最新贵州省中考数学试卷
2022年贵州省遵义市中考数学试卷(解析版)

2022年贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.(4分)(2022•遵义)全国统一规定的交通事故报警电话是()A.122B.110C.120D.1142.(4分)(2022•遵义)下表是2022年1月﹣5月遵义市PM2.5(空气中直径小于等于2.5微米的颗粒)的平均值,这组数据的众数是()月份1月2月3月4月5月2423242522PM2.5(单位:μg/m3)A.22B.23C.24D.253.(4分)(2022•遵义)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A .B .C .D .4.(4分)(2022•遵义)关于x的一元一次不等式x﹣3≥0的解集在数轴上表示为()A .B .C .D .5.(4分)(2022•遵义)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.(4分)(2022•遵义)下列运算结果正确的是()A.a3•a4=a12B.3ab﹣2ab=1C.(﹣2ab3)2=4a2b6D.(a﹣b)2=a2﹣b27.(4分)(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为()A.﹣3B.﹣1C.1D.38.(4分)(2022•遵义)若一次函数y=(k+3)x﹣1的函数值y随x的增大而减小,则k 值可能是()A.2B.C.D.﹣49.(4分)(2022•遵义)2021年7月,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生每天的书面作业时间不得超过90分钟.某校随机抽取部分学生进行问卷调查,并将调查结果制成如下不完整的统计图表.则下列说法不正确的是()作业时间频数分布表组别作业时间(单位:分钟)频数A60<t≤708B70<t≤8017C80<t≤90mD t>905A.调查的样本容量为50B.频数分布表中m的值为20C.若该校有1000名学生,作业完成的时间超过90分钟的约100人D.在扇形统计图中B组所对的圆心角是144°10.(4分)(2022•遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC =1,∠AOB=30°,则点B到OC的距离为()A.B.C.1D.211.(4分)(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为()A.﹣B.﹣C.﹣D.﹣12.(4分)(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A.B.C.D.二、填空题(本题共4小题,每小题4分,共16分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.)13.(4分)(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.14.(4分)(2022•遵义)反比例函数y=(k≠0)与一次函数y=x﹣1交于点A(3,n),则k的值为.15.(4分)(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为千米.16.(4分)(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=.当AM+BN的值最小时,CM的长为.三、解答题(本题共7小题,共86分.答题请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(12分)(2022•遵义)(1)计算:()﹣1﹣2tan45°+|1﹣|;(2)先化简(+)÷,再求值,其中a=+2.18.(12分)(2022•遵义)如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是﹣6,﹣1,8,转盘乙上的数字分别是﹣4,5,7(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘甲指针指向正数的概率是;转盘乙指针指向正数的概率是.(2)若同时转动两个转盘,转盘甲指针所指的数字记为a,转盘乙指针所指的数字记为b,请用列表法或树状图法求满足a+b<0的概率.19.(12分)(2022•遵义)将正方形ABCD和菱形EFGH按照如图所示摆放,顶点D与顶点H重合,菱形EFGH的对角线HF经过点B,点E,G分别在AB,BC上.(1)求证:△ADE≌△CDG;(2)若AE=BE=2,求BF的长.20.(12分)(2022•遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD的长(结果保留根号);(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).21.(12分)(2022•遵义)遵义市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.22.(13分)(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.23.(13分)(2022•遵义)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.2022年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.(4分)(2022•遵义)全国统一规定的交通事故报警电话是()A.122B.110C.120D.114【分析】本题考查的知识点是防范侵害,保护自己.保护自己,一要有警惕性;二要用智慧,学会用一些方法技巧保护自己.【解答】解:全国统一规定的交通事故报警电话号码是122,A符合题意;B、C、D选项与题意不符.故选:A.【点评】解答本题关键是审清题意,明确主旨,把握防范侵害,保护自己,结合具体的题意分析即可.2.(4分)(2022•遵义)下表是2022年1月﹣5月遵义市PM2.5(空气中直径小于等于2.5微米的颗粒)的平均值,这组数据的众数是()月份1月2月3月4月5月2423242522PM2.5(单位:μg/m3)A.22B.23C.24D.25【分析】根据众数的定义进行判断即可.【解答】解:这5个月PM2.5的值出现次数最多的是24,共出现2次,因此这组数据的众数是24,故选:C.【点评】本题考查众数,理解众数的定义掌握众数的求法是正确解答的前提.3.(4分)(2022•遵义)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【分析】根据左视图的形状进行判断即可.【解答】解:这个“堑堵”的左视图如下:故选:A.【点评】本题考查简单几何体的三视图,理解视图的定义,掌握简单几何体的三视图的画法和形状是正确判断的前提.4.(4分)(2022•遵义)关于x的一元一次不等式x﹣3≥0的解集在数轴上表示为()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来,即可得出选项.【解答】解:x﹣3≥0,x≥3,在数轴上表示为:,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能正确在数轴上表示不等式的解集是解此题的关键.5.(4分)(2022•遵义)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】估算确定出范围即可.【解答】解:∵16<21<25,∴4<<5,则的值在4和5之间,故选:C.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.6.(4分)(2022•遵义)下列运算结果正确的是()A.a3•a4=a12B.3ab﹣2ab=1C.(﹣2ab3)2=4a2b6D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的乘法,合并同类项,幂的乘方与积的乘方以及完全平方公式逐项进行判断即可.【解答】解:A.a3•a4=a3+4=a7,因此选项A不符合题意;B.3ab﹣2ab=ab,因此选项B不符合题意;C.(﹣2ab3)2=4a2b6,因此选项C符合题意;D.(a﹣b)2=a2﹣2ab+b2,因此选项D不符合题意;故选:C.【点评】本题考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方以及完全平方公式,掌握同底数幂的乘法的计算方法,合并同类项法则,幂的乘方与积的乘方的运算性质以及完全平方公式是正确判断的前提.7.(4分)(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为()A.﹣3B.﹣1C.1D.3【分析】由中心对称的性质可求a,b的值,即可求解.【解答】解:∵点A(a,1)与点B(﹣2,b)关于原点成中心对称,∴a=2,b=﹣1,∴a+b=1,故选:C.【点评】本题考查了中心对称,关于原点对称的点的坐标,要熟练掌握,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O 的对称点是P′(﹣x,﹣y).8.(4分)(2022•遵义)若一次函数y=(k+3)x﹣1的函数值y随x的增大而减小,则k 值可能是()A.2B.C.D.﹣4【分析】根据比例系数小于0时,一次函数的函数值y随x的增大而减小列出不等式求解即可.【解答】解:∵一次函数y=(k+3)x﹣1的函数值y随着x的增大而减小,∴k+3<0,解得k<﹣3.所以k的值可以是﹣4,故选:D.【点评】本题考查了一次函数的性质,在一次函数y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.9.(4分)(2022•遵义)2021年7月,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生每天的书面作业时间不得超过90分钟.某校随机抽取部分学生进行问卷调查,并将调查结果制成如下不完整的统计图表.则下列说法不正确的是()作业时间频数分布表组别作业时间(单位:分钟)频数A60<t≤708B70<t≤8017C80<t≤90mD t>905A.调查的样本容量为50B.频数分布表中m的值为20C.若该校有1000名学生,作业完成的时间超过90分钟的约100人D.在扇形统计图中B组所对的圆心角是144°【分析】分布求出样本容量,m的值,该校有1000名学生,作业完成的时间超过90分钟的人数,B组所对的圆心角,即可求解.【解答】解:A、调查的样本容量=5÷10%=50,故选项A不符合题意;B、m=50﹣8﹣17﹣5=20,故选项B不符合题意;C、该校有1000名学生,作业完成的时间超过90分钟的人数≈1000×10%=100人,故选项C不符合题意;D、在扇形统计图中B组所对的圆心角=360°××100%=122.4°,故选项D符合题意;故选:D.【点评】本题考查了扇形统计图,样本容量,频数分布表等知识,求出样本容量是解题的关键.10.(4分)(2022•遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC =1,∠AOB=30°,则点B到OC的距离为()A.B.C.1D.2【分析】作BH⊥OC于H,利用含30°角的直角三角形的性质得OB=2,再由勾股定理得OC=,再根据cos∠BOC=cos∠CBH,得,代入计算可得答案.【解答】解:作BH⊥OC于H,∵∠AOB=30°,∠A=90°,∴OB=2AB=2,在Rt△OBC中,由勾股定理得,OC==,∵∠CBO=∠BHC=90°,∴∠CBH=∠BOC,∴cos∠BOC=cos∠CBH,∴,∴,∴BH=,故选:B.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质,三角函数等知识,熟练掌握等角的三角函数值相等是解题的关键.11.(4分)(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为()A.﹣B.﹣C.﹣D.﹣【分析】图中阴影部分的面积等于扇形DOC的面积减去△DOC的面积.【解答】解:∵四边形ABCD是正方形,∴OB=OD=OC,∠DOC=90°,∵∠EOB=∠FOD,∴S扇形BOM=S扇形DON,∴S阴影=S扇形DOC﹣S△DOC=﹣×1×1=﹣,故选:B.【点评】本题考查了正方形的性质,扇形的面积,关键是求出阴影部分的面积等于扇形DOC的面积减去△DOC的面积.12.(4分)(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A.B.C.D.【分析】利用函数的定义及极差的含义,根据数形结合的思想求解.【解答】解:因为极差是该段时间内的最大值与最小值的差.所以当t从0到5时,极差逐渐增大;t从5到气温为25℃时,极差不变;当气温从25℃到28℃时极差达到最大值.直到24时都不变.只有A符合.故选:A.【点评】本题考查极差的概念,正确理解极差的含义是解题的关键.二、填空题(本题共4小题,每小题4分,共16分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.)13.(4分)(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【分析】根据平方差公式将a2﹣b2转化为(a+b)(a﹣b),再代入计算即可.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.【点评】本题考查平方差公式,掌握平方差公式的结构特征是正确应用的前提.14.(4分)(2022•遵义)反比例函数y=(k≠0)与一次函数y=x﹣1交于点A(3,n),则k的值为6.【分析】由一次函数的解析式求得A点的坐标,然后利用待定系数法即可解决问题.【解答】解:∵一次函数y=x﹣1经过点A(3,n),∴n=3﹣1=2,∵反比例函数y=(k≠0)经过A(3,2)∴k=3×2=6,故答案为:6.【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,熟知待定系数法是解题的关键.15.(4分)(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为33792千米.【分析】根据垂径定理,平行线的性质,锐角三角函数的定义求解.【解答】解:作OK⊥BC,则∠BKO=90°,∵BC∥OA,∠AOB=28°,∵∠B=∠AOB=28°,在Rt△BOK中,OB=OA=6400.∴BK=OB×cos B=6400×0.88≈5632,∴北纬28°的纬线长C=2π•BK=2×3×5632≈33792(千米).故答案为:33792.【点评】本题考查垂径定理,解直角三角形,解题关键是熟练三角函数的含义及解直角三角形的方法.16.(4分)(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=.当AM+BN的值最小时,CM的长为2﹣.【分析】过点A作AH⊥BC于点H.设AN=CM=x.AM+BN=12+(1﹣x)2+(2)2+x2,欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,2)的距离和的最小值,如图1中,作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,此时直线EF′的解析式为y=(+1)x﹣,求出点P的坐标,可得结论.【解答】解:过点A作AH⊥BC于点H.设AN=CM=x.∵AB=AC=,∠BAC=90°,∴BC==2,∵AH⊥BC,∴BH=AH=1,∴AH=BH=CH=1,∴AM+BN=+,欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,)的距离和的最小值,如图1中,作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,此时直线EF′的解析式为y=(+1)x﹣,当y=0时,x=2﹣,∴AM+BN的值最小时,CM的值为2﹣,故答案为:2﹣.【点评】本题考查等腰直角三角形的性质,轴对称最短问题,一次函数的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题(本题共7小题,共86分.答题请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(12分)(2022•遵义)(1)计算:()﹣1﹣2tan45°+|1﹣|;(2)先化简(+)÷,再求值,其中a=+2.【分析】(1)先根据负整数指数幂,特殊角的三角函数值,绝对值进行计算,再算乘法,最后算加减即可;(2)先变形,再根据分式的减法法则进行计算,根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:(1)()﹣1﹣2tan45°+|1﹣|=2﹣2×1+﹣1=2﹣2+﹣1=﹣1;(2)(+)÷=[﹣]÷=•=•=﹣,当a=+2时,原式=﹣=﹣=﹣.【点评】本题考查了负整数指数幂,特殊角的三角函数值,实数的混合运算,分式的化简求值等知识点,能正确根据实数的运算法则和分式的运算法则进行计算是解此题的关键,注意运算顺序.18.(12分)(2022•遵义)如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是﹣6,﹣1,8,转盘乙上的数字分别是﹣4,5,7(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘甲指针指向正数的概率是;转盘乙指针指向正数的概率是.(2)若同时转动两个转盘,转盘甲指针所指的数字记为a,转盘乙指针所指的数字记为b,请用列表法或树状图法求满足a+b<0的概率.【分析】(1)根据概率的定义进行解答即可;(2)用列表法列举出所有可能出现的结果,再根据概率的定义进行计算即可.【解答】解:(1)转盘甲被等分为3份,其中1份标有正数,所以转动转盘甲1次,指针指向正数的概率是,转盘乙也被等分为3份,其中2份标有正数,所以转动转盘乙1次,指针指向正数的概率是,故答案为:,;(2)同时转动两个转盘,指针所指的数字所有可能出现的结果如下:共有9种可能出现的结果,其中两个转盘指针所指数字之和为负数的有3种,所以同时转动两个转盘,指针所指数字之和为负数的概率为=,即满足a+b<0的概率为.【点评】本题考查列表法或树状图法求简单随机事件的概率,列举出所有可能出现的结果是正确解答的关键.19.(12分)(2022•遵义)将正方形ABCD和菱形EFGH按照如图所示摆放,顶点D与顶点H重合,菱形EFGH的对角线HF经过点B,点E,G分别在AB,BC上.(1)求证:△ADE≌△CDG;(2)若AE=BE=2,求BF的长.【分析】(1)根据正方形和菱形的性质得出AD=CD,ED=GD,∠ADB=∠CDB,∠EHB=∠GHB,求出∠ADE=∠CDG,再根据全等三角形的判定定理推出即可;(2)过E作EQ⊥DF于Q,根据正方形的性质得出AD=AB=4,∠A=90°,∠ABD=45°,根据勾股定理求出DE和EQ,根据菱形的性质求出EF=DE,再根据勾股定理求出QF即可.【解答】(1)证明:∵四边形ABCD是正方形,四边形HEFG是菱形,∴AD=CD,ED=GD,∠ADB=∠CDB,∠EHB=∠GHB,∴∠ADB﹣∠EHB=∠CDB﹣∠GHB,即∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS);(2)解:过E作EQ⊥DF于Q,则∠EQB=90°,∵四边形ABCD是正方形,∴∠A=90°,AD=AB=AE+EF=2+2=4,∠EBQ=∠CBD=45°,∴∠QEB=45°=∠EBQ,∴EQ=BQ,∵BE=2,∴2EQ2=22,∴EQ=BQ=(负数舍去),在Rt△DAE中,由勾股定理得:DE===2,∵四边形EFGH是菱形,∴EF=DE=2,∴QF===3,∴BF=QF﹣QB=3﹣=2.【点评】本题考查了菱形的性质,全等三角形的判定,正方形的性质,勾股定理等知识点,能熟记菱形和正方形的性质是解此题的关键.20.(12分)(2022•遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD的长(结果保留根号);(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).【分析】(1)在Rt△DAE中,利用锐角三角函数的定义求出AD的长,即可解答;(2)延长FC交AB于点G,根据已知易得∠DGC=60°,从而利用三角形的内角和可得∠DCG=60°,进而可得△DGC是等边三角形,然后利用等边三角形的性质可得DG =DC,再在Rt△DAG中,利用锐角三角函数的定义求出AE的长,从而求出AF的长,最后在Rt△AFG中,利用锐角三角函数的定义求出AG的长,进行计算即可解答.