ∆都是等边三角形,AC BC ∴=,DC EC =,60ACB DCE ∠=∠=︒,ACB ACD DCE ACD ∴∠+∠=∠+∠,即BCD ACE ∠=∠, 在BCD ∆和ACE ∆中, CD CE BCD ACE BC AC =⎧⎪∠=∠⎨⎪=⎩, (ACE BCD ∴∆≅∆)SAS ;(2)如图3,由(1)得:BCD ACE ∆≅∆,BD AE ∴=,DCE ∆都是等边三角形,60CDE ∴∠=︒,2CD DE ==, 30ADC ∠=︒,306090ADE ADC CDE ∴∠=∠+∠=︒+︒=︒,在Rt ADE ∆中,3AD =,2DE =,AE ∴=BD ∴(3)如图2,过A 作AF CD ⊥于F ,B 、C 、E 三点在一条直线上,180BCA ACD DCE ∴∠+∠+∠=︒,ABC ∆和DCE ∆都是等边三角形, 60BCA DCE ∴∠=∠=︒, 60ACD ∴∠=︒,在Rt ACF ∆中,sin AFACF AC∠=,sin 1AF AC ACF ∴=⨯∠==11222ACD S CD AF ∆∴=⨯⨯=⨯=, 11cos 122CF AC ACF ∴=⨯∠=⨯=,13222FD CD CF =-=-=,在Rt AFD ∆中,222223()32AD AF FD =+=+=,AD ∴【总结归纳】本题是三角形的综合题,主要考查的是全等三角形的性质、等边三角形的性质,熟练掌握相关性质是解题的关键.26.(14分)已知抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点(0,3)C -,顶点D 的坐标为(1,4)-. (1)求抛物线的解析式.(2)在y 轴上找一点E ,使得EAC ∆为等腰三角形,请直接写出点E 的坐标.(3)点P 是x 轴上的动点,点Q 是抛物线上的动点,是否存在点P 、Q ,使得以点P 、Q 、B 、D 为顶点,BD 为一边的四边形是平行四边形?若存在,请求出点P 、Q 坐标;若不存在,请说明理由.【知识考点】二次函数综合题【思路分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C 坐标代入求解,即可得出结论;(2)先求出点A ,C 坐标,设出点E 坐标,表示出AE ,CE ,AC ,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q 的纵坐标,代入抛物线解析式求出点Q 的横坐标,即可得出结论. 【解题过程】解:(1)抛物线的顶点为(1,4)-,∴设抛物线的解析式为2(1)4y a x =--,将点(0,3)C -代入抛物线2(1)4y a x =--中,得43a -=-, 1a ∴=,∴抛物线的解析式为22(1)423y a x x x =--=--;(2)由(1)知,抛物线的解析式为223y x x =--, 令0y =,则2230x x --=, 1x ∴=-或3x =,(3,0)B ∴,(1,0)A -,令0x =,则3y =-,21(0,3)C ∴-,AC ∴=设点(0,)E m,则AE |3|CE m =+,ACE ∆是等腰三角形,∴①当AC AE ==3m ∴=或3m =-(点C 的纵坐标,舍去), (3,0)E ∴,②当AC CE =|3|m =+,3m ∴=-±(0,3E ∴-+或(0,3-,③当AE CE =|3|m =+,43m ∴=-, 4(0,)3E ∴-, 即满足条件的点E 的坐标为(0,3)、(0,3-+、(0,3-、4(0,)3-; (3)如图,存在,(1,4)D -,∴将线段BD 向上平移4个单位,再向右(或向左)平移适当的距离,使点B 的对应点落在抛物线上,这样便存在点Q ,此时点D 的对应点就是点P ,∴点Q 的纵坐标为4,设(,4)Q t ,将点Q 的坐标代入抛物线223y x x =--中得,2234t t --=,1t ∴=+1t =-(1Q ∴+4)或(1-4),分别过点D ,Q 作x 轴的垂线,垂足分别为F ,G ,抛物线223y x x =--与x 轴的右边的交点B 的坐标为(3,0),且(1,4)D -,312FB PG ∴==-=,∴点P的横坐标为(121+-=-+(121--=--即(1P -+0)、(1Q +4)或(1P --0)、(1Q -4).【总结归纳】此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,平移的性质,用方程的思想解决问题是解本题的关键.22。

2020年贵州省黔南州中考数学试卷

2020年贵州省黔南州中考数学试卷

2020年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2020的相反数是()A. - 2020B. 2020 C D2017 20172.(4分)下列计算正确的是()A. 弧=8B. (x+3)2=x2+9C. (ab3)2=ab6D. ( l 3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是(A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()G ®®®A. B. C. D.5.(4分)2020年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A. 41.389X 105B. 4.1389X 105C. 4.1389X 106D. 0.41389X 1066.(4分)我国古代数学家利用牟合方盖”找到了球体体积的计算方法. 牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成牟合方盖”的一种模型,它的主视图是主视A. B. C. D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE点P是对角线AC上的一个动点,则PE+PD的最小值是(A. 3 .B. 10 三C. 9D. 9 三8.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是(A.正方形B.正五边形C.正六边形D,正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是(A.了解我国民众对乐大集团萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是。

