无机化学的发展前景 论文
谈无机化学的发展前沿-精品文档资料

谈无机化学的发展前沿-精品文档资料谈无机化学的发展前沿化学是一种广泛运用于人们生活与工作中的自然科学,是一种基于原子、分子层次,进而对物质的结构、组成、性质变化规律的科学。
而无机化学作为化学领域的一个重要二级学科及分支,细致研究了无机物质的结构、组成、性质和相关化学。
例如:碳氧化物、硫化物、碳酸及碳酸盐都属于无机化学的研究范围。
由于当前科研工作的复杂性与不确定性,多个领域的研究都出现相互渗透并且相辅相成的现象。
目前,无机化学的主要发展趋势是偏向新型的无机化合物的合成和应用,以及对新研究领域的不断探索,并对其进行持之以恒的开辟和建立。
例如,生物无机化学是生物学和无机化学相互渗透的边缘学科;固体无机化学是21世纪大热的新型研究方向。
1、无机化学的发展进程早期的人类在发展中逐渐学会了使用闪电击打木头致燃烧而产生的火到后来的“钻木取火”也就是使用一定的技术使化学元素充分地为人类所用,当然那时的技术还是较为低级的,不够成熟的。
再到后来的古代中国煅烧陶瓷,锻造青铜器,直到这时,人类才真正地开始使用“高级”的技术,运用化学原理和知识技术将某些元素转变为性质不同,用法不同的物质。
由于最初的化学研究多为无机物,所以近代无机化学的开始也标志着近代化学的开端。
近代化学始于英国的玻意耳、法国的拉瓦锡以及英国的道尔顿。
玻意耳对化学基础做了许多基本研究,比如氢气、磷的制备,金属酸的反应以及燃烧反应等。
他着重强调了元素和与合物间差别所在,为化学的建立做出了巨大的贡献。
拉瓦锡再使用天平测量之后提出了质量守恒定律,这也是化学学科最重要的定律之一。
同时,他确定了物质燃烧是基于氧化作用,推翻了持续百年之久的“燃素说”,以此促进了化学的发展。
而英国的道尔顿则提出了原子学说,说明一切元素都是由不能再分割的原子所组成。
由此,化学这门科学正式宣告成立。
19世纪30年代时,化学领域已知的元素已达60多种,俄国化学家门捷列夫对这些元素进行了较为细致的研究,从而发现了元素周期律。
无机化学的新进展与应用前景

无机化学的新进展与应用前景无机化学是化学的基础学科,从化学元素的基本性质开始,研究原子、分子、化合物之间的相互作用和转化过程。
作为化学科学中最古老、最综合、最基础的分支学科之一,无机化学在社会的各个领域都有广泛的应用。
近年来,人们对于无机化学的研究和应用也在不断的发展,取得了许多令人瞩目的新进展。
1.氧化物的研究氧化物的研究一直是无机化学研究的热点之一。
在新能源和环境保护领域,氧化物作为贵重金属、有机催化剂及其它高性能材料的控制骨架,具有重要的应用前景。
然而,氧化物的高温、高压和反应热难以控制,同时其物理性质和电子性质受晶体结构、晶面和界面影响很大,因此,对于氧化物在不同结构和配合物中的电子结构、反应机理及应用前景的研究具有非常重要的意义。
2.光电磁材料的研究随着科学技术的快速发展,光电磁材料研究已经成为了无机化学中非常关键的领域之一。
这些物质广泛应用于发光二极管、光电池、光纤通信及太阳能电池等各种高科技领域。
此外,光电磁材料的研究有助于理解光电子的基本行为和光学性质,预示着未来在光电子与器件领域可能出现的新突破。
3.金属有机框架材料的研究金属有机框架材料是一类新型有机-无机杂化功能材料。
具有小孔径、高孔密度、可调反应活性、稳定的骨架结构等优良特性,因此在气体吸附、分离、储氢、催化、光电催化、药物分子控制释放和传感识别等领域具有广泛的应用前景。
近年来,对金属有机框架材料的研究和应用也取得了一系列的进展,如发现了新型具有双重环醚结构和多重酸碱功能的金属有机框架材料等。
总而言之,无机化学的新进展与应用前景十分广泛。
随着科技的发展和科学家们的努力,我们相信无机化学的新发现和新应用将会不断涌现。
这将为人类的未来发展带来源源不断的动力与活力,为我们的生活带来更多惊喜和惊艳。
无机化学的应用前景