【解答】解:(1)在Rt△DAE中,∠AED=60°,AE=3m,∴AD=AE•tan60°=3(米),∴灯管支架底部距地面高度AD的长为3米;(2)延长FC交AB于点G,∵∠DAE=90°,∠AFC=30°,∴∠DGC=90°﹣∠AFC=60°,∵∠GDC=60°,∴∠DCG=180°﹣∠GDC﹣∠DGC=60°,∴△DGC是等边三角形,∴DC=DG,在Rt△DAG中,DE=6米,∠AED=60°,∴AE=DE•cos60°=6×=3(米),∵EF=8米,∴AF=AE+EF=11(米),在Rt△AFG中,AG=AF•tan30°=11×=(米),∴DC=DG=AG﹣AD=﹣3=≈1.2(米),∴灯管支架CD的长度约为1.2米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.21.(12分)(2022•遵义)遵义市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.【分析】(1)设每台B型设备的价格为x元,则每台A型号设备的价格为1.2x元,根据“用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台”建立方程,解方程即可.(2)根据总费用=购买A型设备的费用+购买B型设备的费用,可得出w与a的函数关系式,并根据两种设备的数量关系得出a的取值范围,结合一次函数的性质可得出结论.【解答】解:(1)设每台B型设备的价格为x万元,则每台A型号设备的价格为1.2x万元,根据题意得,=+4,解得:x=2500.经检验,x=2500是原方程的解.∴1.2x=3000,∴每台B型设备的价格为2500元,则每台A型号设备的价格为3000元.(2)设购买a台A型设备,则购买(50﹣a)台B型设备,∴w=3000a+2500(50﹣a)=500a+125000,由实际意义可知,,∴12.5≤a≤50且a为整数,∵500>0,∴w随a的增大而增大,∴当a=13时,w的最小值为500×13+125000=131500(元).∴w=500a+125000,且最少购买费用为131500元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.(13分)(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.【分析】(1)根据“关联抛物线”的定义可直接得出C2的解析式,再将该解析式化成顶点式,可得出C2的顶点坐标;(2)①设点P的横坐标为m,则可表达点M和点N的坐标,根据两点间距离公式可表达MN的长,列出方程,可求出点P的坐标;②分情况讨论,当a﹣4≤﹣2≤a﹣2时,当﹣2≤a﹣4≤a﹣2时,当a﹣4≤a﹣2≤﹣2时,分别得出C2的最大值和最小值,进而列出方程,可求出a的值.【解答】解:(1)根据“关联抛物线”的定义可得C2的解析式为:y=ax2+4ax+4a﹣3,∵y=ax2+4ax+4a﹣3=a(x+2)2﹣3,∴C2的顶点坐标为(﹣2,﹣3);(2)①设点P的横坐标为m,∵过点P作x轴的垂线分别交抛物线C1,C2于点M,N,∴M(m,4am2+am+4a﹣3),N(m,am2+4am+4a﹣3),∴MN=|4am2+am+4a﹣3﹣(am2+4am+4a﹣3)|=|3am2﹣3am|,∵MN=6a,∴|3am2﹣3am|=6a,解得m=﹣1或m=2,∴P(﹣1,0)或(2,0).②∵C2的解析式为:y=a(x+2)2﹣3,∴当x=﹣2时,y=3,当x=a﹣4时,y=a(a﹣4+2)2﹣3=a(a﹣2)2﹣3,当x=a﹣2时,y=a(a﹣2+2)2﹣3=a3﹣3,根据题意可知,需要分三种情况讨论,Ⅰ、当a﹣4≤﹣2≤a﹣2时,0<a≤2,且当0<a≤1时,函数的最大值为a(a﹣2)2﹣3;函数的最小值为﹣3,∴a(a﹣2)2﹣3﹣(﹣3)=2a,解得a=2﹣或a=2+(舍);当1≤a≤2时,函数的最大值为a3﹣3;函数的最小值为﹣3,∴a3﹣3﹣(﹣3)=2a,解得a=或a=﹣(舍);Ⅱ、当﹣2≤a﹣4≤a﹣2时,a≥2,函数的最大值为a3﹣3,函数的最小值为a(a﹣2)2﹣3;∴a3﹣3﹣[a(a﹣2)2﹣3]=2a,解得a=;Ⅲ、当a﹣4≤a﹣2≤﹣2时,a≤0,不符合题意,舍去;综上,a的值为2﹣或或.【点评】本题属于二次函数背景下新定义类问题,涉及两点间距离公式,二次函数的图象及性质,由“关联抛物线”的定义得出C2的解析式,掌握二次函数图象的性质是解题关键.23.(13分)(2022•遵义)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为45°.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.。
贵州省贵阳市中考数学试卷含答案解析(word版)

贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=﹣x+5,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),则d=|﹣n2+4n+5﹣(﹣n+5)|,由题意可知:﹣n2+4n+5>﹣n+5,。
2022年贵州省黔东南州中考数学真题(解析版)

【详解】解:如图所示标注字母,
∵四边形 EGHF 为矩形, ∴EF∥GH,
过点 C 作 CA∥EF, ∴ CA∥ EF∥ GH, ∴ ∠2=∠MCA , ∠1=CAN, ∵ ∠1=28°, ∠MCN=90°, ∴ ∠2=∠MCA=90°- ∠1=62°, 故选:D. 【点睛】题目主要考查矩形的性质,平行线的性质,角度的计算等,理解题意,作出相应辅助线是解 题关 键.
一坐标系内的大致图像为 ( )
A.
B.
C.
D.
【答案】C 【解析】
【分析】根据二次函数的图像确定 a,b,c 的正负,即可确定一次函数 y = ax + b 所经过的象限和反比例函 数 y = 所在的象限.
【详解】解: ∵二次函数 y = ax2 + bx + c (a 丰 0) 的图像开口向上,对称轴在y 轴左边,与y 轴的交点在y
C.-2(a+b)=-2a-2b ,不符合题意;
( ) D.
2
2a
2
4
= 4a
,符合题意;
故选:D. 【点睛】本题考查了同底数幂的除法,合并同类项,去括号法则,积的乘方,熟练以上知识是解题的关键. 3. 一个几何体的三视图如图所示,则该几何体为 ( )
A. 圆柱 【答案】A 【解析】
B. 圆锥
C. 四棱柱
∵六边形 ABCDEF 是正六边形, ∴ ∠AOB=60°, ∵OA=OB=r, ∴△OAB 是等边三角形, ∴AB=OA=OB=r , ∠OAB=60°,
在 Rt△OAH 中, OH = OA .sin 三OAB = r = r ,
∴ S△OAB = AB . OH = r
r = r2 ,
∴正六边形的面积 = 6
2022年贵州省安顺市中考数学试卷含答案解析

2022年贵州省安顺市中考数学试卷及答案解析一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)(2022•安顺)下列实数中,比﹣5小的数是( )A .﹣6B .−12C .0D .√32.(3分)(2022•安顺)某几何体如图所示,它的俯视图是( )A .B .C .D .3.(3分)(2022•安顺)贵州省近年来经济飞速发展,经济增长速度名列前茅,据相关统计,2021年全省GDP 约为196000000万元,则数据196000000用科学记数法表示为( )A .196×106B .19.6×107C .1.96×108D .0.196×1094.(3分)(2022•安顺)如图,a ∥b ,将一个等腰直角三角板放置到如图所示位置.若∠1=15°,则∠2的大小是( )A .20°B .25°C .30°D .45°5.(3分)(2022•安顺)一组数据:3,4,4,6,若添加一个数据6,则不发生变化的统计量是( )A .平均数B .中位数C .众数D .方差 6.(3分)(2022•安顺)估计(2√5+5√2)×√15的值应在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间7.(3分)(2022•安顺)如图,在△ABC 中,∠ABC <90°,AB ≠BC ,BE 是AC 边上的中线,按下列步骤作图:①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M,N;②作直线MN,分别交BC,BE于点D,O;③连结CO,DE.则下列结论错误的是()A.OB=OC B.∠BOD=∠COD C.DE∥AB D.△BOC≌△BDE 8.(3分)(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是()A.有一个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根9.(3分)(2022•安顺)如图,边长为√2的正方形ABCD内接于⊙O,P A,PD分别与⊙O 相切于点A和点D,PD的延长线与BC的延长线交于点E,则图中阴影部分的面积为()A.5﹣πB.5−π2C.52−π2D.52−π410.(3分)(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=cx(c≠0)在同一直角坐标系中的图象可能是()A .B .C .D .11.(3分)(2022•安顺)如图,在△ABC 中,AC =2√2,∠ACB =120°,D 是边AB 的中点,E 是边BC 上一点,若DE 平分△ABC 的周长,则DE 的长为( )A .√52B .√2+12C .√2D .√312.(3分)(2022•安顺)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE 绕点O 顺时针旋转n 个45°,得到正六边形OA n B n ∁n D n E n ,当n =2022时,正六边形OA n B n ∁n D n E n 的顶点D n 的坐标是( )A .(−√3,﹣3)B .(﹣3,−√3)C .(3,−√3)D .(−√3,3)二、填空题:每小题4分,共16分.13.(4分)(2022•安顺)要使函数y =√2x −1在实数范围内有意义,则x 的取值范围是 .14.(4分)(2022•安顺)若a +2b =8,3a +4b =18,则a +b 的值为 .15.(4分)(2022•安顺)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后不放回,再随机摸取一个小球,则两次取出的小球标号的和等于5的概率为 .16.(4分)(2022•安顺)已知正方形ABCD 的边长为4,E 为CD 上一点,连接AE 并延长交BC 的延长线于点F ,过点D 作DG ⊥AF ,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M 为BD 上一动点,分别连接MC ,MN .若S △DCG S △FCE =19,则MC +MN 的最小值为 .三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(12分)(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1−√3|−√12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =12.18.(10分)(2022•安顺)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了七年级部分学生,对他们一周内平均每天的睡眠时间t (单位:小时)进行了调查,将数据整理后得到下列不完整的统计表:睡眠时间频数频率t<730.067≤t<8a0.168≤t<9100.209≤t<1024bt≥1050.10请根据统计表中的信息回答下列问题.(1)a=,b=;(2)请估计该校600名七年级学生中平均每天的睡眠时间不足9小时的人数;(3)研究表明,初中生每天睡眠时间低于9小时,会影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.19.(10分)(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.20.(10分)(2022•安顺)如图,在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(4,0),(4,m),直线CD:y=ax+b(a≠0)与反比例函数y=kx(k≠0)的图象交于C,P(﹣8,﹣2)两点.(1)求该反比例函数的解析式及m的值;(2)判断点B是否在该反比例函数的图象上,并说明理由.21.(10分)(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈4 5,cos53°≈35,tan53°≈43)(1)求坡面CB的坡度;(2)求基站塔AB的高.22.(10分)(2022•安顺)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?23.(12分)(2022•安顺)如图,AB是⊙O的直径,点E是劣弧BD上一点,∠P AD=∠AED,且DE=√2,AE平分∠BAD,AE与BD交于点F.(1)求证:P A是⊙O的切线;(2)若tan ∠DAE =√22,求EF 的长;(3)延长DE ,AB 交于点C ,若OB =BC ,求⊙O 的半径.24.(12分)(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),(12,12),(−√2,−√2),……都是和谐点. (1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点(52,52). ①求a ,c 的值;②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.25.(12分)(2022•安顺)如图1,在矩形ABCD 中,AB =10,AD =8,E 是AD 边上的一点,连接CE ,将矩形ABCD 沿CE 折叠,顶点D 恰好落在AB 边上的点F 处,延长CE 交BA 的延长线于点G .(1)求线段AE 的长;(2)求证四边形DGFC 为菱形;(3)如图2,M ,N 分别是线段CG ,DG 上的动点(与端点不重合),且∠DMN =∠DCM ,设DN =x ,是否存在这样的点N ,使△DMN 是直角三角形?若存在,请求出x 的值;若不存在,请说明理由.2022年贵州省安顺市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)(2022•安顺)下列实数中,比﹣5小的数是()A.﹣6B.−12C.0D.√3【分析】根据实数的大小做出判断即可.【解答】解:∵﹣6<﹣5,−12>−5,0>﹣5,√3>−5,∴A选项符合题意,故选:A.【点评】本题主要考查实数大小的比较,根据实数的大小做出正确的判断是解题的关键.2.(3分)(2022•安顺)某几何体如图所示,它的俯视图是()A.B.C.D.【分析】根据俯视图的意义,从上面看该几何体所得到的图形结合选项进行判断即可.【解答】解:从上面看该几何体,是两个同心圆,故选:D.【点评】本题考查简单几何体的三视图,明确能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示是得出正确答案的前提.3.(3分)(2022•安顺)贵州省近年来经济飞速发展,经济增长速度名列前茅,据相关统计,2021年全省GDP约为196000000万元,则数据196000000用科学记数法表示为()A.196×106B.19.6×107C.1.96×108D.0.196×109【分析】根据把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法即可得出答案.【解答】解:196000000=1.96×108,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握1≤a<10是解题的关键.4.(3分)(2022•安顺)如图,a∥b,将一个等腰直角三角板放置到如图所示位置.若∠1=15°,则∠2的大小是()A.20°B.25°C.30°D.45°【分析】过点B作BC∥b,利用平行线的性质可得∠CBD=15°,再利用等腰直角三角形的性质可得∠ABD=45°,从而可得∠ABC=30°,然后再利用平行线的性质即可解答.【解答】解:如图:过点B作BC∥b,∴∠1=∠CBD=15°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABC=∠ABD﹣∠CBD=30°,∵a∥b,∴a∥BC,∴∠2=∠ABC=30°,故选:C.【点评】本题考查了平行线的性质,熟练掌握猪脚模型是解题的关键.5.(3分)(2022•安顺)一组数据:3,4,4,6,若添加一个数据6,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A 、原来数据的平均数是174,添加数字6后平均数为235,故不符合题意;B 、原来数据的中位数是4,添加数字6后中位数仍为4,故符合题意;C 、原来数据的众数是4,添加数字6后众数为4和6,故不符合题意;D 、原来数据的方差=14[(3−174)2+2×(4−174)2+(6−174)2]=1916, 添加数字6后的方差=15[(3−235)2+2×(4−235)2+2×(6−235)2]=3625,故方差发生了变化,故不符合题意; 故选:B .【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.6.(3分)(2022•安顺)估计(2√5+5√2)×√15的值应在( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案. 【解答】解:原式=2+√10, ∵3<√10<4, ∴5<2+√10<6, 故选:B .【点评】此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.7.(3分)(2022•安顺)如图,在△ABC 中,∠ABC <90°,AB ≠BC ,BE 是AC 边上的中线,按下列步骤作图:①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M ,N ;②作直线MN ,分别交BC ,BE 于点D ,O ;③连结CO ,DE .则下列结论错误的是( )A.OB=OC B.∠BOD=∠COD C.DE∥AB D.△BOC≌△BDE 【分析】根据线段的垂直平分线的性质一一判断即可.【解答】解:由作图可知,MN垂直平分线段BC,∴OB=OC,∴∠BOD=∠COD,∵AE=EC,CD=DB,∴DE∥AB,故A,B,C正确,故选:D.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是()A.有一个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【分析】已知等式利用题中的新定义化简,计算出根的判别式的值,判断即可.【解答】解:根据题中的新定义化简得:(x+k)(x﹣k)﹣1=2x,整理得:x2﹣2x﹣1﹣k2=0,∵Δ=4﹣4(﹣1﹣k2)=4k2+8>0,∴方程有两个不相等的实数根.故选:B.【点评】此题考查了根的判别式,方程的定义,以及实数的运算,弄清题中的新定义是解本题的关键.9.(3分)(2022•安顺)如图,边长为√2的正方形ABCD内接于⊙O,P A,PD分别与⊙O 相切于点A和点D,PD的延长线与BC的延长线交于点E,则图中阴影部分的面积为()A.5﹣πB.5−π2C.52−π2D.52−π4【分析】连接AC,OD,根据已知条件得到AC是⊙O的直径,∠AOD=90°,根据切线的性质得到∠P AO=∠PDO=90°,得到△CDE是等腰直角三角形,根据等腰直角三角形的性质得到PE=3,根据梯形和圆的面积公式即可得到答案.【解答】解:连接AC,OD,∵四边形BCD是正方形,∴∠B=90°,∴AC是⊙O的直径,∠AOD=90°,∵P A,PD分别与⊙O相切于点A和点D,∴∠P AO=∠PDO=90°,∴四边形AODP是矩形,∵OA=OD,∴矩形AODP是正方形,∴∠P=90°,AP=AO,AC∥PE,∴∠E=∠ACB=45°,∴△CDE是等腰直角三角形,∵AB=√2,∴AC=2AO=2,DE=√2CD=2,∴AP=PD=AO=1,∴PE=3,∴图中阴影部分的面积=12(AC+PE)•AP−12AO2•π=12(2+3)×1−12×12•π=12(5﹣π)=52−π2,故选:C.【点评】本题考查了正多边形与圆,正方形的性质,切线的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.10.(3分)(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=cx(c≠0)在同一直角坐标系中的图象可能是()A.B.C .D .