生物化学(PDF)版
《生物化学》教案(完整)共6

蛋白质的高级结构:二级、三 级和四级结构的特征及其与功
能的关系
蛋白质的结构与功能的关系: 酶的活性中心、受体与配体的
结合等
核酸结构与功能
01
02
03
04
核酸的基本组成单位: 核苷酸的结构和种类
DNA的双螺旋结构:碱 基配对、螺旋参数和稳 定性
RNA的种类和结构特征 :mRNA、tRNA和 rRNA的结构和功能
素质目标
培养学生的科学思维、创新意识和 团队协作精神,提高学生的综合素 质和适应未来发展的能力。
课程安排与时间
课程安排
本课程共分为六个部分,包括绪论、蛋白质的结构与功能、糖类的结构与功能、脂类的结 构与功能、核酸的结构与功能以及生物氧化与能量代谢。每个部分包含多个小节,系统介 绍相关知识点。
上课时间
核酸的生物功能:遗传 信息的储存、传递和表 达
糖类结构与功能
单糖的结构和性质
葡萄糖、果糖等单糖的结构特点
糖蛋白和糖脂的结构和功能
糖基化修饰对蛋白质和脂质的影响
多糖的结构和种类
淀粉、纤维素等多糖的结构和性质
糖类的生物功能
能量储存、细胞识别和信号传导等
03 生物小分子代谢与调控
糖代谢途径及调控机制
稳定性。
蛋白质组学技术方法
蛋白质分离技术
如双向凝胶电泳、液相色谱等,用于 分离复杂的蛋白质混合物。
蛋白质鉴定技术
如质谱分析、蛋白质芯片等,用于确 定蛋白质的序列和结构。
蛋白质相互作用研究技术
如酵母双杂交、蛋白质亲和层析等, 用于研究蛋白质之间的相互作用。
蛋白质功能分析技术
如酶活性测定、细胞生物学方法等, 用于研究蛋白质的功能和调控机制。
2024年《生物化学》教案(完整)-(带)

《生物化学》教案(完整)-(带附件)《生物化学》教案一、教学目标1.知识与技能:(1)了解生物化学的基本概念、研究内容和应用领域;(2)掌握生物分子的组成、结构和功能;(3)理解酶的催化作用、酶促反应动力学和酶的调控机制;(4)掌握生物膜的结构、功能及物质跨膜运输;(5)了解细胞信号转导的基本原理和途径;(6)掌握生物能量代谢和物质代谢的基本过程;(7)了解分子生物学的基本技术及其在生物化学研究中的应用。
2.过程与方法:(1)通过实例分析,培养学生运用生物化学知识解决实际问题的能力;(2)通过实验操作,培养学生动手能力和实验技能;(3)通过小组讨论,培养学生合作学习和交流表达能力。
3.情感、态度与价值观:(1)培养学生对生物化学学科的兴趣和热爱;(2)培养学生严谨的科学态度和良好的实验习惯;(3)培养学生关注生物化学领域的发展趋势和热点问题。
二、教学内容1.生物化学基本概念(1)生物化学的定义(2)生物化学的研究内容(3)生物化学的应用领域2.生物分子(1)糖类(2)脂质(3)蛋白质(4)核酸3.酶(1)酶的概念和特性(2)酶促反应动力学(3)酶的调控机制4.生物膜(1)生物膜的结构(2)生物膜的功能(3)物质跨膜运输5.细胞信号转导(1)细胞信号转导的基本原理(2)细胞信号转导的途径6.生物能量代谢与物质代谢(1)生物能量代谢(2)生物物质代谢7.分子生物学技术(1)基因工程(2)蛋白质工程(3)生物芯片技术三、教学安排1.学时分配(1)理论教学:48学时(2)实验教学:16学时(3)小组讨论:4学时2.教学方法(1)讲授法(2)案例分析法(3)实验法(4)小组讨论法3.教学手段(1)多媒体教学(2)网络资源(3)实验设备四、教学评价1.过程评价(1)课堂参与度(2)实验报告(3)小组讨论表现2.结果评价(1)期中考试(2)期末考试(3)平时成绩五、教学建议1.注重理论与实践相结合,提高学生的实际操作能力;2.利用多媒体和网络资源,丰富教学手段,提高教学效果;3.加强师生互动,激发学生的学习兴趣和积极性;4.关注生物化学领域的发展动态,及时更新教学内容;5.注重培养学生的创新能力和团队协作精神。