黔南布依族苗族自治州2020年(春秋版)中考数学试卷(II)卷

黔南布依族苗族自治州2020年(春秋版)中考数学试卷(II)卷

黔南布依族苗族自治州2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·凤庆期中) 我县2011年12月21日至24日每天的最高气温与最低气温如表:日期12月21日12月22日12月23日12月24日最高气温8℃7℃5℃6℃最低气温﹣3℃﹣5℃﹣4℃﹣2℃其中温差最大的一天是()A . 12月21日B . 12月22日C . 12月23日D . 12月24日2. (2分) (2016七上·绍兴期中) 在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A . 2.7×105B . 2.7×106C . 2.7×107D . 2.7×1083. (2分)(2020·呼和浩特模拟) 如图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A . 6B . 8C . 10D . 124. (2分)若代数式和的值相等,则x的值为()A . 3B . 7C . -4D . -85. (2分) (2020八下·枣阳期末) 一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:尺码/厘米2323.52424.52525.526销售量/双5102239564325一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据是()A . 平均数B . 中位数C . 众数D . 方差6. (2分)若关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个不相等的实数根,则k的取值范围是()A .B . 且k≠1C .D . 且k≠17. (2分)下列说法中,错误的是()A . 平行四边形的对角线互相平分B . 矩形的对角线互相垂直C . 菱形的对角线互相垂直平分D . 等腰梯形的对角线相等8. (2分)有三张正面分别写有数字﹣1,1,2的卡片,它们的材质、大小和背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽取一张,以其正面的数学作为b的值,则满足a2+b2=5的概率为()A .B .C .D .9. (2分)在直角坐标系中,要将图形向左平移3个单位时,只需()A . 将图形上的每一个点的横坐标加3,纵坐标不变B . 将图形上的每一个点的横坐标不变,纵坐标减3C . 将图形上的每一个点的横坐标减3,纵坐标不变D . 将图形上的每一个点的横坐标不变,纵坐标加310. (2分) (2018九上·梁子湖期末) 如图,在中,,,以点为中心,把逆时针旋转45°,得到,则图中阴影部分的面积为()A . 2B .C . 4D .二、填空题 (共5题;共6分)11. (2分) (2019七下·柳江期中) -64的立方根是________,的平方根是________.12. (1分)(2017·滨州) 不等式组的解集为________.13. (1分) (2017九上·龙岗期末) 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴、y轴上,反比例函数y= (x>0)的图像经过点D,且与边BC交于点E,则点E的坐标为________.14. (1分) (2017八上·西安期末) 已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是________15. (1分) (2018九上·淮阳期中) 如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.三、解答题 (共8题;共90分)16. (20分) (2019七下·宜兴月考) 计算:(1)x•(﹣x)2(﹣x)3;(2)x3•x5﹣(2x4)2+x10÷x2.(3)(﹣0.125)2018×82019;(4)(a﹣b)10÷(b﹣a)3÷(b﹣a)3.17. (10分)(2017·兰州模拟) 我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.18. (10分)(2018·路北模拟) 如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.19. (5分)(2019·平邑模拟) 2018年9月12日,临沂第六界中国百里沂河水上运动拉开帷幕,临沂电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测处的俯角为,处的俯角为,如果此时直升机镜头处的高度为150米,点、、在同一条直线上,则、两点间的距离为多少米?(结果保留根号)20. (10分) (2017八下·泉山期末) 如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).(1)求和的值;(2)过点作直线平行轴交轴于点,连结AC,求△ 的面积.21. (10分)目前节能灯在全国各地都受到欢迎,今年某县在农村地区广泛推广,商家抓住机遇,某商场计划用3800元购进甲、乙两种型号的节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)求甲、乙两种节能灯各购进多少只?