【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图象开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴, ∴c <0,∴一次函数y =ax +b 的图象经过第一、三、四象限,反比例函数y =cx (c ≠0)在二、四象限. 故选:A .【点评】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.11.(3分)(2022•安顺)如图,在△ABC 中,AC =2√2,∠ACB =120°,D 是边AB 的中点,E 是边BC 上一点,若DE 平分△ABC 的周长,则DE 的长为( )A .√52B .√2+12C .√2D .√3【分析】延长BC至F,使CF=CA,连接AF,根据等边三角形的性质求出AF,根据三角形中位线定理解答即可.【解答】解:延长BC至F,使CF=CA,连接AF,∵∠ACB=120°,∴∠ACF=60°,∴△ACF为等边三角形,∴AF=AC=2√2,∵DE平分△ABC的周长,∴BE=CE+AC,∴BE=CE+CF=EF,∵BD=DA,∴DE=12AF=√2,故选:C.【点评】本题考查的是三角形中位线定理、等边三角形的判定和性质,正确作出辅助线是解题的关键.12.(3分)(2022•安顺)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OA n B n∁n D n E n,当n=2022时,正六边形OA n B n∁n D n E n的顶点D n的坐标是()A.(−√3,﹣3)B.(﹣3,−√3)C.(3,−√3)D.(−√3,3)【分析】由题意旋转8次应该循环,因为2022÷8=252…6,所以D n的坐标与D6的坐标相同.【解答】解:由题意旋转8次应该循环,∵2022÷8=252…6,∴D n的坐标与D6的坐标相同,如图,过点D6H⊥OE于点H,∵∠DOD6=90°,∠DOE=30°,OD=OD6=2√3,∴OH=OD6•cos60°=√3,HD6=√3OH=3,∴D6(−√3,﹣3),∴顶点D n的坐标是(−√3,﹣3),故选:A.【点评】本题考查正多边形与圆,坐标与图形变化﹣性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题:每小题4分,共16分.13.(4分)(2022•安顺)要使函数y=√2x−1在实数范围内有意义,则x的取值范围是x≥12.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:2x﹣1≥0,解得:x≥1 2,故答案为:x≥1 2.【点评】本题考查的是函数自变量的取值范围的确定,熟记二次根式的被开方数是非负数是解题的关键.14.(4分)(2022•安顺)若a+2b=8,3a+4b=18,则a+b的值为5.【分析】直接利用已知解方程组进而得出答案.【解答】解:方法一、∵a +2b =8,3a +4b =18, 则a =8﹣2b , 代入3a +4b =18, 解得:b =3, 则a =2, 故a +b =5.方法二、∵a +2b =8,3a +4b =18, ∴2a +2b =10, ∴a +b =5, 故答案为:5.【点评】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键. 15.(4分)(2022•安顺)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后不放回,再随机摸取一个小球,则两次取出的小球标号的和等于5的概率为13.【分析】画树状图,共有12种等可能的结果,其中两次取出的小球标号和等于5的结果有4种,再由概率公式求解即可. 【解答】解:画树状图如下:共有12种等可能的结果,其中两次取出的小球标号和等于5的结果有4种, ∴两次取出的小球标号和等于5的概率为412=13,故答案为:13.【点评】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2022•安顺)已知正方形ABCD 的边长为4,E 为CD 上一点,连接AE 并延长交BC 的延长线于点F ,过点D 作DG ⊥AF ,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M 为BD 上一动点,分别连接MC ,MN .若S △DCG S △FCE=19,则MC +MN 的最小值为5√172.【分析】由正方形的性质,可得A 点与C 点关于BD 对称,则有MN +CM =MN +AM ≥AN ,所以当A 、M 、N 三点共线时,MN +CM 的值最小为AN ,先证明△DCG ∽△FCE ,再由S △DCG S △FCE=19,可知CD CF=13,分别求出DE =1,CE =3,CF =12,即可求出AN .【解答】解:如图,连接AM ,∵四边形ABCD 是正方形, ∴A 点与C 点关于BD 对称, ∴CM =AM ,∴MN +CM =MN +AM ≥AN ,∴当A 、M 、N 三点共线时,MN +CM 的值最小, ∵AD ∥CF , ∴∠DAE =∠F , ∵∠DAE +∠DEH =90°, ∵DG ⊥AF ,∴∠CDG +∠DEH =90°, ∴∠DAE =∠CDG , ∴∠CDG =∠F , ∴△DCG ∽△FCE ,∵S △DCG S △FCE =19,∴CD CF=13,∵正方形边长为4, ∴CF =12, ∵AD ∥CF , ∴AD CF=DE CE=13,∴DE =1,CE =3,在Rt △CEF 中,EF 2=CE 2+CF 2, ∴EF =√32+122=3√17, ∵N 是EF 的中点, ∴EN =3√172, 在Rt △ADE 中,EA 2=AD 2+DE 2, ∴AE =√42+12=√17, ∴AN =5√172, ∴MN +MC 的最小值为5√172,故答案为:5√172, 【点评】本题考查轴对称求最短距离,熟练掌握正方形的性质,用轴对称求最短距离的方法,灵活应用三角形相似、勾股定理是解题的关键.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(12分)(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1−√3|−√12. (2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =12. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答. 【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1−√3|−√12 =1+1+2×√32+√3−1﹣2√3 =2+√3+√3−1﹣2√3 =1;(2)(x+3)2+(x+3)(x﹣3)﹣2x(x+1)=x2+6x+9+x2﹣9﹣2x2﹣2x=4x,当x=12时,原式=4×12=2.【点评】本题考查了整式的混合运算﹣化简求值,实数的运算,零指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.18.(10分)(2022•安顺)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了七年级部分学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后得到下列不完整的统计表:睡眠时间频数频率t<730.067≤t<8a0.168≤t<9100.209≤t<1024bt≥1050.10请根据统计表中的信息回答下列问题.(1)a=8,b=0.48;(2)请估计该校600名七年级学生中平均每天的睡眠时间不足9小时的人数;(3)研究表明,初中生每天睡眠时间低于9小时,会影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.【分析】(1)根据统计表中的数据,可以计算出本次抽查的人数,然后即可计算出a、b 的值;(2)根据统计表中的数据,可以计算出该校600名七年级学生中平均每天的睡眠时间不足9小时的人数;(3)根据表格中的数据,写出一条合理化建议即可,本题答案不唯一.【解答】解:(1)本次抽取的学生有:3÷0.06=50(人),a=50×0.16=8,b=24÷50=0.48,故答案为:8,0.48;(2)600×(0.06+0.16+0.20)=600×0.42=252(人),答:估计该校600名七年级学生中平均每天的睡眠时间不足9小时的有252人;(3)根据表格中的数据可知,有接近一半的学生的睡眠时间不足9小时,给学校的建议是:近期组织一次家长会,就学生们的睡眠时间进行强调,要求家长监管好孩子们的睡眠时间,要不少于9小时.【点评】本题考查统计表、用样本估计总体,解答本题的关键是明确题意,求出本次调查的人数.19.(10分)(2022•安顺)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =1,D 是BC 边上的一点,以AD 为直角边作等腰Rt △ADE ,其中∠DAE =90°,连接CE .(1)求证:△ABD ≌△ACE ;(2)若∠BAD =22.5°时,求BD 的长.【分析】(1)由“SAS ”可证△ABD ≌△ACE ;(2)由等腰三角形三角形的性质可得BC 的长,由角度关系可求∠ADC =67.5°=∠CAD ,可得AC =CD =1,即可求解.【解答】(1)证明:∵∠BAC =90°=∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS );(2)解:∵∠BAC =90°,AB =AC =1,∴BC =√2,∠B =∠ACB =45°,∵∠BAD =22.5°,∴∠ADC =67.5°=∠CAD ,∴AC =CD =1,∴BD =√2−1.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.20.(10分)(2022•安顺)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在y 轴上,A ,C 两点的坐标分别为(4,0),(4,m ),直线CD :y =ax +b (a ≠0)与反比例函数y =k x (k ≠0)的图象交于C ,P (﹣8,﹣2)两点.(1)求该反比例函数的解析式及m 的值;(2)判断点B 是否在该反比例函数的图象上,并说明理由.【分析】(1)把P (﹣8,﹣2)代入y =k x 可得反比例函数的解析式为y =16x ,即得m =164=4;(2)连接AC ,BD 交于H ,由C (4,4),P (﹣8,﹣2)得直线CD 的解析式是y =12x +2,即得D (0,2),根据四边形ABCD 是菱形,知H 是AC 中点,也是BD 中点,由A (4,0),C (4,4)可得H (4,2),设B (p ,q ),有{p+02=4q+22=2,可解得B (8,2),从而可知B 在反比例函数y =16x的图象上. 【解答】解:(1)把P (﹣8,﹣2)代入y =k x 得:﹣2=k −8,解得k =16,∴反比例函数的解析式为y =16x ,∵C (4,m )在反比例函数y =16x的图象上, ∴m =164=4; ∴反比例函数的解析式为y =16x ,m =4;(2)B 在反比例函数y =16x 的图象上,理由如下: 连接AC ,BD 交于H ,如图:把C (4,4),P (﹣8,﹣2)代入y =ax +b 得:{4a +b =4−8a +b =−2, 解得{a =12b =2, ∴直线CD 的解析式是y =12x +2,在y =12x +2中,令x =0得y =2,∴D (0,2),∵四边形ABCD 是菱形,∴H 是AC 中点,也是BD 中点,由A (4,0),C (4,4)可得H (4,2),设B (p ,q ),∵D (0,2),∴{p+02=4q+22=2, 解得{p =8q =2, ∴B (8,2),在y =16x 中,令x =8得y =2,∴B在反比例函数y=16x的图象上.【点评】本题考查反比例函数与一次函数综合,涉及待定系数法,菱形的性质及应用,函数图象上点坐标的特征等,解题的关键是求出点B的坐标.21.(10分)(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈4 5,cos53°≈35,tan53°≈43)(1)求坡面CB的坡度;(2)求基站塔AB的高.【分析】(1)过点D作AB的垂线,交AB的延长线于点F,过点D作DM⊥CE,垂足为M.由勾股定理可求出答案;(2)设DF=4a米,则ME=4a米,BF=3a米,由于△ACN是等腰直角三角形,可表示BE,在△ADF中由锐角三角函数可列方程求出DF,进而求出AB.【解答】解:(1)如图,过点D作AB的垂线,交AB的延长线于点F,过点D作DM⊥CE,垂足为M.由题意可知:CD=50米,DM=30米.在Rt △CDM 中,由勾股定理得:CM 2=CD 2﹣DM 2,∴CM =40米,∴斜坡CB 的坡度=DM :CM =3:4;(2)设DF =4a 米,则MN =4a 米,BF =3a 米,∵∠ACN =45°,∴∠CAN =∠ACN =45°,∴AN =CN =(40+4a )米,∴AF =AN ﹣NF =AN ﹣DM =40+4a ﹣30=(10+4a )米.在Rt △ADF 中,∵DF =4a 米,AF =(10+4a )米,∠ADF =53°,∴tan ∠ADF =AF DF , ∴43=10+4a 4a, ∴解得a =152,∴AF =10+4a =10+30=40(米),∵BF =3a =452米, ∴AB =AF ﹣BF =40−452=352(米). 答:基站塔AB 的高为352米.【点评】本题考查解直角三角形,通过作垂线构造直角三角形,利用直角三角形的边角关系和坡度的意义进行计算是常用的方法.22.(10分)(2022•安顺)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A 块种植杂交水稻,B 块种植普通水稻,A 块试验田比B 块试验田少4亩.(1)A 块试验田收获水稻9600千克、B 块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B 块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B 块试验田改种杂交水稻?【分析】(1)设普通水稻的亩产量是x 千克,则杂交水稻的亩产量是2x 千克,利用种植亩数=总产量÷亩产量,结合A 块试验田比B 块试验田少4亩,即可得出关于x 的分式方程,解之即可得出普通水稻的亩产量,再将其代入2x 中即可求出杂交水稻的亩产量;(2)设把y 亩B 块试验田改种杂交水稻,利用总产量=亩产量×种植亩数,结合总产量不低于17700千克,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设普通水稻的亩产量是x 千克,则杂交水稻的亩产量是2x 千克, 依题意得:7200x −96002x =4,解得:x =600,经检验,x =600是原方程的解,且符合题意,则2x =2×600=1200.答:普通水稻的亩产量是600千克,杂交水稻的亩产量是1200千克;(2)设把y 亩B 块试验田改种杂交水稻,依题意得:9600+600(7200600−y )+1200y ≥17700, 解得:y ≥1.5.答:至少把1.5亩B 块试验田改种杂交水稻.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(12分)(2022•安顺)如图,AB 是⊙O 的直径,点E 是劣弧BD 上一点,∠P AD =∠AED ,且DE =√2,AE 平分∠BAD ,AE 与BD 交于点F .(1)求证:P A 是⊙O 的切线;(2)若tan ∠DAE =√22,求EF 的长;(3)延长DE ,AB 交于点C ,若OB =BC ,求⊙O 的半径.【分析】(1)由AB 是⊙O 的直径,可得∠DAB +∠ABD =90°,而∠P AD =∠AED ,∠AED =∠ABD ,有∠P AD =∠ABD ,故∠DAB +∠P AD =90°,可得AB ⊥PB ,BP 是⊙O 的切线;(2)连接BE ,由AB 是⊙O 的直径,得∠AEB =90°,又AE 平分∠BAD ,有∠DAE =∠BAE ,故DÊ=BE ̂,∠DAE =∠BAE =∠DBE ,可得√2=√22,EF =1; (3)连接OE ,可得OE ∥AD ,有OC OA =CEDE ,从而CE =2√2,CD =CE +DE =3√2设BC=OB =OA =R ,证明△CBD ∽△CEA ,及有3√23R =2√2,解得⊙O 的半径是2. 【解答】(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠ABD =90°,∵∠P AD =∠AED ,∠AED =∠ABD ,∴∠P AD =∠ABD ,∴∠DAB +∠P AD =90°,即∠ABP =90°,∴AB ⊥PB ,∵AB 是⊙O 的直径,∴BP 是⊙O 的切线;(2)解:连接BE ,如图:∵AB 是⊙O 的直径,∴∠AEB =90°,∵AE 平分∠BAD ,∴∠DAE =∠BAE ,∴DÊ=BE ̂,∠DAE =∠BAE =∠DBE , ∴BE =DE =√2,tan ∠DAE =tan ∠BAE =tan ∠DBE =EF BE =√22,∴√2=√22, ∴EF =1;(3)解:连接OE ,如图:∵OE =OA ,∴∠AEO =∠OAE ,∵∠OAE =∠DAE ,∴∠AEO =∠DAE ,∴OE ∥AD ,∴OC OA =CEDE ,∵OA =OB =BC ,∴OC OA =2, ∴CEDE =2, ∵DE =√2,∴CE =2√2,CD =CE +DE =3√2设BC =OB =OA =R ,∵∠BDC =∠BAE ,∠C =∠C ,∴△CBD ∽△CEA ,∴CD AC =BC CE ,即3√23R =2√2,∴R =2,∴⊙O 的半径是2.【点评】本题考查圆的性质及应用,涉及相似三角形判定与性质,锐角三角函数,圆的切线等知识,解题的关键是作辅助线,构造直角三角形,平行线转化比例解决问题.24.(12分)(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),(12,12),(−√2,−√2),……都是和谐点. (1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点(52,52). ①求a ,c 的值;②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【分析】(1)设函数y =2x +1的和谐点为(x ,x ),可得2x +1=x ,求解即可;(2)将点(52,52)代入y =ax 2+6x +c ,再由ax 2+6x +c =x 有且只有一个根,Δ=25﹣4ac =0,两个方程联立即可求a 、c 的值;②由①可知y =﹣x 2+6x ﹣6=﹣(x ﹣3)2+3,当x =1时,y =﹣1,当x =3时,y =3,当x =5时,y =﹣1,则3≤m ≤5时满足题意.【解答】解:(1)存在和谐点,理由如下,设函数y =2x +1的和谐点为(x ,x ),∴2x +1=x ,解得x =﹣1,∴和谐点为(﹣1,﹣1);(2)①∵点(52,52)是二次函数y =ax 2+6x +c (a ≠0)的和谐点, ∴52=254a +15+c ,∴c =−254a −252, ∵二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点,∴ax 2+6x +c =x 有且只有一个根,∴Δ=25﹣4ac =0,∴a =﹣1,c =−254; ②由①可知y =﹣x 2+6x ﹣6=﹣(x ﹣3)2+3,∴抛物线的对称轴为直线x =3,当x =1时,y =﹣1,当x =3时,y =3,当x =5时,y =﹣1,∵函数的最大值为3,最小值为﹣1;当3≤m ≤5时,函数的最大值为3,最小值为﹣1.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,并与二次函数的性质结合解题是关键.25.(12分)(2022•安顺)如图1,在矩形ABCD 中,AB =10,AD =8,E 是AD 边上的一点,连接CE ,将矩形ABCD 沿CE 折叠,顶点D 恰好落在AB 边上的点F 处,延长CE 交BA 的延长线于点G .(1)求线段AE 的长;(2)求证四边形DGFC 为菱形;(3)如图2,M ,N 分别是线段CG ,DG 上的动点(与端点不重合),且∠DMN =∠DCM ,设DN =x ,是否存在这样的点N ,使△DMN 是直角三角形?若存在,请求出x 的值;若不存在,请说明理由.【分析】(1)在直角三角形BCF 中,由勾股定理求出BF =6,进而求得AF =4,设AE =x ,则EF =DE =8﹣x ,在直角三角形AEF ,根据勾股定理累出关于x 的方程;(2)根据CD ∥AB 得出△AGE ∽△DCE ,从而得出AG CD =AE DE ,求出AG =6;(3)先求得∠BGC 的正切和正弦值,当∠MDN =90°时,解直角三角形DGM 和直角三角形DMN ;当∠DMN =90°时,解直角三角形DMG 和直角三角形DMN .【解答】(1)解:∵四边形ABCD 是矩形,∴∠DAB =∠B =∠ADC =90°,CD =BD =10,BC =AD =8,在Rt △BCF 中,CF =CD =10,BC =8,∴BF =6,∴AF =AB ﹣BF =4,设AE =x ,则EF =DE =8﹣x ,。