无机化学的应用前景无机化学作为化学科学的重要分支,在各个领域都有着广泛的应用和前景。
无机化学的研究和应用不仅在工业生产中发挥着重要作用,还在环境保护、医药领域、能源技术等方面展现出巨大的潜力。
本文将从这几个方面来探讨无机化学的应用前景。
一、工业生产领域的应用无机化学在工业生产中有着广泛的应用。
例如,在化肥生产中,无机化学可以研发出高效的肥料,提高农作物产量,满足人们对粮食的需求。
此外,无机化学还可以应用于生产高效能源催化剂、金属材料、电子元件等领域,促进工业生产的进一步发展。
二、环境保护领域的应用无机化学在环境保护领域也具有重要的应用前景。
例如,通过无机化学的研究和应用,可以开发出高效的废水处理剂和废气处理剂,实现对工业废物的净化和治理。
此外,无机化学还可以应用于土壤修复、环境监测等方面,推动环境保护事业的发展。
三、医药领域的应用无机化学在医药领域也发挥着重要作用。
许多药物的合成和研发都依赖于无机化学的技术和方法。
例如,某些金属离子可以作为药物的活性成分,具有抗菌、抗肿瘤等疗效。
此外,无机纳米材料在医药图像学和药物传递系统中的应用也具有巨大的潜力。
四、能源技术领域的应用在能源技术领域,无机化学的应用前景也十分广阔。
例如,无机化学可以研发高效的光催化剂,实现太阳能的光电转化,为清洁能源的利用和开发提供新的途径。
此外,无机化学还可以用于开发新型的电池材料、储氢材料等,在能源存储和转换领域发挥重要作用。
总而言之,无机化学在工业生产、环境保护、医药领域以及能源技术领域都有着广泛的应用前景。
随着科学技术的发展,无机化学的应用前景将进一步拓展,为社会的发展和进步做出更大的贡献。
相信在不久的将来,无机化学将在更多领域发挥出其巨大的潜力。
无机化学的发展前景

无机化学的发展前景无机化学的现代化始于化学键理论的建立和新型仪器的应用,使无机化合物的研究由宏观深入微观,从而把它们的性质和反应同结构联系起来。
又由于特种技术对无机特种材料生产的需要也有力地推动了无机化学研究。
到五十年代,国际上无机化学已进入蓬勃发展时期,有人称之为“无机化学的复兴”。
近三十多年来,无机化学研究新发展主要是许多新型化合物如夹心、笼状、簇状和穴状等化合物的合成和应用,以及新的边缘学科如生物无机化学、有机金属化学和无机固体化学等的开拓和发展。
我国无机化学的研究仍多属传统的课题,使用经典的方法。
在上述新领域中,有的尚未有人问津、仍属空白,有的只是初步涉足,还没有深入系统的工作。
〖新型化合物的重要作用〗总之,无机化学研究的对象是所有的化学元素和它们的化合物,除掉碳氢化合物及其衍生物,范围极为广泛,以上所提及是无机化学在国际上正在发展的具体基础理论意义和实际意义的几个方面和在国内有关矿物资源有效利用而急需解决的一些问题,这些似为我国无机化学界主要致力的方向,以求对祖国四化的建设和对化学学科的发展有所贡献。
无机化学是一个近年来非常活跃的研究领域,它涉及到几乎各个学科。
从本世纪50年代起,随着科学水平的提高,对无机化合物微观结构和反应机理有了更深入了解,而理论模型的发展又促进了无机化学研究的系统化和理论化。
科学研究的新兴领域及交叉学科如材料、生命等几乎都涉及无机化学。
无机化学家还面临着环境、能源等领域提出的问题。
这当中也涉及到相当多的无机化学前沿课题。
在世纪之交,展望未来10年化学事业和化学对人类生活的影响,我们充满信心,倍感兴奋,化学是无限的,化学是至关重要的,它将帮助我们解决二十一世纪所面临的一系列问题,化学将迎来它的黄金时代。
1。
无机化学的新进展