(2)由于节能灯的销售量很好,商场在甲种型号节能灯销售一半后,将甲种节能灯的售价提高20%,如果商场把这120只节能灯全部销售完,那么该商场将获利多少元?22. (15分)(2017·兴化模拟) 如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= ,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF= CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t<1时,求矩形DEGF的最大面积;(3)点Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.23. (10分)(2020·江苏模拟) 已知,矩形中,,,是边上一点,连接,将沿直线翻折得 .(1)如图①,点恰好在上,求证:;(2)如图②,当时,延长交边于点,求的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共90分)16-1、16-2、16-3、16-4、17-1、17-2、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。

2020年贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020B.﹣C.2020D.【分析】根据倒数的概念解答.【解答】解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】首先化简2=,再估算,由此即可判定选项.【解答】解:∵2=,且6<<7,∵6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∵l=25°,则∵2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∵ACB′的度数,由矩形的性质可得出AD∵BC,再利用“两直线平行,内错角相等”可求出∵2的度数.【解答】解:由折叠的性质可知:∵ACB′=∵1=25°.∵四边形ABCD为矩形,∵AD∵BC,∵∵2=∵1+∵ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,∵O的直径CD=20,AB是∵O的弦,AB∵CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据∵O的直径CD=20,OM:OD=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵∵O的直径CD=20,OM:OD=3:5,∵OD=10,OM=6,∵AB∵CD,∵AM===8,∵AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【分析】解方程得出x=4,或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.【解答】解:如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,∵菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC∵y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则∵P AB的面积为()A.2B.4C.6D.8【分析】连接OA、OB、PC.由于AC∵y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S∵APC=S∵AOC=3,S∵BPC=S∵BOC=1,然后利用S∵P AB=S∵APC﹣S∵APB进行计算.【解答】解:如图,连接OA、OB、PC.∵AC∵y轴,∵S∵APC=S∵AOC=×|6|=3,S∵BPC=S∵BOC=×|2|=1,∵S∵P AB=S∵APC﹣S∵BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 3.2×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3200000=3.2×106.故答案为:3.2×106.13.在实数范围内分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】本题可先提公因式x,再运用平方差公式分解因式即可求解.【解答】解:xy2﹣4x=x(y2﹣4)=x(y+2)(y﹣2).故答案为:x(y+2)(y﹣2).14.不等式组的解集为2<x≤6.【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.【解答】解:解不等式5x﹣1>3(x+1),得:x>2,解不等式x﹣1≤4﹣x,得:x≤6,则不等式组的解集为2<x≤6,故答案为:2<x≤6.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为y =2x+3.【分析】直接利用一次函数的平移规律进而得出答案.【解答】解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是﹣3<x<1.【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【解答】解:∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∵抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.以∵ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为(2,﹣1).