【真题】贵州省铜仁市中考数学试题含答案解析()

贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×1083.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.167.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1 10.(4.00分)计算+++++……+的值为()A. B. C.D.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=.12.(4.00分)因式分解:a3﹣ab2=.13.(4.00分)一元一次不等式组的解集为.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=°.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000=1.17×107.故选:A.3.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.【分析】根据题意和题目中的数据可以求得点数为奇数的概率.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.7.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.8.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.(4.00分)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912.(4.00分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).13.(4.00分)一元一次不等式组的解集为x>﹣1.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x>﹣2,所以不等式组的解集为:x>﹣1.故答案为x>﹣1.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=150°.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.【解答】解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决.【解答】解:,∴=6,故答案为:6.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=4.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(﹣1,﹣2)或(2,1).【分析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(1,0)、B(0,﹣1)代入,得:,解得:,∴直线AB的解析式为y=x﹣1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(﹣1,﹣2)或(2,1),故答案为:(﹣1,﹣2)或(2,1).三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=2﹣4×﹣1﹣2=2﹣2﹣1﹣2=﹣3;(2)原式=(﹣)÷=•=,当x=2时,原式==2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.【解答】解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB、AB和∠ACB可以求得DB、CB的长度,根据CD=CB ﹣DB可以求出AB的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q 坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.。
2022年贵州省六盘水市中考数学试卷及其答案

2022年贵州省六盘水市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)全国统一规定的交通事故报警电话号码是()A.122B.110C.120D.1142.(3分)下列汉字中,能看成轴对称图形的是()A.坡B.上C.草D.原3.(3分)如图是某桥洞的限高标志,则能通过此桥洞的车辆高度是()A.6.5m B.6m C.5.5m D.4.5m4.(3分)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°5.(3分)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是()A.相切B.相交C.相离D.平行6.(3分)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是()A.①B.②C.③D.④7.(3分)从调查消费者购买汽车能源类型的扇形统计图中可看出,人们更倾向购买的是()A.纯电动车B.混动车C.轻混车D.燃油车8.(3分)如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到()A.三角形B.梯形C.正方形D.五边形9.(3分)如图是一次函数y=kx+b的图象,下列说法正确的是()A.y随x增大而增大B.图象经过第三象限C.当x≥0时,y≤b D.当x<0时,y<010.(3分)我国“DF﹣41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF﹣41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x分钟能打击到目标,可以得到方程()A.26×340×60x=12000B.26×340x=12000C.=12000D.=1200011.(3分)两个小伙伴拿着如图的密码表玩听声音猜动物的游戏,若听到“咚咚﹣咚咚,咚﹣咚,咚咚咚﹣咚”表示的动物是“狗”,则听到“咚咚﹣咚,咚咚咚﹣咚咚,咚﹣咚咚咚”时,表示的动物是()A.狐狸B.猫C.蜜蜂D.牛12.(3分)已知(x +y )4=a 1x 4+a 2x 3y +a 3x 2y 2+a 4xy 3+a 5y 4,则a 1+a 2+a 3+a 4+a 5的值是()A.4B.8C.16D.32二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)计算:﹣2=.14.(4分)如图,将△ABC 绕点A 旋转得到△ADE ,若∠B =90°,∠C =30°,AB =1,则AE =.15.(4分)如图是二次函数y =x 2+bx +c 的图象,该函数的最小值是.16.(4分)将一副去掉大小王的扑克牌平均分发给甲、乙、丙、丁四人,已知甲有5张红桃牌,乙有4张红桃牌,那么丁的红桃牌有种不同的情况.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)计算:(1)32+()0+()﹣1;(2)若(a +1)2+|b ﹣2|+=0,求a (b +c )的值.18.(10分)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.19.(10分)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC满足什么条件时,四边形AECF是矩形?请写出证明过程.20.(10分)钢钢准备在重阳节购买鲜花到敬老院看望老人,现将自己在劳动课上制作的竹篮和陶罐拿到学校的“跳蚤市场”出售,以下是购买者的出价:(1)根据对话内容,求钢钢出售的竹篮和陶罐数量;(2)钢钢接受了钟钟的报价,交易后到花店购买单价为5元/束的鲜花,剩余的钱不超过20元,求有哪几种购买方案.21.(10分)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)22.(12分)如图,正比例函数y=x与反比例函数y=的图象交于A,B两点.(1)求A,B两点的坐标;(2)将直线y=x向下平移a个单位长度,与反比例函数在第一象限的图象交于点C,与x轴交于点D,与y轴交于点E,若=,求a的值.23.(12分)为倡导“全民健身,健康向上”的生活方式,我市教育系统特举办教职工气排球比赛.比赛采取小组循环,每场比赛实行三局两胜制,取实力最强的两支队伍参加决赛,从C组的比分胜负表中知道二中胜4场负1场.教职工气排球比赛比分胜负表C组一中二中三中四中五中六中一中\21:1621:1921:922:2415:2114:2124:2221:235:2118:2112:1515:9二中16:21\21:1321:1314:2122:2021:1421:1721:1119:2119:2115:1216:14三中19:2113:21\21:1621:18B′22:2417:2121:186:2112:15四中9:2113:2116:21\A′21:1123:2111:2118:219:219:158:15五中24:2221:1418:21A\21:2321:521:1921:618:2115:12六中21:1520:22B11:2123:21\21:1821:1921:921:1814:1615:8(1)根据表中数据可知,一中共获胜场,“四中VS五中”的比赛获胜可能性最大的是;(2)若A处的比分是21:10和21:8,并且参加决赛的队伍是二中和五中,则B′处的比分可以是和(两局结束比赛,根据自己的理解填写比分);(3)若A′处的比分是10:21和8:21,B处的比分是21:18,15:21,15:12,那么实力最强的是哪两支队伍,请说明理由.24.(12分)牂牁江“余月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,如图是月亮洞的截面示意图.(1)科考队测量出月亮洞的洞宽CD约是28m,洞高AB约是12m,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径OC的长(结果精确到0.1m);(2)若∠COD=162°,点M在上,求∠CMD的度数,并用数学知识解释为什么“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.25.(12分)“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.2022年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)全国统一规定的交通事故报警电话号码是()A.122B.110C.120D.114【分析】根据全国统一规定的交通事故报警电话号码是122即可得出答案.【解答】解:全国统一规定的交通事故报警电话号码是122,故选:A.【点评】本题考查数学常识,掌握全国统一规定的交通事故报警电话号码是122是解题的关键.2.(3分)下列汉字中,能看成轴对称图形的是()A.坡B.上C.草D.原【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,B,D选项中的汉字都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的汉字能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)如图是某桥洞的限高标志,则能通过此桥洞的车辆高度是()A.6.5m B.6m C.5.5m D.4.5m【分析】根据标志内容为限高5m可得,能通过此桥洞的车辆高度必须不能超过5m,【解答】解:由标志内容可得,能通过此桥洞的车辆高度必须不能超过5m,故选:D.【点评】此题考查了不等式的应用能力,关键是能根据标志牌内容准确获得通过车辆高度的范围.4.(3分)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.【点评】本题主要考查平行线的性质,熟练掌握平行线的性质是解决本题的关键.5.(3分)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是()A.相切B.相交C.相离D.平行【分析】直接利用直线与圆的位置关系的定义进行判断.【解答】解:根据直线与圆的位置关系可得,图中餐盘与筷子可看成直线和圆的位置关系相交,故选:B.【点评】本题主要考查了直线与圆的位置关系,根据交点个数直接判断是解题的关键.6.(3分)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是()A.①B.②C.③D.④【分析】根据正方体的表面展开图,即可解答.【解答】解:如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是①,故选:A.【点评】本题考查了展开图折叠成几何体,熟练掌握正方体的表面展开图是解题的关键.7.(3分)从调查消费者购买汽车能源类型的扇形统计图中可看出,人们更倾向购买的是()A.纯电动车B.混动车C.轻混车D.燃油车【分析】根据扇形图即可观察出纯电动车占的最多.【解答】解:根据扇形图即可观察出纯电动车占的最多.故答案为:A.【点评】本题考查扇形统计图,解题的关键是明确扇形统计图的特点,从中可以得到相关的信息.8.(3分)如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到()A.三角形B.梯形C.正方形D.五边形【分析】动手操作可得结论.【解答】解:将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到:正方形.故选:C.【点评】本题考查剪纸问题,正方形的判定和性质,矩形的性质等知识,解题的关键是学会动手操作,属于中考常考题型.9.(3分)如图是一次函数y=kx+b的图象,下列说法正确的是()A.y随x增大而增大B.图象经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图象和性质进行判断即可.【解答】解:由图象得:图象过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图象得:与y轴的交点为(0,b),所以当x≥0时,从图象看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,一次函数图象的性质,关键是灵活运用一次函数图象的性质.10.(3分)我国“DF﹣41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF﹣41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x分钟能打击到目标,可以得到方程()A.26×340×60x=12000B.26×340x=12000C.=12000D.=12000【分析】根据速度×时间=路程列方程,时间单位换算成分,路程单位换算成公里即可得出答案.【解答】解:根据题意得:=12000,故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,掌握1公里=1千米=1000米是解题的关键.11.(3分)两个小伙伴拿着如图的密码表玩听声音猜动物的游戏,若听到“咚咚﹣咚咚,咚﹣咚,咚咚咚﹣咚”表示的动物是“狗”,则听到“咚咚﹣咚,咚咚咚﹣咚咚,咚﹣咚咚咚”时,表示的动物是()A.狐狸B.猫C.蜜蜂D.牛【分析】根据点的坐标解决此题.【解答】解:由题意知,咚咚﹣咚咚对应(2,2),咚﹣咚对应(1,1),咚咚咚﹣咚对应(3,1).∴咚咚﹣咚对应(2,1),表示C;咚咚咚﹣咚咚对应(3,2),表示A;咚﹣咚咚咚对应(1,3),表示T.∴此时,表示的动物是猫.故选:B.【点评】本题主要考查点的坐标,熟练掌握点的坐标的表示方法与意义是解决本题的关键.12.(3分)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是()A.4B.8C.16D.32【分析】通过计算(x+y)4的结果可得a1,a2,a3,a4,a5的值,再求解此题结果即可.【解答】解:∵(x+y)4=x4+4x3y+6x2y2+4xy3+y4,∴a1=1,a2=4,a3=6,a4=4,a5=1,∴a1+a2+a3+a4+a5=1+4+6+4+1=16,故选:C.【点评】此题考查了整式乘法的综合运用能力,关键是能进行整式乘法的准确计算.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)计算:﹣2=0.【分析】先化简各个二次根式,再合并同类二次根式.【解答】解:﹣2=2﹣2=0.故答案为0.【点评】本题考查二次根式的加减,解题的关键是首先化简各个二次根式,再合并同类二次根式.14.(4分)如图,将△ABC绕点A旋转得到△ADE,若∠B=90°,∠C=30°,AB=1,则AE=2.【分析】由直角三角形的性质可得AC=2AB=2,由旋转的性质可得AE=AC=2.【解答】解:∵∠B=90°,∠C=30°,∴AC=2AB=2,∵将△ABC绕点A旋转得到△ADE,∴AE=AC=2,故答案为:2.【点评】本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是解题的关键.15.(4分)如图是二次函数y=x2+bx+c的图象,该函数的最小值是﹣4.小值.解得:b=2,∵图象经过(﹣3,0)点,∴0=(﹣3)2﹣3×2+c,解得:c=﹣3,故二次函数解析式为:y=x2+2x﹣3,则二次函数的最小值为:==﹣4.故答案为:﹣4.【点评】此题主要考查了二次函数的最值以及二次函数的图象,正确求出二次函数解析式是解题关键.16.(4分)将一副去掉大小王的扑克牌平均分发给甲、乙、丙、丁四人,已知甲有5张红桃牌,乙有4张红桃牌,那么丁的红桃牌有五种不同的情况.【分析】确定一副扑克牌有红桃牌的数目,根据题意分析得到答案.【解答】解:∵一副扑克牌有13张红桃牌,甲有5张红桃牌,乙有4张红桃牌,∴剩余4张红桃牌,∴丁的红桃牌有0,1,2,3,4张五种情况,故答案为:五.【点评】本题考查的是随机事件,根据一副扑克牌有红桃牌的数目得出结论.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)计算:(1)32+()0+()﹣1;(2)若(a+1)2+|b﹣2|+=0,求a(b+c)的值.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)利用非负数的性质求出a,b,c的值,代入原式计算即可求出值.【解答】解:(1)原式=9+1+3=13;(2)∵(a+1)2+|b﹣2|+=0,∴a+1=0,b﹣2=0,c+3=0,解得:a=﹣1,b=2,c=﹣3,则原式=﹣1×(2﹣3)=1.【点评】此题考查了实数的运算,非负数的性质,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(10分)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积a2﹣M;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.【分析】(1)根据面积之间的关系,从边长为a的正方形面积中,减去不能使用的面积M即可;(2)用代数式表示A比B多出的使用面积,再利用平方差公式进行计算即可.【解答】解:(1)A中能使用的面积=大正方形的面积﹣不能使用的面积,即a2﹣M,故答案为:a2﹣M;(2)A比B多出的使用面积为:(a2﹣M)﹣(b2﹣M)=a2﹣b2=(a+b)(a﹣b)=10×5=50,答:A比B多出的使用面积为50.【点评】本题考查列代数式,掌握图形面积的计算方法以及面积之间的和差关系是正确解答的前提.19.(10分)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC满足什么条件时,四边形AECF是矩形?请写出证明过程.