生物化学过程的调控.pdf

第二节 生物调控的信号物质
1.生物调控信号传递的基本过程
在多细胞组织中,对各个细胞的代谢调控是通过外部信息,即细 胞间信息传递实现的。在动物体内,这种细胞间信息传递由中枢 神经系统与内分泌系统共同完成。中枢神经系统通过神经网络将 信息传递给内分泌系统,再由内分泌系统合成化学信息物质,即 激素。不同的内分泌系统分泌具有不同结构和功能的激素。激素 通常也称为第一信使。
二、含氮激素
1.氨基酸衍生物激素
(1)甲状腺激素
甲状腺所分泌的激素主要是甲状腺素和少量的 三碘甲腺原氨酸。三碘甲腺原氨酸的活性约为 甲状腺素的5-10倍。二者的结构如下:
I HO
I
I
O -CH2-CH-COOH
I
NH2
甲状腺素
I HO
I
O -CH2-CH-COOH
I
NH2
三碘甲腺原氨酸
天然的甲状腺素是酪氨酸的衍生物,均为L-构 型。
幼年动物若甲状腺机能减退或切除甲状 腺时,将引起发育迟缓,身材矮小,行 动呆笨而缓慢;
成年动物甲状腺机能减退时,出现厚皮 病,心博减慢,基础代谢降低,性机能 低下。
反之,甲状腺机能亢进,动物眼球突 出,心跳加快,基础代谢增高,消瘦, 神经系统兴奋性提高,表现为神经过敏 等.
(2).肾上腺素
第八章 生物化学过程的调控
第一节 生物调控的概念
生命现象是生物体内发生的极其复杂的生物化学过程 的综合结果。
为了保证生命活动(如生长、发育、分化、繁殖、代 谢和运动等)能够有条不紊地进行,所有生物体内发 生的生物化学过程都必须受到有效的调控。
生物化学过程,从本质上看,基本上是酶催化的各种生 物化学反应。生物调控实际上是对酶以及酶的调控物 质的种类、数量或活性进行调节而实现的。
生物化学(第四版)

生物化学(第四版)
生物化学是一门研究生物有机体的组成、结构、特性以及反应的科学。
它广泛应用于
研究有机物的组成和功能,改变和调节物质和能量的代谢,研究生物内编码和非编码核酸,分子互作关系,识别生物芯片等研究方向。
值得一提的是,随着基因学、蛋白质学、分子
遗传学等领域的不断发展,生物化学也陆续涉足电子信息学等新兴领域。
生物化学研究生命过程中物质和能量转换和代谢的机制,以及构建和维护生物体结构
和功能的分子机理。
随着基因工程、分子中药学等学科的发展,以及临床诊断的应用,生
物化学的理论和实践在科学研究和实际应用中发挥着重要作用。
生物化学的发展必须依靠实验数据为根据,完成大量的试验获取数据,并运用遗传规律、受激反应律、控制机理等原理进行分析解释。
同时,近十年来,随着科技的不断进步,生物化学技术也可以使用分子模型、生物计算、系统生物学等方式,探究生命规律。
生物化学是一门综合性领域,涉及人们日常生活的各个方面,具有很强的实用性,应
用面很广。
它既有系统性研究,例如生物分子化学、基因组学、受体分子学、激素生物学等;也有实验性研究,例如实验药物学、免疫病理学、临床诊断学、血液学等。
它的研究
结果已作文化生物学、肿瘤学、老年病学、精神病学等方面的重要贡献。
生物化学(第三版,王镜岩主编)高等教育出版社

2011年考研第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
生物化学(PDF)版

生物化学(PDF)版
生物化学是研究生物体内化学过程和物质转化的分支学科。
它涉及了生物学和化学两个领域,主要关注生物体内的分子结构、生物体内化学反应的动力学和机制,以及生物体内的代谢过程。
以下是生物化学的主要内容:
1.生物分子结构:生物化学研究生物体内多种生物分子的结构、组成和性质,包括蛋白质、核酸、碳水化合物和脂质等。
2.酶和酶动力学:酶是生物体内的催化剂,生物化学研究酶的结构和功能,以及酶对生物化学反应速率的影响。
3.代谢途径:生物体内的代谢途径是生物化学的重要研究内容,包括碳水化合物的糖酵解、脂肪酸的氧化和合成、蛋白质的合成和降解等。
4.能量代谢:生物体内的能量转化是生命活动的重要过程,生物化学研究生物体内能量产生和转化的机制,如细胞呼吸和光合作用等。
5.信号转导:生物体内的信号分子参与了各种生物过程的调控,生物化学研究信号分子的合成、传递和识别机制。
6.生物化学技术:生物化学也涉及了多种实验和技术方法,包括蛋白质纯化、基因克隆、核酸测序和基因组学等。
总之,生物化学研究了生物体内的化学反应、分子结构和代谢过程,对于理解生物体的功能和调控机制是至关重要的。
第十一章糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

第⼗⼀章糖类代谢--王镜岩《⽣物化学》第三版笔记(完美打印版)第⼗⼀章糖类代谢第⼀节概述⼀、特点糖代谢可分为分解与合成两⽅⾯,前者包括酵解与三羧酸循环,后者包括糖的异⽣、糖原与结构多糖的合成等,中间代谢还有磷酸戊糖途径、糖醛酸途径等。
糖代谢受神经、激素和酶的调节。
同⼀⽣物体内的不同组织,其代谢情况有很⼤差异。
脑组织始终以同⼀速度分解糖,⼼肌和⾻骼肌在正常情况下降解速度较低,但当⼼肌缺氧和⾻骼肌痉挛时可达到很⾼的速度。
葡萄糖的合成主要在肝脏进⾏。
不同组织的糖代谢情况反映了它们的不同功能。
⼆、糖的消化和吸收(⼀)消化淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,⽀链淀粉由上千个葡萄糖构成,每24-30个残基中有⼀个分⽀。
糖类只有消化成单糖以后才能被吸收。
主要的酶有以下⼏种:1.α-淀粉酶哺乳动物的消化道中较多,是内切酶,随机⽔解链内α1,4糖苷键,产⽣α-构型的还原末端。
产物主要是糊精及少量麦芽糖、葡萄糖。
最适底物是含5个葡萄糖的寡糖。
2.β-淀粉酶在⾖、麦种⼦中含量较多。
是外切酶,作⽤于⾮还原端,⽔解α-1,4糖苷键,放出β-麦芽糖。
⽔解到分⽀点则停⽌,⽀链淀粉只能⽔解50%。
3.葡萄糖淀粉酶存在于微⽣物及哺乳动物消化道内,作⽤于⾮还原端,⽔解α-1,4糖苷键,放出β-葡萄糖。
可⽔解α-1,6键,但速度慢。
链长⼤于5时速度快。
4.其他α-葡萄糖苷酶⽔解蔗糖,β-半乳糖苷酶⽔解乳糖。
⼆、吸收D-葡萄糖、半乳糖和果糖可被⼩肠粘膜上⽪细胞吸收,不能消化的⼆糖、寡糖及多糖不能吸收,由肠细菌分解,以CO2、甲烷、酸及H2形式放出或参加代谢。
三、转运1.主动转运⼩肠上⽪细胞有协助扩散系统,通过⼀种载体将葡萄糖(或半乳糖)与钠离⼦转运进⼊细胞。
此过程由离⼦梯度提供能量,离⼦梯度则由Na-K-ATP酶维持。
细菌中有些糖与氢离⼦协同转运,如乳糖。
另⼀种是基团运送,如⼤肠杆菌先将葡萄糖磷酸化再转运,由磷酸烯醇式丙酮酸供能。
生物化学第八章

第八章
糖类代谢
第一部分 第一节 分 第二节 解 第三节 合成 第四节
单糖的代谢 (19 章) 糖酵解 糖酵解(19 (19章 (三羧酸循环 )20 柠檬酸循环 柠檬酸循环( 三羧酸循环)20 戊糖磷酸途径 -22 章 戊糖磷酸途径-22 -22章 糖的异生 -23 章 -23章
焦磷酸硫胺素(TPP)、硫辛酸、 五种辅因子 COASH、FAD、NAD+、
二 TCA
草酰乙酸 柠檬酸
苹果酸
延胡索酸
异柠檬酸
琥珀酸 α-酮戊二酸 琥珀酰CoA
反应地点: 线粒体基 质中
(一) 草酰可逆.