【分析】根据平行四边形是中心对称图形,再根据∵ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【解答】解:∵∵ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∵点C的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∵出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∵CAB=30°,则点O到CD的距离OE为.【分析】在等腰∵ACD中,顶角∵A=30°,易求得∵ACD=75°;根据等边对等角,可得:∵OCA=∵A=30°,由此可得,∵OCD=45°;即∵COE是等腰直角三角形,则OE=.【解答】解:∵AC=AD,∵A=30°,∵∵ACD=∵ADC=75°,∵AO=OC,∵∵OCA=∵A=30°,∵∵OCD=45°,即∵OCE是等腰直角三角形,在等腰Rt∵OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ∵BC 于点Q,则PQ=.【分析】根据矩形的性质得到AB∵CD,AB=CD,AD=BC,∵BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∵AB∵CD,AB=CD,AD=BC,∵BAD=90°,∵E为CD的中点,∵DE=CD=AB,∵∵ABP∵∵EDP,∵=,∵=,∵=,∵PQ∵BC,∵PQ∵CD,∵∵BPQ∵∵DBC,∵==,∵CD=2,∵PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解答】解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x <90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【分析】(1)根据题意列式计算即可得到结论;(2)用D等级人数除以它所占的百分比即可得到调查的总人数;(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;故答案为:8,12,30%;(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)∵共有12种等可能的结果,恰为一男一女的有8种,∵抽得恰好为“一男一女”的概率为=.23.如图,AB是∵O的直径,点C是∵O上一点(与点A,B不重合),过点C作直线PQ,使得∵ACQ=∵ABC.(1)求证:直线PQ是∵O的切线.(2)过点A作AD∵PQ于点D,交∵O于点E,若∵O的半径为2,sin∵DAC=,求图中阴影部分的面积.【分析】(1)连接OC,由直径所对的圆周角为直角,可得∵ACB=90°;利用等腰三角形的性质及已知条件∵ACQ=∵ABC,可求得∵OCQ=90°,按照切线的判定定理可得结论.(2)由sin∵DAC=,可得∵DAC=30°,从而可得∵ACD的度数,进而判定∵AEO为等边三角形,则∵AOE 的度数可得;利用S阴影=S扇形﹣S∵AEO,可求得答案.【解答】解:(1)证明:如图,连接OC,∵AB是∵O的直径,∵∵ACB=90°,∵OA=OC,∵∵CAB=∵ACO.∵∵ACQ=∵ABC,∵∵CAB+∵ABC=∵ACO+∵ACQ=∵OCQ=90°,即OC∵PQ,∵直线PQ是∵O的切线.(2)连接OE,∵sin∵DAC=,AD∵PQ,∵∵DAC=30°,∵ACD=60°.又∵OA=OE,∵∵AEO为等边三角形,∵∵AOE=60°.∵S阴影=S扇形﹣S∵AEO=S扇形﹣OA•OE•sin60°=×22﹣×2×2×=﹣.∵图中阴影部分的面积为﹣.24.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y (单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1119日销售量y(件)182请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?【分析】(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.【解答】解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:,解得:.∵甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:,解得:.∵y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).(3)由题意得:w=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400=﹣2(x﹣15)2+50(11≤x≤19).∵当x=15时,w取得最大值50.∵当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.25.如图1,∵ABC和∵DCE都是等边三角形.探究发现(1)∵BCD与∵ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∵ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且∵ABC和∵DCE的边长分别为1和2,求∵ACD的面积及AD的长.【分析】(1)依据等式的性质可证明∵BCD=∵ACE,然后依据SAS可证明∵ACE∵∵BCD;(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;(3)如图2,过A作AF∵CD于F,先根据平角的定义得∵ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得∵ACD的面积,最后根据勾股定理可得AD的长.