【分析】(1)由ASA证△ABE≌△CDF即可;(2)由(1)可知,∠CAE=∠ACF,则AE∥CF,再由全等三角形的性质得AE=CF,则四边形AECF 是平行四边形,然后由等腰三角形的在得∠AEC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AB∥CD,∴∠BAC=∠ACD,∵AE平分∠BAC、CF平分∠ACD,∴∠BAE=∠CAE=∠BAC,∠DCF=∠ACF=∠ACD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:当△ABC满足AB=AC时,四边形AECF是矩形,理由如下:由(1)可知,∠CAE=∠ACF,∴AE∥CF,∵△ABE≌△CDF,∴AE=CF,∴四边形AECF是平行四边形,又∵AB=AC,AE平分∠BAC,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.20.(10分)钢钢准备在重阳节购买鲜花到敬老院看望老人,现将自己在劳动课上制作的竹篮和陶罐拿到学校的“跳蚤市场”出售,以下是购买者的出价:(1)根据对话内容,求钢钢出售的竹篮和陶罐数量;(2)钢钢接受了钟钟的报价,交易后到花店购买单价为5元/束的鲜花,剩余的钱不超过20元,求有哪几种购买方案.【分析】(1)设出售的竹篮x个,陶罐y个,根据“每个竹篮5元,每个陶罐12元共需61元;每个竹篮6元,每个陶罐10元共需60元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买鲜花a束,根据总价=单价×数量结合剩余的钱不超过20元,即可得出关于a的一元一次不等式组,解之取其中的整数值,即可得出各购买方案.【解答】解:(1)设出售的竹篮x个,陶罐y个,依题意有:,解得:.故出售的竹篮5个,陶罐3个;(2)设购买鲜花a束,依题意有:0<61﹣5a≤20,解得8.2≤a<12.2,∵a为整数,∴共有4种购买方案,方案一:购买鲜花9束;方案二:购买鲜花10束;方案三:购买鲜花11束;方案四:购买鲜花12束.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.21.(10分)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)【分析】(1)根据对称性得出AD=2m,再根据锐角三角函数求出OD,即可求出答案;(2)过点E作EH⊥AB于H,得出EH=BF=3m,再分别求出∠α=65°和45°时,AH的值,即可求出答案.【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.【点评】此题主要考查了锐角三角函数,矩形的判定和性质,熟练应用锐角三角函数是解本题的关键.22.(12分)如图,正比例函数y=x与反比例函数y=的图象交于A,B两点.(1)求A,B两点的坐标;(2)将直线y=x向下平移a个单位长度,与反比例函数在第一象限的图象交于点C,与x轴交于点D,与y轴交于点E,若=,求a的值.【分析】(1)根据正比例函数与反比例函数,即可求出两交点坐标;(2)根据直线y=x向下平移a个单位长度,可得直线CD解析式为:y=x﹣a,所以点D的坐标为(a,0),过点C作CF⊥x轴于点F,根据CF∥OE,可得==,所以FD=a,可得点C的坐标是(a,a).然后利用反比例函数即可解决问题.【解答】解:(1)∵正比例函数y=x与反比例函数y=的图象交于A、B两点,∴x=,解得x=±2,∴A(2,2),B(﹣2,﹣2);(2)∵直线y=x向下平移a个单位长度,∴直线CD解析式为:y=x﹣a,当y=0时,x=a,∴点D的坐标为(a,0),如图,过点C作CF⊥x轴于点F,∴CF∥OE,∴==,∴FD=a,∴OF=OD+FD=a,∵点C在直线CD上,∴y=a﹣a=a,∴CF=a,∴点C的坐标是(a,a).∵点C在反比例函数y=的图象上,∴a×a=4,解得a=±3(负值舍去),∴a=3.【点评】本题是一次函数与反比例函数的交点问题,考查了一次函数图象上点的坐标特征,反比例函数的中心对称性,熟练掌握反比例函数的性质是解题的关键.23.(12分)为倡导“全民健身,健康向上”的生活方式,我市教育系统特举办教职工气排球比赛.比赛采取小组循环,每场比赛实行三局两胜制,取实力最强的两支队伍参加决赛,从C组的比分胜负表中知道二中胜4场负1场.教职工气排球比赛比分胜负表C组一中二中三中四中五中六中一中\21:1621:1921:922:2415:2114:2124:2221:235:2118:2112:1515:9二中16:21\21:1321:1314:2122:2021:1421:1721:1119:2119:2115:1216:14三中19:2113:21\21:1621:18B′22:2417:2121:186:2112:15四中9:2113:2116:21\A′21:1123:2111:2118:219:219:158:15五中24:2221:1418:21A\21:2321:521:1921:618:2115:12六中21:1520:22B11:2123:21\21:1821:1921:921:1814:1615:8(1)根据表中数据可知,一中共获胜2场,“四中VS五中”的比赛获胜可能性最大的是五中;(2)若A处的比分是21:10和21:8,并且参加决赛的队伍是二中和五中,则B′处的比分可以是21:19和20:18(两局结束比赛,根据自己的理解填写比分);(3)若A′处的比分是10:21和8:21,B处的比分是21:18,15:21,15:12,那么实力最强的是哪两支队伍,请说明理由.【分析】(1)根据题中已有数据,可分别得出每所中学的胜负情况,再进行比较即可;(2)在已得出的数据上进行分析即可;(3)在已得出的数据上进行分析即可.【解答】解:(1)根据表中数据可知,一中胜2负3;二中胜4负1;三中胜1负3;四中胜0负4;五中胜3负1;六中胜3负1.从数据中可知,四中的能力较差,获胜的可能较小;故答案为:2;五中;(2)若A处的比分是21:10和21:8,则五中胜,即五中胜4负1;∵参加决赛的队伍是二中和五中,∴在六中V三中时,三中胜,∴B′处的比分可以是:21:20;18:16,三中胜;故答案为:21:19;20:18;(3)若A′处的比分是10:21和8:21,则五中胜,四中负;B处的比分是21:18,15:21,15:12,则六中胜,三中负;则一中胜2负3;二中胜4负1;三中胜1负4;四中胜0负5;五中胜4负1;六中胜4负1.∵二中胜六中2:1,输五中0:2;五中胜二中2:0,输六中0:2,六中胜五中2:0,输二中1:2,三队之间都是1胜1负,但胜负局数不一样,二中胜2负3;五中胜2负2;六中胜3负2,∴实力较强的两支队伍是六中和五中.(答案不唯一)【点评】本题属于推理填空题,主要考查可能性,数据的分析能力,看懂所给表格,并得出各个队伍胜负情况是解题关键.24.(12分)牂牁江“余月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,如图是月亮洞的截面示意图.(1)科考队测量出月亮洞的洞宽CD约是28m,洞高AB约是12m,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径OC的长(结果精确到0.1m);(2)若∠COD=162°,点M在上,求∠CMD的度数,并用数学知识解释为什么“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.【分析】(1)设OA=OC=Rm,利用勾股定理求出R即可;(2)补全⊙O,在CD的下方取一点N,连接CN,DN,CM,DM,利用圆周角定理,圆内接四边形的性质求解即可.【解答】解:(1)设OA=OC=Rm,∵OA⊥CD,∴CB=BD=CD=14m,在Rt△COB中,OC2=OB2+CB2,∴R2=142+(R﹣12)2,∴R=,∴OC=≈14.2m.(2)补全⊙O,在CD的下方取一点N,连接CN,DN,CM,DM,∵∠N=∠COD=81°,∵∠CMD+∠N=180°,∴∠CMD=99°.∵∠CMD=99°不变,是定值,∴“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.【点评】本题考查垂径定理的应用,圆周角定理,圆内接四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.25.(12分)“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段FA的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.【点评】本题主要考查了作图﹣应用设计作图,尺规作图,坐标与图形的性质,函数关系式等知识,得出y与x的函数关系式是解题的关键.。
2022年贵州省黔西南州中考数学试卷-含答案详解

2022年贵州省黔西南州中考数学试卷及答案解析一、选择题(本题10小题,每小题4分,共40分)1.(4分)(2022•黔西南州)﹣3的绝对值是( )A .±3B .3C .﹣3D .−132.(4分)(2022•黔西南州)如图,是由6个相同的正方体组成的立体图形,它的俯视图是( )A .B .C .D .3.(4分)(2022•黔西南州)据央视6月初报道,电信5G 技术赋能千行百业,打造数字经济底座.5G 牌照发放三年来,三大电信运营商共投资4772亿元.把数字4772亿用科学记数法表示为( )A .4.772×109B .4.772×1010C .4.772×1011D .4.772×10124.(4分)(2022•黔西南州)计算(﹣3x )2•2x 正确的是( )A .6x 3B .12x 3C .18x 3D .﹣12x 3 5.(4分)(2022•黔西南州)小明解方程x+12−1=x−23的步骤如下: 解:方程两边同乘6,得3(x +1)﹣1=2(x ﹣2)①去括号,得3x +3﹣1=2x ﹣2②移项,得3x ﹣2x =﹣2﹣3+1③合并同类项,得x =﹣4④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④ 6.(4分)(2022•黔西南州)在平面直角坐标系中,反比例函数y =k x (k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过的象限是( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四7.(4分)(2022•黔西南州)在△ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB =AE B .AD =CDC .AE =CED .∠ADE =∠CDE8.(4分)(2022•黔西南州)在如图所示的Rt △ABC 纸片中,∠ACB =90°,D 是斜边AB的中点,把纸片沿着CD 折叠,点B 到点E 的位置,连接AE .若AE ∥DC ,∠B =α,则∠EAC 等于( )A .αB .90°﹣αC .12αD .90°﹣2α9.(4分)(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .36x−4=2×30x B .36x+4=2×30x C .36x =2×30x−4 D .36x =2×30x+4 10.(4分)(2022•黔西南州)如图,在平面直角坐标系中,矩形ABCD 的顶点A 在第一象限,B ,D 分别在y 轴上,AB 交x 轴于点E ,AF ⊥x 轴,垂足为F .若OE =3,EF =1.以下结论正确的个数是( )①OA =3AF ;②AE 平分∠OAF ;③点C 的坐标为(﹣4,−√2);④BD =6√3;⑤矩形ABCD 的面积为24√2.A .2个B .3个C .4个D .5个二、填空题(本题10小题,每小题3分,共30分)11.(3分)(2022•黔西南州)计算:x+y x−y −2y x−y = .12.(3分)(2022•黔西南州)已知点(2,y 1),(3,y 2)在反比例函数y =6x 的图象上,则y 1与y 2的大小关系是 .13.(3分)(2022•黔西南州)如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠B=60°,∠D =45°,AC 与DE 相交于点F .若BC ∥AE ,则∠AFE 的度数为 .14.(3分)(2022•黔西南州)某校九(1)班10名同学进行“引体向上”训练,将他们做的次数进行统计,制成下表,则这10名同学做的次数组成的一组数据中,中位数为.次数45678人数23221 15.(3分)(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是.16.(3分)(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是.17.(3分)(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=−112x2+23x+53,则铅球推出的水平距离OA的长是m.18.(3分)(2022•黔西南州)如图,边长为4的正方形ABCD的对角线交于点O,以OC 为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是.19.(3分)(2022•黔西南州)如图,我海军舰艇在某海域C岛附近巡航,计划从A岛向北偏东80°方向的B岛直线行驶.测得C岛在A岛的北偏东50°方向,在B岛的北偏西40°方向.A ,B 之间的距离为80nmile ,则C 岛到航线AB 的最短距离约是 nmile .(参考数据:√2≈1.4,√3≈1.7,保留整数结果)20.(3分)(2022•黔西南州)如图,在平面直角坐标系中,A 1(2,0),B 1(0,1),A 1B 1的中点为C 1;A 2(0,3),B 2(﹣2,0),A 2B 2的中点为C 2;A 3(﹣4,0),B 3(0,﹣3),A 3B 3的中点为C 3;A 4(0,﹣5),B 4(4,0),A 4B 4的中点为C 4;…;按此做法进行下去,则点C 2022的坐标为 .三、解答题(本题6小题,共80分)21.(12分)(2022•黔西南州)(1)计算:﹣22+√12×√3+(12)﹣1﹣(π﹣3)0; (2)解不等式组{x −3≤2(x −1)x 3<x+25,并把解集在数轴上表示出来.22.(14分)(2022•黔西南州)神舟十四号载人飞船的成功发射,再次引发校园科技热.光明中学准备举办“我的航天梦”科技活动周,在全校范围内邀请有兴趣的学生参加以下四项活动,A :航模制作;B :航天资料收集;C :航天知识竞赛;D :参观科学馆.为了了解学生对这四项活动的参与意愿,学校随机调查了该校有兴趣的m 名学生(每名学生必选一项且只能选择一项),并将调查的结果绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)m=,n=;并补全条形统计图;(2)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人选择参观科学馆;(3)在选择A项活动的10人中,有甲、乙、丙、丁四名女生,现计划把这10名学生平均分成两组进行培训,每组各有两名女生,则甲、乙被分在同一组的概率是多少?23.(12分)(2022•黔西南州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交AC于点E,DH⊥AC,垂足为H,连接DE并延长交BA的延长线于点F.(1)求证:DH是⊙O的切线;(2)若E为AH的中点,求EFFD的值.24.(12分)(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A、B两种花卉,已知3盆A种花卉和4盆B种花卉的种植费用为330元,4盆A 种花卉和3盆B种花卉的种植费用为300元.(1)每盆A种花卉和每盆B种花卉的种植费用各是多少元?(2)若该景区今年计划种植A、B两种花卉共400盆,相关资料表明:A、B两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.25.(14分)(2022•黔西南州)如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.(1)当BE=DF时,求证:AE=AF;(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.26.(16分)(2022•黔西南州)如图,在平面直角坐标系中,经过点A(4,0)的直线AB 与y轴交于点B(0,4).经过原点O的抛物线y=﹣x2+bx+c交直线AB于点A,C,抛物线的顶点为D.(1)求抛物线y=﹣x2+bx+c的表达式;(2)M是线段AB上一点,N是抛物线上一点,当MN∥y轴且MN=2时,求点M的坐标;(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2022年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(本题10小题,每小题4分,共40分)1.(4分)(2022•黔西南州)﹣3的绝对值是( )A .±3B .3C .﹣3D .−13 【分析】根据绝对值的性质:|a |={a ,(a >0)0,a =0−a ,(a <0)即可得出答案.【解答】解:﹣3的绝对值:|﹣3|=3,故选:B .【点评】本题考查了绝对值的相关概念,解题关键在于熟记绝对值的定义.2.(4分)(2022•黔西南州)如图,是由6个相同的正方体组成的立体图形,它的俯视图是( )A .B .C .D .【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看,底层左边是两个小正方形,上层是三个小正方形.故选:C .【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.3.(4分)(2022•黔西南州)据央视6月初报道,电信5G 技术赋能千行百业,打造数字经济底座.5G 牌照发放三年来,三大电信运营商共投资4772亿元.把数字4772亿用科学记数法表示为( )A .4.772×109B .4.772×1010C .4.772×1011D .4.772×1012【分析】科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.【解答】解:1亿=100000000,∴4772亿=477200000000=4.772×1011,故选:C .【点评】本题考查了用科学记数法表示较大的数,解题关键在于正确换算单位.4.(4分)(2022•黔西南州)计算(﹣3x )2•2x 正确的是( )A .6x 3B .12x 3C .18x 3D .﹣12x 3【分析】先算积的乘方,再算单项式乘单项式即可.【解答】解:(﹣3x )2•2x=9x 2•2x=18x 3.故选:C .【点评】本题主要考查单项式乘单项式,积的乘方,解答的关键是对相应的运算法则的掌握.5.(4分)(2022•黔西南州)小明解方程x+12−1=x−23的步骤如下: 解:方程两边同乘6,得3(x +1)﹣1=2(x ﹣2)①去括号,得3x +3﹣1=2x ﹣2②移项,得3x ﹣2x =﹣2﹣3+1③合并同类项,得x =﹣4④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④【分析】对题目的解题过程逐步分析,即可找出出错的步骤.【解答】解:方程两边同乘6应为:3(x +1)﹣6=2(x ﹣2),∴出错的步骤为:①,故选:A .【点评】本题考查解一元一次方程,解题关键在于能准确观察出出错的步骤.6.(4分)(2022•黔西南州)在平面直角坐标系中,反比例函数y =k x (k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过的象限是( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图象位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图象经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图象经过的象限是一、二、四. 故选:B .【点评】本题考查了反比例函数和一次函数的性质,掌握反比例函数与一次函数系数与图象的位置是解本题的关键.7.(4分)(2022•黔西南州)在△ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB =AEB .AD =CDC .AE =CED .∠ADE =∠CDE【分析】利用线段的垂直平分线的性质判断即可. 【解答】解:由作图可知,MN 垂直平分线段AC , ∴AD =DC ,EA =EC ,∠ADE =∠CDE =90°, 故选项B ,C ,D 正确, 故选:A .【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(4分)(2022•黔西南州)在如图所示的Rt △ABC 纸片中,∠ACB =90°,D 是斜边AB 的中点,把纸片沿着CD 折叠,点B 到点E 的位置,连接AE .