O=C O=C CH2
COOH 草酰基 COOH COOH
ATP ADP
UDP-半乳糖 UDP-葡萄糖
PPi
果糖
ATP ADP
肌细胞
葡萄糖-1-磷酸 Pi
糖原或淀粉
葡萄糖-6-磷酸 甘露糖-6-磷酸
ADP ATP
果糖-6-磷酸 果糖-1、6-磷酸
ATP ADP
进入糖酵解
甘露糖
第一部分 第一节 分 第二节 解 第三节 合成 第四节
单糖的代谢 (19 章) 糖酵解 糖酵解(19 (19章 (三羧酸循环 )20 柠檬酸循环 柠檬酸循环( 三羧酸循环)20 戊糖磷酸途径 -22 章 戊糖磷酸途径-22 -22章 糖的异生 -23 章 -23章
琥珀酸-CoA合成酶 或者琥珀酸硫激酶
唯一一个产生高能磷酸键步 骤—也是底物水平的磷酸化
反应可逆
(六) 琥珀酸脱氢形成延胡索酸
琥珀酸脱氢酶
是一步 FADH2的反应
反应可逆
(七) 延胡索酸水合形成L-苹果酸
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有甜味蛋白、毒素蛋白等都具有特异的生物学功能
所以,没有蛋白质就没有生命。
二、蛋白质的分类
(一)根据分子形状分:球状蛋白质、纤维状蛋白质。
(二)根据功能分:活性蛋白质、结构蛋白质。
(三)根据组成分:
� 简单蛋白质:清蛋白、球蛋白、谷蛋白、醇溶谷蛋白、组蛋白、精蛋白、硬蛋白。
� 结合蛋白质:色素蛋白、金属蛋白、磷蛋白、核蛋白、脂蛋白、糖蛋白。
由 108 个氨基酸残基构成的前胰岛素原 pre-proinsulin),在合成的时候完全没有活性,当切去 N-端的 24 个氨基酸信号肽,形成 84 个氨基酸的胰岛素原(proinsulin),胰岛素原也没活性,在包装分泌时,A、 B 链之间的 33 个氨基酸残基被切除,才形成具有活性的胰岛素。
c. 在镰刀状红细胞贫血患者中,由于基因突变导致血红蛋白β-链第六位氨基酸残基由谷氨酸改变为缬氨
� 参与机体的运动:如心跳、胃肠蠕动等,依靠与肌肉收缩有关的蛋白质来实现,如肌球蛋白、肌动蛋
白。
� 参与机体的防御:机体抵抗外来侵害的防御机能,靠抗体,抗体也称免疫球蛋白,是蛋白质。
� 接受传递信息:如口腔中的味觉蛋白、视网膜中的视觉蛋白。
� 调节或控制细胞的生长、分化、遗传信息的表达。
� 其它:如鸡蛋清蛋白、牛奶中的酪蛋白是营养和储存蛋白;胶原蛋白、纤维蛋白等属于结构蛋白。还
水键,如 Leu,Ile,Val,Phe,Ala 等的侧链基团。 3. 离子键(盐键): � 离子键(salt bond)是由带正电荷基团与带负电荷基团之间相互吸引而形成的化学键。 � 在近中性环境中,蛋白质分子中的酸性氨基酸残基侧链电离后带负电荷,而碱性氨基酸残基侧链电离
后带正电荷,二者之间可形成离子键。 4.范德华氏(van der Waals)引力:原子之间存在的相互作用力。 三、蛋白质的二级结构 � 蛋白质的二级结构是指蛋白质多肽链主链原子局部的空间结构,但不包括与其他肽段的相互关系及侧
N →C
� 两氨基酸单位之间的酰胺键,称为肽键。多肽链中的氨基酸单位称为氨基酸残基。 � 多肽链具有方向性,头端为氨基端(N 端),尾端为羧基端(C 端 )。 � 凡氨基酸残基数目在 50 个以上,且具有特定空间结构的肽称蛋白质;凡氨基酸残基数目在 50 个以下 ,
且无特定空间结构者称多肽。 (二)生物活性肽: 生物体内具有一定生物学活性的肽类物质称生物活性肽。重要的有谷胱甘肽、神经肽、肽类激素等。 1. 谷胱甘肽(GSH):
� 优点:氨基酸不被破坏,不发生消旋现象。
� 缺点:水解不完全,中间产物多。
蛋白质酸碱水解常用于蛋白质的组成分析,而酶水解用于制备蛋白质水解产物。
第二节 蛋白质的分子结构
� 蛋白质是由许多氨基酸单位通过肽键连接起来的,具有特定分子结构的高分子化合物。