【解答】解:(1)全等,理由是:∵∵ABC和∵DCE都是等边三角形,∵AC=BC,DC=EC,∵ACB=∵DCE=60°,∵∵ACB+∵ACD=∵DCE+∵ACD,即∵BCD=∵ACE,在∵BCD和∵ACE中,,∵∵ACE∵∵BCD(SAS);(2)如图3,由(1)得:∵BCD∵∵ACE,∵BD=AE,∵∵DCE都是等边三角形,∵∵CDE=60°,CD=DE=2,∵∵ADC=30°,∵∵ADE=∵ADC+∵CDE=30°+60°=90°,在Rt∵ADE中,AD=3,DE=2,∵AE===,∵BD=;(3)如图2,过A作AF∵CD于F,∵B、C、E三点在一条直线上,∵∵BCA+∵ACD+∵DCE=180°,∵∵ABC和∵DCE都是等边三角形,∵∵BCA=∵DCE=60°,∵∵ACD=60°,在Rt∵ACF中,sin∵ACF=,∵AF=AC×sin∵ACF=1×=,∵S∵ACD===,∵CF=AC×cos∵ACF=1×=,FD=CD﹣CF=2﹣,在Rt∵AFD中,AD2=AF2+FD2==3,∵AD=.26.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得∵EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【解答】解:(1)∵抛物线的顶点为(1,﹣4),∵设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∵a=1,∵抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∵x=﹣1或x=3,∵B(3,0),A(﹣1,0),令x=0,则y=﹣3,∵C(0,﹣3),∵AC=,设点E(0,m),则AE=,CE=|m+3|,∵∵ACE是等腰三角形,∵∵当AC=AE时,=,∵m=3或m=﹣3(点C的纵坐标,舍去),∵E(3,0),∵当AC=CE时,=|m+3|,∵m=﹣3±,∵E(0,﹣3+)或(0,﹣3﹣),∵当AE=CE时,=|m+3|,∵m=﹣,∵E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∵将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∵点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∵t=1+2或t=1﹣2,∵Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∵FB=PG=3﹣1=2,∵点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).初中怎样提高数学成绩1.课内重视听讲,培养学生的思维能力初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此,重视听法指导,使他们学会听课,是提高学习效率的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:原式= ,
故答案为: .
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
12.若 与 的和仍是一个单项式,则 ______.
【答案】9.
【解析】
【分析】
根据合并同类项法则可知这两个单项式是同类项,再根据同类项的字母和字母上的指数也要对应相等即可求出答案.
【答案】D
【解析】
【分析】
依据平行线的性质,即可得到 的度数,再根据折叠的性质,即可得出 的度数.
【详解】
解:∵矩形纸条 中, ,
∴ ,
∴ ,
由折叠可得, ,
故选:D.
【点睛】
本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角 为55°,测角仪 的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆 的高度为x米,则下列关系式正确的是()
【点睛】
本题考查了菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,掌握菱形的对角线互相垂直.
14.如图,在平面直角坐标系中,直线y=﹣ x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.
【答案】(﹣ ,2)
【解析】
【分析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.
【详解】
解: ,
解得: ,
即 ,
则 ,
故答案为:0.
【点睛】
此题主要考查了根与系数的关系,对新定义的正确理解是解题的关键.
评卷人
得分
三、解答题
21.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.
【详解】
解:∵ ,
∴ ,
∴ 在3和4之间,即 .
故选:C.
【点睛】
本题考查了估算无理数的大小.能估算出 的范围是解题的关键.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.分解因式: _____________________.
【答案】
【解析】
【分析】
原式提取公因式,再利用完全平方公式分解即可.
【答案】A
【解析】
【分析】
根据三视图的法则可得出答案.
【详解】
解:左视图为从左往右看得到的视图,
A.球的左视图是圆,
B.圆柱的左视图是长方形,
C.圆锥的左视图是等腰三角形,
D.圆台的左视图是等腰梯形,
故符合题意的选项是A.
【点睛】
错因分析较容易题.失分原因是不会判断常见几何体的三视图.
3.观察下列图形,是中心对称图形的是( )
【详解】
∵直线y=﹣ x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.