若AE ∥DC ,∠B =α,则∠EAC 等于( )A .αB .90°﹣αC .12αD .90°﹣2α【分析】由直角三角形斜边上的中线性质和折叠的性质得出CD =BD =AD =ED ,∠B =∠DCB =∠DCE =∠CED =α,求出∠EAD =∠AED =180°﹣2α,∠CAD =90°﹣α,即可得出答案.【解答】解:∵∠ACB =90°,D 是斜边AB 的中点, ∴CD =BD =AD ,由折叠的性质得:BD =ED ,∠B =∠CED , ∴CD =BD =AD =ED ,∴∠B =∠DCB =∠DCE =∠CED =α,∴∠EDC =180°﹣∠DCE ﹣∠CED =180°﹣α﹣α=180°﹣2α, ∵AE ∥DC ,∴∠AED =∠EDC =180°﹣2α, ∵ED =AD ,∴∠EAD =∠AED =180°﹣2α, ∵∠B =α,∠ACB =90°, ∴∠CAD =90°﹣α,∴∠EAC =∠EAD ﹣∠CAD =180°﹣2α﹣(90°﹣α)=90°﹣α, 故选:B .【点评】本题考查了折叠的性质、直角三角形的性质、等腰三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握折叠的性质和等腰三角形的性质是解题的关键.9.(4分)(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( ) A .36x−4=2×30xB .36x+4=2×30xC .36x =2×30x−4D .36x=2×30x+4【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:36x=2×30x+4.故选:D .【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.10.(4分)(2022•黔西南州)如图,在平面直角坐标系中,矩形ABCD 的顶点A 在第一象限,B ,D 分别在y 轴上,AB 交x 轴于点E ,AF ⊥x 轴,垂足为F .若OE =3,EF =1.以下结论正确的个数是( ) ①OA =3AF ; ②AE 平分∠OAF ;③点C 的坐标为(﹣4,−√2); ④BD =6√3;⑤矩形ABCD 的面积为24√2.A .2个B .3个C .4个D .5个【分析】通过证明△AEF ∽△BEO ,可得BO =3AF ,由矩形的性质可得OA =OB =3AF ,故①正确;由等腰三角形的性质和相似三角形的性质可得∠OBA =∠OAB =∠EAF ,可得AE 平分∠OAF ,故②正确;由勾股定理可求AF 的长,即可求点A 坐标,由矩形是中心对称图形,可得点C (﹣4,−√2),故③正确;由BD =2AO =6√2,故④错误,由面积公式可求矩形ABCD 的面积=2×S △ABD =24√2,故⑤正确,即可求解. 【解答】解:∵∠OEB =∠AEF ,∠AFE =∠BOE =90°, ∴△AEF ∽△BEO , ∴BO AF=OE EF=31=3,∠EAF =∠OBE ,∴BO =3AF ,∵四边形ABCD 是矩形, ∴AC =BD ,AO =CO ,BO =DO , ∴AO =OB ,∴AO =3AF ,∠OBA =∠OAB ,故①正确; ∴∠OAB =∠EAF ,∴AE 平分∠OAF ,故②正确; ∵OE =3,EF =1, ∴OF =4,∵OA 2﹣AF 2=OF 2, ∴8AF 2=16,∴AF =√2(负值舍去), ∴点A 坐标为(4,√2), ∵点A ,点C 关于原点对称, ∴点C (﹣4,−√2),故③正确; ∵AF =√2,OA =3AF , ∴AO =3√2, ∴BO =DO =3√2, ∴BD =6√2,故④错误; ∵S △ABD =12×6√2×4=12√2,∴矩形ABCD 的面积=2×S △ABD =24√2,故⑤正确, 故选:C .【点评】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键. 二、填空题(本题10小题,每小题3分,共30分) 11.(3分)(2022•黔西南州)计算:x+y x−y−2y x−y= 1 .【分析】利用分式的减法法则,化简得结论. 【解答】解:原式=x+y−2yx−y=x−yx−y=1. 故答案为:1.【点评】本题考查了分式的减法,题目比较简单,掌握分式的减法法则是解决本题的关键.12.(3分)(2022•黔西南州)已知点(2,y 1),(3,y 2)在反比例函数y =6x的图象上,则y 1与y 2的大小关系是 y 1>y 2 .【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据0<x 1<x 2,判断出两点所在的象限,根据该函数在此象限内的增减性即可得出结论. 【解答】解:∵反比例函数y =6x 中,k =6>0, ∴此函数图象的两个分支在一、三象限, ∵0<2<3,∴两点都在第一象限,∵在第一象限内y 的值随x 的增大而减小, ∴y 1>y 2. 故答案为:y 1>y 2.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及两点所在的象限是解答此题的关键.13.(3分)(2022•黔西南州)如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠B =60°,∠D =45°,AC 与DE 相交于点F .若BC ∥AE ,则∠AFE 的度数为 105° .【分析】由三角形内角和定理可知,∠C =30°,∠E =45°,再利用平行线的性质可知∠CAE =30°,最后利用三角形内角和定理可得结论.【解答】解:在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠B =60°,∠D =45°, ∴∠C =180°﹣∠B ﹣∠BAC =30°,∠E =180°﹣∠D ﹣∠DAE =45°, ∵BC ∥AE ,∴∠CAE =∠C =30°,在△AEF 中,∠AFE =180°﹣∠CAE ﹣∠E =105°. 故答案为:105°.【点评】本题主要考查三角形的内角和定理,平行线的性质等相关知识,熟知相关性质是解题关键.14.(3分)(2022•黔西南州)某校九(1)班10名同学进行“引体向上”训练,将他们做的次数进行统计,制成下表,则这10名同学做的次数组成的一组数据中,中位数为 5.5 .次数 4 5 6 7 8 人数23221【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数即可得出答案. 【解答】解:10名同学做的次数的中位数是5+62=5.5,故答案为:5.5.【点评】本题考查了中位数,掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数是解题的关键. 15.(3分)(2022•黔西南州)已知ab =2,a +b =3,求a 2b +ab 2的值是 6 . 【分析】将a 2b +ab 2因式分解,然后代入已知条件即可求值. 【解答】解:a 2b +ab 2=ab (a +b ),∵ab=2,a+b=3,∴原式=2×3=6.故答案为:6.【点评】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键.16.(3分)(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是2.【分析】利用关于原点为位似中心的对应点的坐标变换规律得到相似比为2:1,然后根据相似三角形的性质解决问题.【解答】解:∵△OAB与△OCD位似,位似中心是坐标原点O,而点A(4,0),点C(2,0),∴相似比为4:2=2:1,∴△OAB与△OCD周长的比值为2.故答案为:2.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.17.(3分)(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=−112x2+23x+53,则铅球推出的水平距离OA的长是10m.【分析】根据题目中的函数解析式和图象可知,OA的长就是抛物线与x轴正半轴的交点的横坐标的值,然后令y =0求出相应的x 的值,即可得到OA 的长. 【解答】解:∵y =−112x 2+23x +53, ∴当y =0时,0=−112x 2+23x +53, 解得x 1=﹣2,x 2=10, ∴OA =10m , 故答案为:10.【点评】本题考查二次函数的应用,解答本题的关键是明确OA 的长就是抛物线与x 轴正半轴的交点的横坐标的值.18.(3分)(2022•黔西南州)如图,边长为4的正方形ABCD 的对角线交于点O ,以OC 为半径的扇形的圆心角∠FOH =90°.则图中阴影部分面积是 2π﹣4 .【分析】证明△OBE ≌△OCG (SAS ),推出S △OBE =S △OCG ,推出S 四边形OECG =S △OBC =4,再根据S 阴=S 扇形OFH ﹣S 四边形OECG ,求解即可. 【解答】解:如图,∵四边形ABCD 是正方形,∴AC ⊥BD ,OA =OC =OB =OD ,∠OBE =∠OCG =45°,S △OBC =14S 四边形ABCD =4, ∵∠BOC =∠EOG =90°, ∴∠BOE =∠COG , 在△BOE 和△COG 中, {∠BOE =∠COGOB =OC ∠OBE =∠OCG,∴△OBE ≌△OCG (SAS ), ∴S △OBE =S △OCG , ∴S 四边形OECG =S △OBC =4,∵△OBC 是等腰直角三角形,BC =4, ∴OB =OC =2√2,∴S阴=S扇形OFH﹣S四边形OECG=90π⋅(2√2)2360−4=2π﹣4,故答案为:2π﹣4.【点评】本题考查扇形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(3分)(2022•黔西南州)如图,我海军舰艇在某海域C岛附近巡航,计划从A岛向北偏东80°方向的B岛直线行驶.测得C岛在A岛的北偏东50°方向,在B岛的北偏西40°方向.A,B之间的距离为80nmile,则C岛到航线AB的最短距离约是34 nmile.(参考数据:√2≈1.4,√3≈1.7,保留整数结果)【分析】过点C作CF⊥AB于F,设CF=xnmile.先求出∠CAB=∠DAB﹣∠DAC=30°,∠ABC=∠ABE﹣∠CBE=60°.再解Rt△ACF,得出AF=√3CF=√3x,解Rt△CFB,得出BF=√33CF=√33x.根据AF+BF=AB列出方程√3x+√33x=80,求出x即可.【解答】解:过点C作CF⊥AB于F,设CF=xnmile.由题意,得∠DAC=50°,∠DAB=80°,∠CBE=40°,AD∥BE,则∠CAB=∠DAB﹣∠DAC=30°,∵AD∥BE,∴∠DAB+∠ABE=180°,∴∠ABE=180°﹣∠DAB=180°﹣80°=100°,∴∠ABC=∠ABE﹣∠CBE=100°﹣40°=60°.在Rt△ACF中,∵∠CAF=30°,∴AF=√3CF=√3x.在Rt△CFB中,∵∠FBC=60°,∴BF =√33CF =√33x .∵AF +BF =AB , ∴√3x +√33x =80, 解得x =20√3≈34.即C 岛到航线AB 的最短距离约为34nmile . 故答案为:34.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20.(3分)(2022•黔西南州)如图,在平面直角坐标系中,A 1(2,0),B 1(0,1),A 1B 1的中点为C 1;A 2(0,3),B 2(﹣2,0),A 2B 2的中点为C 2;A 3(﹣4,0),B 3(0,﹣3),A 3B 3的中点为C 3;A 4(0,﹣5),B 4(4,0),A 4B 4的中点为C 4;…;按此做法进行下去,则点C 2022的坐标为 (﹣1011,20232) .【分析】根据题意得点∁n 的位置按4次一周期的规律循环出现,可求得点C 2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n 的位置按4次一周期的规律循环出现, ∵2022÷4=505……2,∴点C 2022在第二象限,∵位于第二象限内的点C 2的坐标为(﹣1,32),点C 6的坐标为(﹣3,72),点C 10的坐标为(﹣5,112),……∴点∁n 的坐标为(−n2,n+12),∴当n =2022时,−n 2=−20222=−1011,n+12=2022+12=20232,∴点C 2022的坐标为(﹣1011,20232),故答案为:(﹣1011,20232).【点评】此题考查了点的坐标方面规律性问题的解决能力,关键是能根据题意确定出该点的出现规律.三、解答题(本题6小题,共80分)21.(12分)(2022•黔西南州)(1)计算:﹣22+√12×√3+(12)﹣1﹣(π﹣3)0;(2)解不等式组{x −3≤2(x −1)x 3<x+25,并把解集在数轴上表示出来.【分析】(1)先算乘方,二次根式的乘法,负整数指数幂,零指数幂,再算加减即可; (2)先利用解不等式组的方法进行求解,再把其解集在数轴上表示出来即可. 【解答】解:(1)﹣22+√12×√3+(12)﹣1﹣(π﹣3)0=﹣4+6+2﹣1 =3;(2){x −3≤2(x −1)①x 3<x+25②,解不等式①得:x ≥﹣1, 解不等式②得:x <3,在数轴上表示为:故不等式组的解集为:﹣1≤x<3.【点评】本题主要考查解一元一次不等式组,实数的运算,解答的关键是对相应的知识的掌握与运用.22.(14分)(2022•黔西南州)神舟十四号载人飞船的成功发射,再次引发校园科技热.光明中学准备举办“我的航天梦”科技活动周,在全校范围内邀请有兴趣的学生参加以下四项活动,A:航模制作;B:航天资料收集;C:航天知识竞赛;D:参观科学馆.为了了解学生对这四项活动的参与意愿,学校随机调查了该校有兴趣的m名学生(每名学生必选一项且只能选择一项),并将调查的结果绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)m=100,n=35;并补全条形统计图;(2)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人选择参观科学馆;(3)在选择A项活动的10人中,有甲、乙、丙、丁四名女生,现计划把这10名学生平均分成两组进行培训,每组各有两名女生,则甲、乙被分在同一组的概率是多少?【分析】(1)用航模制作的人数和所占的百分比,求出m的值,再分别求出B、C的人数及B所占的百分比,然后补全统计图即可;(2)用总人数乘以选择参观科学馆的人数所占的百分比即可;(3)列表得出所有等可能的情况数,找出甲、乙被分在同一组的情况数,然后根据概率公式即可得出答案.【解答】解:(1)m=10÷10%=100;航天知识竞赛的人数有:100×15%=15(人),航天资料收集的人数有:100﹣10﹣40﹣15=35(人),n%=35100×100%=35%,即n=35,补全统计图如下:故答案为:100,35;(2)根据题意得:1800×40%=720(人),答:大约有720人选择参观科学馆;(3)由题意列表得:甲乙丙丁甲甲乙甲丙甲丁乙乙甲乙丙乙丁丙丙甲丙乙丙丁丁丁甲丁乙丁丙共有12种等可能的结果数,其中甲、乙被分在同一组的有4种,则甲、乙被分在同一组的概率是212=1 6.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(12分)(2022•黔西南州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交AC于点E,DH⊥AC,垂足为H,连接DE并延长交BA的延长线于点F.(1)求证:DH是⊙O的切线;(2)若E为AH的中点,求EFFD的值.【分析】(1)连接OD,证明OD∥AC,由DH⊥AC,可得DH⊥OD,则结论得证;(2)连接AD,由圆周角定理得∠ADB=90°,再由等腰三角形的性质得BD=CD,则OD=12AC,OD∥AC,进而得到△AEF∽△ODF,由等腰三角形的性质得CH=EH,根据相似三角形的性质即可求解.【解答】(1)证明:连接OD,如图所示:∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∵OD是⊙O的半径,∴DH是⊙O的切线;(2)解:连接AD,如图所示:∵AB为⊙O的直径,∴OA=OB,∠ADB=90°,∵AB=AC,∴BD=CD,∴OD=12AC,OD∥AC,∴△AEF∽△ODF,∴FEFD =AE OD,∵∠CED+∠DEA=180°,∠B+∠DEA=180°,∴∠CED=∠B=∠C,∴CD=ED,∵DH⊥AC,∴CH=EH,∵E为AH的中点,∴AE=EH=CH,∴FE FD=AE OD=13AC 12AC =23.【点评】本题考查了切线的判定与性质,圆周角定理,等腰三角形的性质和判定,三角形中位线定理,平行线的判定与性质,三角形相似的判定与性质等知识;熟练掌握切线的判定、圆周角定理和等腰三角形的性质是解题的关键.24.(12分)(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A 、B 两种花卉,已知3盆A 种花卉和4盆B 种花卉的种植费用为330元,4盆A 种花卉和3盆B 种花卉的种植费用为300元.(1)每盆A 种花卉和每盆B 种花卉的种植费用各是多少元?(2)若该景区今年计划种植A 、B 两种花卉共400盆,相关资料表明:A 、B 两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.【分析】(1)设每盆A 种花卉种植费用为x 元,每盆B 种花卉种植费用为y 元,根据题意列出关于x 的二元一次方程组,求解即可;(2)设种植A 种花卉的数量为m 盆,则种植B 种花卉的数量为(400﹣m )盆,种植两种花卉的总费用为w 元,由题意:这两种花卉在明年共补的盆数不多于80盆,列出一元一次不等式,解得m ≤200,再由题意得w =﹣30m +24000,然后由一次函数的性质即可得出结论.【解答】解:(1)设每盆A 种花卉种植费用为x 元,每盆B 种花卉种植费用为y 元,根据题意,得:{3x +4y =3304x +3y =300,解得:{x =30y =60,答:每盆A 种花卉种植费用为30元,每盆B 种花卉种植费用为60元;(2)设种植A 种花卉的数量为m 盆,则种植B 种花卉的数量为(400﹣m )盆,种植两种花卉的总费用为w 元,根据题意,得:(1﹣70%)m +(1﹣90%)(400﹣m )≤80, 解得:m ≤200,w =30m +60(400﹣m )=﹣30m +24000,∵﹣30<0,∴w随m的增大而减小,当m=200时,w的最小值=﹣30×200+24000=18000,答:种植A、B两种花卉各200盆,能使今年该项的种植费用最低,最低费用为18000元.【点评】本题考查了一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(14分)(2022•黔西南州)如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.(1)当BE=DF时,求证:AE=AF;(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.【分析】(1)证明△ABE≌△ADF,从而得出结论;(2)在CD的延长线上截取DG=BE,类比(1)可证得△ABE≌△ADG,进而证明△GAF≌△EAF,进一步得出结论;(3)作HR⊥BC于R,证明△ABE≌△GRH,从而BE=HR,在Rt△CRH中可得出HR=b•sin45°=√22,进而BE=√22b,根据(2)可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在△ABE和△ADF中,{AB =AD ∠B =∠D BE =DF, ∴△ABE ≌△ADF (SAS ), ∴AE =AF ; (2)解:如图1,BE +DF =EF ,理由如下: 在CD 的延长线上截取DG =BE , 同理(1)可得:△ABE ≌△ADG (SAS ), ∴∠BAE =∠DAG ,AG =AE , ∵四边形ABCD 是正方形, ∴∠BAD =90°, ∵∠EAF =45°,∴∠BAE +∠DAF =∠BAD ﹣∠EAF =45°, ∴∠DAG +∠DAF =45°, 即:∠GAF =45°, ∴∠GAF =∠EAF , 在△GAF 和△EAF 中, {AG =AE∠GAF =∠EAF AF =AF, ∴△GAF ≌△EAF (SAS ), ∴FG =EF , ∴DG +DF =EF , ∴BE +DF =EF ; (3)如图2,作HR ⊥BC 于R , ∴∠HRG =90°,∵四边形ABCD 是正方形,∴∠ABE =90°,∠ACB =∠ACD =45°, ∴∠ABE =∠HRG ,∠BAE +∠AEB =90°, ∵GH ⊥AE , ∴∠EKG =90°, ∴∠G +∠AEB =90°, ∴∠G =∠BAE , 在△ABE 和△GRH 中, {∠ABE =∠HRG∠BAE =∠G AE =GH,∴△ABE ≌△GRH (AAS ), ∴BE =HR ,在Rt △CRH 中,∠ACB =45°,CH =b , ∴HR =b •sin45°=√22, ∴BE =√22b , ∴EF =BE +DF =√22b +a .【点评】本题考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,解决问题的关键是作辅助线,构造全等三角形.26.(16分)(2022•黔西南州)如图,在平面直角坐标系中,经过点A (4,0)的直线AB 与y 轴交于点B (0,4).经过原点O 的抛物线y =﹣x 2+bx +c 交直线AB 于点A ,C ,抛物线的顶点为D .(1)求抛物线y =﹣x 2+bx +c 的表达式;。