� 蛋白质的分子结构可人为划分为一、二、三、四级结构。除一级结构外,蛋白质的二、三、四级
结构均属于空间结构,即构象。
� 构象是由于有机分子中单键的旋转所形成的。蛋白质的构象通常由非共价键(次级键)来维系。
一、 蛋白质的一级结构
(一)肽键与肽链
蛋白质是由若干氨基酸的氨基与羧基经脱水缩合而连接起来形成的长链化合物。一个氨基酸分子的 α-羧基与另一个氨基酸分子的α-氨基在适当的条件下经脱水缩合即生成肽(peptide)。
酸,血红蛋白的亲水性明显下降,从而发生聚集,使红细胞变为镰刀状。
d. 细胞色素 c 的一级结构与生物进化的关系
二、蛋白质分子中的非共价键(次级键)
1. 氢键:
� 氢键(hydrogen bond)的形成常见于连接在一电负性很强的原子上的氢原子,与另一电负性很强的原子
之间。
� 氢键在维系蛋白质的空间结构稳定上起着重要的作用。
空间构象的蛋白质分子。 � 在蛋白质变性剂(如 8 摩尔的尿素)和一些还原剂(如巯基乙醇)存在下,酶分子中的二硫键全部被
还原,酶的空间结构破坏,肽链完全伸展,酶的催化活性完全丧失。 � 当用透析的方法除去变性剂和巯基乙醇后,发现酶大部分活性恢复,所有的二硫键准确无误地恢复原
来状态。 b . 前体与活性蛋白质一级结构的关系
种类较多,生理功能各异。主要见于下丘脑及垂体分泌的激素。 � 胰岛素(Insulin)由 51 个氨基酸残基组成,分为 A、B 两条链。A 链 21 个氨基酸残基,B 链 30 个氨
基酸残基。A、B 两条链之间通过两个二硫键联结在一起,A 链另有一个链内二硫键。
(三)、蛋白质的一级结构 � 蛋白质的一级结构是指蛋白质多肽链中通过肽键连接起来的氨基酸的排列顺序,即多肽链的线状结
� 缺点:色氨酸破坏,并产生一种黑色的物质:腐黑质,水解夜呈黑色。
2.碱水解
� 条件:4mol/L Ba(OH)2 或 6mol/LNaOH 煮沸 6 小时。
� 优点:水解彻底,色氨酸不被破坏,水解夜清亮。
� 缺点:产生消旋产物,破坏的氨基酸多,一般很少使用。
3.蛋白酶水解
� 条件:蛋白酶如胰蛋白酶、糜蛋白酶,常温 37—40℃,pH 值 5—8
二、氨基酸的分类: 1.按氨基酸分子中羧基与氨基的数目分: 酸性氨基酸:一氨基二羧基氨基酸,有天冬氨酸、谷氨酸; 碱性氨基酸:二氨基一羧基氨基酸,有赖氨酸、精氨酸、组氨酸; 中性氨基酸:一氨基一羧基氨基酸,有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半
胱氨酸、苯丙氨酸、色氨酸、酪氨酸、脯氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸。 2.按侧基 R 基的结构特点分: 脂肪族氨基酸 芳香族氨基酸:苯丙氨酸、色氨酸、酪氨酸 杂环氨基酸:脯氨酸、组氨酸 3.按侧基 R 基与水的关系分: 非极性氨基酸:有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、
� 氢键的键能较低(-12kJ/mol),因而易被破坏。
蛋白质分子中氢键的形成
蛋白质分子中离子键的形成
范德华氏引力
2. 疏水键: � 非极性物质在含水的极性环境中存在时,会产生一种相互聚集的力,这种力称为疏水键或疏水作用力。 � 蛋白质分子中的许多氨基酸残基侧链也是非极性的,这些非极性的基团在水中也可相互聚集,形成疏
第二节 氨基酸的理化性质 一、物理性质
形态:均为白色结晶或粉末,不同氨基酸的晶型结构不同。 溶解性:一般都溶于水,不溶或微溶于醇,不溶于丙酮,在稀酸和稀碱中溶解性好。 熔点:氨基酸的熔点一般都比较高,一般都大于 200℃,超过熔点以上氨基酸分解产生胺和二氧化碳 。 光吸收:氨基酸在可见光范围内无光吸收,在近紫外区含苯环氨基酸有光的吸收。 旋光性:除甘氨酸外的氨基酸均有旋光性。 二、氨基酸的化学性质 1.两性解离及等电点 氨基酸分子是一种两性电解质。