∵BC=OC=OA,
∴OC=3,OE=2,
∴CE= = ,
∴点C的坐标为(﹣ ,2).
故答案为(﹣ ,2).
【点睛】
本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.
C. ,计算正确;
D. ,故原选项错误.
故选C
【点睛】
本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.
5.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()
A. B. C. D.
【答案】C
【解析】
【分析】
科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值 时,n是正数;当原数的绝对值 时,n是负数.
15.方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?” 译文为:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两”.若设每头牛值金x两,每只羊值金y两,则可列方程组为____________.
贵州省黔南州2020年中考数学试卷
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
学校:___________姓名:___________班级:___________考号:___________
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息$2.请将答案正确填写在答题卡上
【答案】10
【解析】
【分析】
根据直角三角形的边角间关系,先计算 ,再在直角三角形 中,利用勾股定理即可求出 .
【详解】
解:在 中,
∵ ,
∴ .
在 中,

故答案为:10.
【点睛】
本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.
19.如图,正方形 的边长为10,点A的坐标为 ,点B在y轴上,若反比例函数 的图象过点C,则该反比例函数的解析式为_________.
(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?
(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?
【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂
【解析】
【分析】
(1)设甲品牌每瓶x元,则乙品牌每瓶3x-50元,根据题意列出方程,解出x即可;
A. B. C. D.
【答案】B
【解析】
【分析】
根据仰角的定义和锐角三角函数解答即可.
【详解】
解:∵在 中, ,
∴ , , ,
故选:B.
【点睛】
本题考查了锐角三角函数和解直角三角形的实际应用.注意数形结合思想的应用.
8.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()
根据题意得: ,
解得:a=20,
则购买了20瓶乙品牌消毒剂.
【点睛】
本题是对分式方程运用的考查,准确根据题意列出方程是解决本题的关键.
22.(1)计算 ;
(2)解不等式组: .
【答案】(1) ;(2)
【解析】
【分析】
(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;
A. B. C. D.
【答案】D
【解析】
试题分析:将一个图形围绕某一点旋转180°之后能够与原图形完全重合,则这个图形就是中心对称图形.
考点:中心对称图形
4.下列运算正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】
分别计算出各项的结果,再进行判断即可.
【详解】
A. ,故原选项错误;
B. ,故原选项错误;
本题主要是考查正方形的性质及反比例函数,关键是通过正方形的性质构造三角形全等,进而得到点C的坐标,然后根据求解反比例函数解析式的知识进行求解即可.
20.对于实数a,b,定义运算“ ”, 例如 ,因为 ,所以 .若 是一元二次方程 的两个根,则 _________.
【答案】0
【解析】
【分析】
求出 的解,代入新定义对应的表达式即可求解.
【详解】
解: .
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.如图,将矩形纸条 折叠,折痕为 ,折叠后点C,D分别落在点 , 处, 与 交于点G.已知 ,则 的度数是()
A.30°B.45°C.74°D.75°
9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()
A.9B.17或22C.17D.22
【答案】D
【解析】
【分析】
分类讨论腰为4和腰为9,再应用三角形的三边关系进行取舍即可.
【详解】
解:分两种情况:
当腰为4时, ,所以不能构成三角形;
当腰为9时, ,所以能构成三角形,周长是: .
故选:D.
(2)设购买了乙品牌a瓶,则购买了甲品牌40-a瓶,,根据题意列出方程,解出a即可.
【详解】
(1)解:设甲品牌每瓶x元,则乙品牌每瓶3x-50元,
根据题意得: ,
解得:x=30,
则3x-50=3×30-50=40,
则甲品牌消毒剂每瓶的价格为30元,乙品牌消毒剂每瓶的价格为40元;
(2)设购买了乙品牌a瓶,则购买了甲品牌40-a瓶,
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
10.已知 ,a介于两个连续自然数之间,则下列结论正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】
先估算出 的范围,即可得出答案.
【详解】
由题意可知: 与 是同类项,
解之得:
相关文档
最新文档