2022年贵州省贵阳市中考数学试卷和答案解析

2022年贵州省贵阳市中考数学试卷和答案解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)下列各数为负数的是()A.﹣2B.0C.3D.2.(3分)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.3.(3分)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为()A.0.12×104B.1.2×104C.1.2×103D.12×102 4.(3分)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°5.(3分)代数式在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3 6.(3分)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是()A.1:B.1:2C.1:3D.1:4 7.(3分)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同8.(3分)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.169.(3分)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是()A.5B.5C.5D.510.(3分)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=的图象上的点是()A.点P B.点Q C.点M D.点N 11.(3分)小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8 12.(3分)在同一平面直角坐标系中,一次函数y=ax+b与y=mx+n (a<m<0)的图象如图所示.小星根据图象得到如下结论:①在一次函数y=mx+n的图象中,y的值随着x值的增大而增大;②方程组的解为;③方程mx+n=0的解为x=2;④当x=0时,ax+b=﹣1.其中结论正确的个数是()A.1B.2C.3D.4二、填空题:每小题4分,共16分.13.(4分)因式分解:a2+2a=.14.(4分)端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣粽子的概率是.15.(4分)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是.16.(4分)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC=6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE 的面积是cm2,∠AEB=度.三、参考答案题:本大题9小题,共98分.参考答案应写出必要的文字说明、证明过程或演算步骤.17.(12分)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.18.(10分)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.19.(10分)一次函数y=﹣x﹣3的图象与反比例函数y=的图象相交于A(﹣4,m),B(n,﹣4)两点.(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.20.(10分)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?21.(10分)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F 在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.22.(10分)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A 行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(12分)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E,且交于点F,交BC于点P,连接BF,CF.(1)求证:∠DCP=∠DPC;(2)当BC平分∠ABF时,求证:CF∥AB;(3)在(2)的条件下,OB=2,求阴影部分的面积.24.(12分)已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B 两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.25.(12分)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD中,AN为BC边上的高,=m,点M在AD边上,且BA=BM,点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则=;(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.参考答案与解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分.1.【参考答案】解:A.﹣2<0,是负数,故本选项符合题意;B.0不是正数,也不是负数,故本选项不符合题意;C.3>0,是正数,故本选项不符合题意;D.>0,是正数,故本选项不符合题意;故选:A.【解析】本题主要考查了负数的定义.解题的关键是掌握负数的定义,要注意0既不是正数,也不是负数.2.【参考答案】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.【解析】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.3.【参考答案】解:1200=1.2×103.故选:C.【解析】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【参考答案】解:∵菱形的对边平行,∴由两直线平行,内错角相等可得∠1=80°.故选:C.【解析】本题考查了菱形的性质,全等图形,平行线的性质,关键是熟悉菱形的对边平行的知识点.5.【参考答案】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得:x≥3,∴x的取值范围是:x≥3.故选:A.【解析】此题主要考查了二次根式有意义的条件,正确得出x﹣3的取值范围是解题关键.6.【参考答案】解:∵∠B=∠ACD,∠CAD=∠BAC,∴△ACD∽△ABC,∴==,故选:B.【解析】本题考查相似三角形的判定与性质,参考答案本题的关键是明确相似三角形的周长之比等于相似比.7.【参考答案】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,∴小星抽到每个数的可能性相同;故选:D.【解析】此题考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.8.【参考答案】解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.【解析】本题考查正方形的性质、有理数的加减法,参考答案本题的关键是明确题意,利用数形结合的思想参考答案.9.【参考答案】解:连接OE,由已知可得,OE=OB=BD=5,∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.【解析】本题考查等边三角形的判定与性质、与圆相关的知识,参考答案本题的关键是明确题意,求出△OBE的形状.10.【参考答案】解:如图,反比例函数y=的图象是双曲线,若点在反比例函数的图象上,则其纵横坐标的积为常数k,即xy=k,通过观察发现,点P、Q、N可能在图象上,点M不在图象上,故选:C.【解析】本题考查反比例函数图象上点的坐标特征,掌握反比例函数的图象以及图象上点的坐标特征是正确判断的前提.11.【参考答案】解:数据5,5,6,7,8,9,10的众数为5,中位数为7,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则5不能去掉,7不能去掉,所以去掉可能是6,8,故选:C.【解析】本题考查了众数及中位数的定义,解题的关键是能够牢记方法并正确的计算.12.【参考答案】解:①由函数图象可知,直线y=mx+n从左至右呈下降趋势,所以y的值随着x值的增大而减小,故①错误;②由函数图象可知,一次函数y=ax+b与y=mx+n(a<m<0)的图象交点坐标为(﹣3,2),所以方程组的解为,故②正确;③由函数图象可知,直线y=mx+n与x轴的交点坐标为(2,0),所以方程mx+n=0的解为x=2,故③正确;④由函数图象可知,直线y=ax+b过点(0,﹣2),所以当x=0时,ax+b=﹣2,故④错误;故选:B.【解析】本题主要考查了一次函数的图象与性质,一次函数与二元一次方程的关系,关键是综合应用一次函数的图象与性质解题.二、填空题:每小题4分,共16分.13.【参考答案】解:a2+2a=a(a+2).故答案为:a(a+2).【解析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.【参考答案】解:∵共10个粽子,其中有6个红枣粽子,4个绿豆粽子,∴P(捞到红枣馅粽子)==,故答案为:.【解析】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【参考答案】解:根据题知:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,一个竖线表示一个,一条横线表示一十,所以该图表示的方程是:x+2y=32.【解析】本题考查根据图意列方程,解题的关键是读懂图的意思.16.【参考答案】解:过E作EH⊥AB于H,如图:设AD=xcm,CE=ycm,则BE=2xcm,AE=(6﹣y)cm,∵∠ADB=∠ACB=90°,∠AED=∠CEB,∴△AED∽△BEC,∴=,即=,∴x2=18﹣3y①,在Rt△BCE中,BC2+CE2=BE2,∴62+y2=(2x)2②,由①②得y=6﹣6(负值已舍去),∴CE=(6﹣6)cm,AE=(12﹣6)cm,∴S△ABE=S△ABC﹣S△BCE=×6×6﹣×6×(6﹣6)=(36﹣18)cm2,∵AC=BC=6,∠ACB=90°,∴∠CAB=45°,AB=6cm,∴△AEH是等腰直角三角形,∴∠AEH=45°,AH===(6﹣6)cm,∴∠CEH=180°﹣∠AEH=135°,BH=AB﹣AH=6﹣(6﹣6)=6cm,∴BH=6cm=BC,又BE=BE,∠BCE=90°=∠BHE,∴Rt△BCE≌Rt△BHE(HL),∴∠BEH=∠BEC=∠CEH=67.5°,∴∠AEB=∠AEH+∠BEH=45°+67.5°=112.5°,故答案为:36﹣18,112.5.【解析】本题考查等腰直角三角形性质及应用,涉及三角形全等的判定与性质,勾股定理及应用,三角形面积等知识,解题的关键是作辅助线,构造全等三角形.三、参考答案题:本大题9小题,共98分.参考答案应写出必要的文字说明、证明过程或演算步骤.17.【参考答案】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x====﹣1±.∴x1=﹣1+,x2=﹣1﹣;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2.∴x1=2+2,x2=2﹣2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.【解析】本题考查了数轴、一元二次方程的解法,掌握数轴的意义、一元二次方程的解法是解决本题的关键.18.【参考答案】解:(1)为了更好的表现出货物进出口额的变化趋势,我认为应选择折线统计图更好,故答案为:折线;(2)21.73﹣17.37=4.36(万亿元),即2021年我国货物进出口顺差是4.36万亿元;故答案为:4.36;(3)我国货物进出口总额增长速度都很快.(答案不唯一).【解析】本题考查的是条形统计图和折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.19.【参考答案】解:(1)∵一次函数y=﹣x﹣3过点A(﹣4,m),∴m=﹣(﹣4)﹣3=1.∴点A的坐标为(﹣4,1).∵反比例函数y=的图象过点A,∴k=xy=﹣4×1=﹣4.∴反比例函数的表达式为y=﹣.(2)∵反比例函数y=﹣过点B(n,﹣4).∴﹣4=﹣,解得n=1.∵一次函数值小于反比例函数值,∴一次函数图象在反比例函数图象的下方.∴在y轴左侧,一次函数值小于反比例函数值x的取值范围为:﹣4<x<0;在第四象限内,一次函数值小于反比例函数值x的取值范围为:x>1.∴一次函数值小于反比例函数值的x取值范围为:﹣4<x<0或x >1.【解析】本题考查了一次函数与反比例函数图象的综合问题,根据两个函数图象确定其对应不等式的解时,首先应确定函数图像的交点坐标,其次要注意函数图象的位置.20.【参考答案】解:设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,依题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.【解析】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【参考答案】解:(1)∵四边形ABCD为正方形,∴AB=AD,AB∥CD,∠A=∠D=90°,又∵MF∥AD,∴四边形AMFD为矩形,∴∠MFD=∠MFN=90°,∴AD=MF,∴AB=MF,∵BE的垂直平分线交AB于点M,交CD于点N,垂足为O,∴∠MFN=∠BAE=90°,∠FMN+∠BMO=∠BMO+∠MBO=90°,∴∠FMN=∠MBO,在△ABE和△FMN中,,∴△ABE≌△FMN(ASA);(2)∵∠MOB=∠A=90°,∠ABE是公共角,∴△BOM∽△BAE,∴OM:AE=BO:BA,∵AB=8,AE=6,∴BE==10,∴OM:6=:10,∴OM=,∵△ABE≌△FMN,∴NM=BE=10,∴ON=MN﹣MO=.【解析】本题主要考查了正方形的性质,垂直平分线的性质相似三角形的判定与性质,综合性比较强,对于学生的要求比较高.22.【参考答案】解:(1)由题意得:∠CAD=25°,∠EBF=60°,CE=DF=750米,在Rt△ACD中,CD=7米,∴AD=≈=14(米),在Rt△BEF中,EF=7米,∴BF==≈4.1(米),∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),∴A,B两点之间的距离约为760米;(2)小汽车从点A行驶到点B没有超速,理由:由题意得:760÷38=20米/秒,∵20米/秒<22米/秒,∴小汽车从点A行驶到点B没有超速.【解析】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.【参考答案】(1)证明:连接OC,如图:∵CD是⊙O的切线,C为切点,∴∠DCO=90°,即∠OCB+∠DCP=90°,∵DE⊥OB,∴∠DEB=90°,∴∠OBC+∠BPE=90°,∵OB=OC,∴∠OCB=∠OBC,∴∠DCP=∠BPE,∵∠BPE=∠DPC,∴∠DCP=∠DPC;(2)证明:连接OF,如图:∵ED垂直平分OB,∴OF=BF,∵OF=OB,∴BF=OF=OB,∴△BOF是等边三角形,∴∠FOB=∠ABF=60°,∴∠FCB=∠FOB=30°,∵BC平分∠ABF,∴∠ABC=∠ABF=30°,∴∠FCB=∠ABC,∴CF∥AB;(3)解:连接OF、OC,如图:由(2)知,∠ABC=∠CBF=30°,∴∠COF=2∠CBF=60°,∵OB=2,即⊙O半径为2,∴S扇形COF==,∵OC=OF,∠COF=60°,∴△COF是等边三角形,∴CF=OF=OB=2,∵ED垂直平分OB,∴OE=BE=OB=1,∠FEB=90°,在Rt△FEB中,EF===,∴S△COF=CF•EF=×2×=,∴S阴影=S扇形COF﹣S△COF=﹣,答:阴影部分的面积为﹣.【解析】本题考查圆的综合应用,涉及圆的切线,等边三角形判定与性质,与圆相关的计算等,解题的关键是适当作辅助线,证明△BOF是等边三角形.24.【参考答案】解:(1)∵y=ax2+4ax+b=a(x+2)2﹣4a+b,∴二次函数图象的顶点坐标为(﹣2,﹣4a+b).(2)由(1)得抛物线对称轴为直线x=﹣2,当a>0时,抛物线开口向上,∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣2)﹣(﹣3),∴d>c>e=f.当a<0时,抛物线开口向下,∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣2)﹣(﹣3),∴d<c<e=f.(3)当a>0时,抛物线开口向上,x>﹣2时,y随x增大而增大,∴m=﹣2时,n=﹣1,m=1时,n=1,∴,解得,∴y=x2+x﹣.当a<0时,抛物线开口向下,x>﹣2时,y随x增大而减小,∴m=﹣2时,n=1,m=1时,n=﹣1,∴,解得.∴y=﹣x2﹣x+.综上所述,y=x2+x﹣或y=﹣x2﹣x+.【解析】本题考查二次函数的综合应用,解题关键是掌握二次函数与方程的关系,通过分类讨论求解.25.【参考答案】解:(1)∵BA=BM,∠BAD=60°∴△ABM是等边三角形,∴AB=AM=BM,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ABN=∠BAM=60°,∵AN为BC边上的高,∴==,故答案为:;(2)∵∠BAD=45°,BA=BM,∴△AMB是等腰直角三角形,∴∠MBC=∠AMB=45°,∵EF∥BM,∴∠FEM=∠AMB=45°,∴∠AEB=∠FEB=(180°+45°)=112.5°,∵AD∥NC,∴∠BAE=∠ABN=45°,∴∠ABE=180°﹣∠AEB﹣∠BAE=22.5°,∵=m,△AMB是等腰直角三角形,AN为底边上的高,则AN =AM,∵点M在AD边上,∴当AD=AM时,m取得最小值,最小值为=2,(3)如图,连接FM,延长EF交NC于点G,∵∠BAD=30°,则∠ABN=30°,设AN=a,则AB=2a,NB=a,∵EF⊥AD,∴∠AEB=∠FEB=(180°+90°)=135°,∵∠EAB=∠BAD=30°,∴∠ABE=15°,∴∠ABF=30°,∵AB=BM,∠BAD=30°,∴∠ABM=120°,∵∠MBC=∠AMB=30°,∴∠FBM=90°,在Rt△FBM中,FB=AB=BM,∴FM=FB=2a,∴EG⊥GB,∵∠EBG=∠ABE+∠ABN=45°,∴GB=EG=a,∵NB=a,∴AE=EF=MD=(﹣1)a,在Rt△EFM中,EM==(+1)a,∴AD=AE+EM+MD=2AE+EM=(3﹣1)a,同理,当点F落在BC下方时,AD=(3+1)a∴m==3±1.【解析】本题考查了轴对称的性质,特殊角的三角函数值,解直角三角形,勾股定理,三角形内角和定理,含30度角的直角三角形的性质,平行四边形的性质,等边三角形的性质,掌握相关性质定理,正确添加辅助线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年贵州省中考数学试卷一、选择题:每小题4分,共40分1.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.82.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A.18°B.36°C.60°D.72°3.如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为()A.36°B.72°C.108°D.118°4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC5.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B.