色氨酸、酪氨酸、脯氨酸; 极性不带电氨基酸:天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸; 极性带电氨基酸:天冬氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸。 4. 按氨基酸是否能在人体内合成分: 必需氨基酸:指人体内不能合成的氨基酸,必须从食物中摄取,有八种:赖氨酸、色氨酸、甲硫氨酸 、
笨丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苏氨酸。 非必需氨基酸:指人体内可以合成的氨基酸。有十种。 半必需氨基酸:指人体内可以合成但合成量不能满足人体需要(特别是婴幼儿时期)的氨基酸,有两
通过氨基酸的滴定曲线,可用下列 Henderson—Hasselbalch 方程求出各解离基团的解离常数(pK,) 根据 pK,可求出氨基酸的等电点,其等电点左右两个 pK,值的算术平均值求出。
中性及酸性氨基酸: pI=(pK1,+pK2,)/2 中性氨基酸:pK1,为α—羧基的解离常数,pK2,为α—氨基的解离常数。 酸性氨基酸:pK1,为α—羧基的解离常数,pK2,为侧链羧基的解离常数。 碱性氨基酸: pI=(pK2,+pK3,)/2 其中:pK2,为α—氨基的解离常数,pK3,为侧链氨基的解离常数。 二十种氨基酸的 pK,及等电点(P133): 2.由α—氨基参加的反应 ○1 亚硝酸反应 放出氮气,氮气的一半来自氨基氮,一半来自亚硝酸,在通常情况下测定生成的氮 气的体积量可计算氨基酸的量,此反应可用于测定蛋白质的水解程度。
种:组氨酸、精氨酸。 三、稀有氨基酸:
参加天然蛋白质分子组成的氨基酸,除了上述 20 种有遗传密码的基本氨基酸之外,在少数蛋白质分 子中还有一些不常见的氨基酸,称为稀有氨基酸。
它们都是在蛋白质分子合成之后,由相应的常见氨基酸分子经酶促化学修饰而成的衍生物。 二十种氨基酸的名称和结构如图所示:
(注:缺脯氨酸)
4.α—氨基与α—羧基共同参加的反应
与茚三酮的反应:除脯氨酸与羟脯氨酸外,可与其它氨基酸生成蓝紫色化合物。 脯氨酸与羟脯氨酸为黄
色化合物。
第二章 蛋白质ຫໍສະໝຸດ 第一节 概述一、蛋白质的生物学意义
(一)、蛋白质是生命活动的物质基础
生物体内的蛋白质是除水以外,机体组织中最多的组分,占人体干重的 45%。占细菌干重的 50—70%。
构。 � 维系蛋白质一级结构的主要化学键为肽键。 中文氨基酸残基命名法:酪氨酰甘氨酰甘氨酰苯丙氨酰甲硫氨酸 中文单字表示法:酪-甘-甘-苯丙-甲硫 三字母符号表示法:Tyr Gly Gly Phe Met 单字母符号表示法:Y·G·G·F·M
蛋白质一级结构与功能的关系 a. 一级结构是空间构象的基础 � RNase 是由 124 氨基酸残基组成的单肽链,分子中 8 个 Cys 的-SH 构成 4 对二硫键,形成具有一定
通过改变溶液的 pH 可使氨基酸分子的解离状态发生改变。 氨基酸分子带有相等正、负电荷时,溶液的 pH 值称为该氨基酸的等电点(pI)。 在某一 pH 环境下,以两性离子(兼性离子)的形式存在。该 pH 称为该氨基酸的等电点。所以氨基 酸的等电点可以定义为:氨基酸所带正负电荷相等时的溶液 pH。 以甘氨酸为例, 从左向右是用 NaOH 滴定的曲线,溶液的 pH 由小到大逐渐升高;从右向左是用 HCl 滴定的曲线,溶液的 pH 由大到小逐渐降低。曲线中从左向右第一个拐点是氨基酸羧基解离 50%的 状 态 , 第二个拐点是氨基酸的等电点,第三个拐点是氨基酸氨基解离 50%的状态。