=C.△ADE~△ABC D.S△ADE=S△ABC6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.7.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,98.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.9.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2 B.4 C.5 D.810.如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()A.2﹣B.C.D.﹣1二、填空题:每小题3分,共30分11.计算:(﹣2ab)2=.12.0.0000156用科学记数法表示为.13.分解因式:x3﹣4x=.14.一个多边形的内角和为1080°,则这个多边形的边数是.15.函数y=中,自变量x的取值范围为.16.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为.17.关于x的两个方程x2﹣x﹣6=0与=有一个解相同,则m=.18.已知⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,圆心距O1O2=,则两圆的位置关系为.19.如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB 和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.20.阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=.三、本题共12分21.(1)计算:|﹣|﹣2cos45°﹣()﹣1+(tan80°﹣)0+(2)化简:(﹣2)÷﹣2x,再代入一个合适的x求值.四.本题共12分22.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.五.本题共14分23.2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数分布表中a=,b=,c=(2)补全频数分布直方图(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.频数分布表分组(分)频数频率50<x 60 2 0.0460<x 70 12 a70<x<80 b 0.3680<x 90 14 0.2890<x 100 c 0.08合计50 1六.本题共14分24.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?七.阅读材料题.25.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.八.本题共16分26.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.2016年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.8【考点】有理数的乘方.【分析】乘方就是求几个相同因数积的运算,﹣42=﹣(4×4)=16.【解答】解:﹣42=﹣16故选:B【点评】本题考查有理数乘方的法则.正数的任何次方都是正数;负数的奇次方为负,负数的偶次方为正;0的正整数次幂为0.2.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A.18°B.36°C.60°D.72°【考点】圆周角定理.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠BOC=2∠A=72°.故选D.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.3.如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为()A.36°B.72°C.108°D.118°【考点】平行线的性质.【分析】由平行线的性质得出∠C=∠B=72°,∠D+∠C=180°,即可求出结果.【解答】解:∵AB∥CD,CB∥DE,∠B=72°,∴∠C=∠B=72°,∠D+∠C=180°,∴∠D=180°﹣72°=108°;故选:C.【点评】本题主要考查平行线的性质;熟练掌握平行线的性质是解决问题的关键.4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【考点】全等三角形的判定.【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.5.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B.=C.△ADE~△ABC D.S△ADE=S△ABC【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理、相似三角形的性质解答即可.【解答】解:∵BD=2AD,∴AB=3AD,∵DE∥BC,∴==,∴BC=3DE,A结论正确;∵DE∥BC,∴=,B结论正确;∵DE∥BC,∴△ADE~△ABC,C结论正确;∵DE∥BC,AB=3AD,∴S△ADE=S△ABC,D结论错误,故选:D.【点评】本题考查的是平行线分线段成比例定理和相似三角形的性质,灵活运用平行线分线段成比例定理、掌握相似三角形的面积比等于相似比的平方是解题的关键.6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,9【考点】众数;统计表;中位数.【分析】依据众数和中位数的定义求解即可.【解答】解:∵时间为9小时的人数最多为19人数,∴众数为9.∵将这组数据按照由大到小的顺序排列,第25个和第26个数据的均为8,∴中位数为8.故选:C.【点评】本题主要考查的是众数和中位数的定义,明确表格中数据的意义是解题的关键.8.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图从左到右说出每一行小正方形的个数和位置即可.【解答】解:左视图从左到右有三列,左边一列有2个正方体,中间一列三个,右边有一个正方体,故选D.【点评】此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.9.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2 B.4 C.5 D.8【考点】反比例函数系数k的几何意义.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【解答】解:∵y=,∴OA•OD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:B.【点评】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.10.如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()A.2﹣B.C.D.﹣1【考点】旋转的性质;矩形的性质.【分析】先求出∠CBD,根据旋转角,判断出点C1在矩形对角线BD上,求出BD,再求出∠DBF,从而判断出DF=BD,即可.【解答】解:连接BD,如图所示:在矩形ABCD中,∠C=90°,CD=AB=1,在Rt△BCD中,CD=1,BC=,∴tan∠CBD==,BD=2,∴∠CBD=30°,∠ABD=60°,由旋转得,∠CBC1=∠ABA1=30°,∴点C1在BD上,连接BF,由旋转得,AB=A1B,∵矩形A1BC1D1是矩形ABCD旋转所得,∴∠BA1F=∠BAF=90°,∵AF=AF,∴△A1BF≌△ABF,∴∠A1BF=∠ABF,∵∠ABA1=30°,∴∠ABF=∠ABA1=15°,∵∠ABD=60°,∴∠DBF=75°,∵AD∥BC,∴∠ADB=∠CBD=30°,∴∠BFD=75°,∴DF=BD=2,∴AF=DF﹣AD=2﹣,故选:A.【点评】本题考查了旋转的性质、矩形的性质、全等三角形的判定与性质、等腰三角形的判定、三角函数;熟练掌握旋转的性质和矩形的性质,并能进行推理计算是解决问题的关键.二、填空题:每小题3分,共30分11.计算:(﹣2ab)2=4a2b2.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则求出答案.【解答】解:(﹣2ab)2=4a2b2.故答案为:4a2b2.【点评】此题主要考查了积的乘方运算与幂的乘方运算,正确掌握运算法则是解题关键.12.0.0000156用科学记数法表示为1.56×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000156=1.56×10﹣5,故答案为:1.56×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.一个多边形的内角和为1080°,则这个多边形的边数是8.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.15.函数y=中,自变量x的取值范围为x<1.【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;可得关系式1﹣x>0,解不等式即可.【解答】解:根据题意得:1﹣x>0,解可得x<1;故答案为x<1.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为10.【考点】垂径定理.【专题】计算题;推理填空题.【分析】首先连接OD,并设OD=x,然后在△ODE中,由勾股定理,求出OD的长,即可求出⊙O 的直径为多少.【解答】解:如图,,∵AB是⊙O的直径,而且CD⊥AB于E,∴DE=CE=12÷2=6,在Rt△ODE中,x2=(x﹣1)2+32,解得x=5,∵5×2=10,∴⊙O的直径为10.故答案为:10.【点评】此题主要考查了垂径定理以及勾股定理的应用,要熟练掌握,解答此题的关键是求出OD 的长度是多少.17.关于x的两个方程x2﹣x﹣6=0与=有一个解相同,则m=﹣8.【考点】分式方程的解;解一元二次方程-因式分解法.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;先解方程x2﹣x﹣6=0,将它的根分别代入方程=,去掉不符合题意的根,求出m的值.【解答】解:解方程x2﹣x﹣6=0得:x=﹣2或3;把x=﹣2或3分别代入方程=,当x=﹣2时,得到=,解得m=﹣8.故答案为:﹣8.【点评】本题考查的是一元二次方程的根即方程的解的定义;本题注意分式方程中分母不为0.18.已知⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,圆心距O1O2=,则两圆的位置关系为相交.【考点】圆与圆的位置关系;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】直接利用偶次方的性质以及二次根式的性质得出m,n的值,再利用圆与圆的位置关系判断方法得出答案.【解答】解:∵⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,∴m﹣1=0,n﹣2=0,解得:m=1,n=2,∴m+n=3,∵圆心距O1O2=,∴两圆的位置关系为:相交.故答案为:相交.【点评】此题主要考查了偶次方的性质以及二次根式的性质以及圆与圆的位置关系,正确把握两圆位置关系判断方法是解题关键.19.如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB 和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省4元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OB和射线EB的函数解析式,然后可求出一次购买8个笔记本的价钱和分8次购买每次购买1个的花费,进而可得答案.【解答】解:由线段OB的图象可知,当0<x<时,y=5x,1千克苹果的价钱为:y=5,设射线EB的解析式为y=kx+b(x≥2),把(4,20),(10,44)代入得,解得:,∴射线EB的解析式为y=4x+4,当x=8时,y=4×8+4=36,5×8﹣36=4(元),故答案为:4.【点评】本题考查了一次函数的应用,解决本题的关键是掌握待定系数法求一次函数解析式.20.阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=.【考点】规律型:数字的变化类.【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S=.【点评】本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、本题共12分21.(1)计算:|﹣|﹣2cos45°﹣()﹣1+(tan80°﹣)0+(2)化简:(﹣2)÷﹣2x,再代入一个合适的x求值.【考点】分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)根据特殊角的三角函数值、负整数整数幂和零指数幂的意义计算.(2)先把括号内通分,再把除法运算化为乘法运算,然后约分后合并得到原式=2﹣x,再根据分式有意义的条件把x=10代入计算即可.【解答】解:(1)原式=﹣2×﹣2+1+2=2﹣1;(2)原式=•﹣2x=•﹣2x=x+2﹣2x=2﹣x,当x=10时,原式=2﹣10=﹣8.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四.本题共12分22.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.【考点】切线的判定.【分析】(1)连接OC,根据等腰三角形的性质:等边对等角,以及直径所对的圆周角是直角,利用等量代换证得∠ACO=90°,据此即可证得;(2)易证∠A=∠B=∠1=∠2=30°,即可求得AC的长,作CE⊥AB于点E,求得CE的长,利用三角形面积公式求解.【解答】解:(1)连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,又∵BD是直径,∴∠BCD=90°,∴∠ACO=90°,又C在⊙O上,∴AC是⊙O的切线;(2)由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=2,在直角△BCD中,BC===2.又AC=BC,∴AC=2.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,∴S△ABC=AB•CE=×6×=3.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.五.本题共14分23.2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数分布表中a=0.24,b=18,c=4(2)补全频数分布直方图(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.频数分布表分组(分)频数频率50<x 60 2 0.0460<x 70 12 a70<x<80 b 0.3680<x 90 14 0.2890<x 100 c 0.08合计50 1【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据频数、频率和样本容量的关系可分别求得a、b、c;(2)由(1)中求得的b、c的值可补全图形;(3)由题可知超过90分的学生人数有4人,再利用树状图可求得概率.【解答】解:(1)a==0.24,∵=0.36,=0.08,∴b=50×0.36=18,c=50×0.08=4,故答案为:0.24;18;4;(2)由(1)可知70~80的人数为18人,90~100的人数为4人,则可补全图形如图1;(3)由(1)可知超过90分的学生人数有4人,用A、B、C、D分别表示小亮、小华及另外两名同学,树状图如图2,所有可能出现的结果是:(A,B),(A,C),(A,D),(B,A),(B,C),(B,D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C),由树状图可知,从超过90分的四人中选出2人共有12种可能,而小亮和小华同时被选上的有两种可能,∴P(恰好同时选上小亮、小华)==.【点评】本题主要考查列表法或树状图法求概率以及条形统计图的知识,用到的知识点为:概率=所求情况数与总情况数之比.六.本题共14分24.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设购买甲种鱼苗x条,乙种鱼苗y条,根据“购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元”即可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据“甲、乙两种鱼苗的成活率为80%,90%,要使这批鱼苗的总成活率不低于85%”即可列出关于m的一元一次不等式,解不等式即可得出m的取值范围;(3)设购买鱼苗的总费用为w元,根据“总费用=甲种鱼苗的单价×购买数量+乙种鱼苗的单价×购买数量”即可得出w关于m的函数关系式,根据一次函数的性质结合m的取值范围,即可解决最值问题.【解答】解:(1)设购买甲种鱼苗x条,乙种鱼苗y条,根据题意得:,解得:,答:购买甲种鱼苗350条,乙种鱼苗250条.(2)设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据题意得:90%m+80%(600﹣m)≥85%×600,解得:m≥300,答:购买乙种鱼苗至少300条.(3)设购买鱼苗的总费用为w元,则w=20m+16(600﹣m)=4m+9600,∵4>0,∴w随m的增大而增大,又∵m≥300,=4×300+9600=10800(元).∴当m=300时,w取最小值,w最小值答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元.【点评】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的性质以及一次函数的性质,解题的关键是:(1)根据数量关系得出关于x、y的二元一次方程组;(2)根据数量关系得出关于m的一元一次不等式;(3)根据数量关系得出w关于m的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系得出不等式(方程组或函数关系式)是关键.七.阅读材料题.25.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.【考点】有理数的混合运算.【分析】(1)根据题目,首先弄懂题意,然后根据例子写出答案即可;(2)可以先求出104与78的最大公约数为26,再利用辗转相除法,我们可以求出26 与143的最大公约数为13,进而得到答案.【解答】解:(1)108﹣45=63,63﹣45=18,27﹣18=9,18﹣9=9,所以108与45的最大公约数是9;(2)先求104与78的最大公约数,104﹣78=26,78﹣26=52,52﹣26=26,所以104与78的最大公约数是26;再求26与143的最大公约数,143﹣26=117,117﹣26=91,91﹣26=65,65﹣26=39,39﹣26=13,26﹣13=13,所以,26与143的最大公约数是13,∴78、104、143的最大公约数是13.【点评】本题考查的知识点是辗转相除法与更相减损术,求三个或三个以上数的最大公约数,可以先求前两个数的最大公约数,再求所得最大公约数与第三个数的最大公约数最后得到答案.八.本题共16分26.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=14﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=﹣m2+3m+4,∴m=1±,∴P(1+,1+)或P(1﹣,1﹣),②如图,设点P(t,﹣t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,BE+CF=4,=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,∴S四边形PBQC∵0<t<4,=16∴当t=2时,S四边形PBQC最大【点评】此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.请假条,是请求领导或老师或其它,准假不参加某项工作、学习、活动等的文书。