无机化学的新进展一、简介无机化学是研究在无机体系中发生的化学反应和现象的学科。
随着科学技术的不断进步,无机化学也在不断发展,涌现出众多新的理论和应用。
本文将从无机材料的开发与应用、催化剂的研究、新型配位化合物的设计和合成等方面,介绍无机化学的新进展。
二、无机材料的开发与应用无机材料在生物医学、电子器件、催化剂、环境治理等领域都有广泛应用。
近年来,人们对无机材料的研究重点主要集中在纳米材料和多孔材料方面。
1. 纳米材料纳米材料是具有尺寸在1-100纳米之间的材料,具有特殊的物理和化学性质。
在无机化学中,纳米材料的合成、表征及其在催化、传感、储能等方面的应用成为研究热点。
例如,金属纳米颗粒具有较大的比表面积和丰富的表面活性位点,可用于催化反应和传感器制备。
此外,气体敏感纳米材料在气体传感和储能方面也取得了一定的成果。
2. 多孔材料多孔材料是由具有可重复的孔道结构的无机物或有机物组成的材料。
其具有高比表面积、大孔容和高孔隙率的特点,广泛应用于吸附分离、储能、催化剂等领域。
近年来,无机多孔材料如金属有机框架、无机-有机杂化材料等的研究取得了重要突破。
这些材料不仅具有高效吸附分离性能,还可用于制备高性能催化剂和电子器件。
三、催化剂的研究催化剂在化学合成、环境治理、能源转化等领域起着至关重要的作用。
近年来,通过设计新颖的催化剂结构和合成方法,提高催化剂的活性和选择性是无机化学领域的热点之一。
1. 单原子催化剂单原子催化剂是指将单个金属原子分散地负载在载体上,具有高催化活性和选择性。
传统的催化剂存在金属集中堆积和晶面同质缺陷等问题,而单原子催化剂能够克服这些问题,为化学反应提供了高效的催化性能。
通过无机化学手段合成和调控单原子催化剂的结构和性质,并研究其在催化反应中的机理,已成为无机化学研究的重要方向。
2. 金属有机框架催化剂金属有机框架材料是由金属离子和有机配体组成的晶体材料。
其具有高比表面积、可调控的孔道结构和丰富的活性位点,是一类重要的催化剂。
无机化学的发展趋势

无机化学的发展趋势无机化学作为化学学科的重要分支,在现代科学和工业生产中起着重要的作用。
随着科技的不断进步和经济的快速发展,无机化学也在不断演化。
本文将探讨无机化学的发展趋势,并分析其可能的未来方向。
一、新型材料的研究与应用新型材料是无机化学领域的热门研究方向。
无机材料的研究与应用已经涉及到诸多领域,如能源存储与转换、光电器件、催化剂等方面。
例如,钙钛矿太阳能电池作为高效、廉价的太阳能转化器件受到广泛关注。
此外,金属有机骨架材料和二维材料也是研究热点,它们具有调控结构和性能的潜力,可应用于气体存储、分离、传感等领域。
二、可持续发展与环境治理环境问题日益突出,可持续发展已成为全球的共识。
无机化学在环境治理中发挥着重要的作用。
例如,通过研究新型吸附剂和催化剂,可以更高效地去除有害物质和减少污染产物的生成。
同时,绿色合成和可再生资源利用成为新的研究方向,通过设计合成无机材料来代替传统的有机合成,实现可持续发展目标。
三、纳米技术在无机化学中的应用纳米技术是目前科学研究的热点领域。
无机化学作为纳米技术的基础,其研究和应用将会得到进一步拓展。
通过纳米技术,可以控制材料的尺寸、形貌和结构,从而调控其性质和功能。
例如,通过控制金属纳米颗粒的大小和形貌,可以调节其催化性能和光电性能。
纳米技术在催化、储能、光催化等方面有着广阔的应用前景。
四、计算化学与理论模拟计算化学和理论模拟已成为无机化学研究不可或缺的工具。
通过计算化学方法,可以预测和解释无机化合物的结构、性质和反应行为。
理论模拟可以帮助研究人员从原子水平上理解无机材料的性质和反应机制。
随着计算机硬件和软件技术的不断发展,计算化学在无机化学中的应用将会越来越广泛。
五、多学科交叉与创新无机化学的发展趋势是多学科交叉与创新。
无机化学与物理学、生物学、材料科学等学科的结合将促进学科的发展和应用。
例如,生物无机化学研究已经涉及到生命科学和医药领域。
多学科交叉合作不仅拓宽了无机化学的研究方向,也有助于解决跨学科的科学难题。
无机化学的应用与发展

无机化学的应用与发展无机化学作为化学学科的重要分支,研究非生物体系中的物质性质、结构和变化规律。
它广泛应用于化学和其他领域,为我们的生活和科学研究提供了重要支持。
本文将探讨无机化学的应用领域,包括催化剂、材料科学、环境保护和能源转化等方面,并展望无机化学的未来发展趋势。
催化剂是无机化学应用的重要领域之一。
催化剂是一种能够增加化学反应速率或改变反应途径,而本身不参与反应的物质。
催化剂的应用广泛,例如在化学合成、石油加工和环境清洁等领域。
金属催化剂具有活性高、寿命长、废弃物少的优点,被广泛用于有机合成和药物制备中。
除了金属催化剂,氧化物和过渡金属催化剂也在脱氧、氧化、还原、加氢等反应中发挥重要作用。
催化剂的研究和应用为实现高效、绿色和可持续发展的化学生产提供了重要支持。
材料科学是无机化学应用的另一个重要领域。
无机材料具有特殊的物理和化学性质,因此被广泛应用于电子、光电子、磁学、能量存储和传感器等领域。
近年来,基于无机材料的纳米技术发展迅速,为新型材料的设计和合成提供了新途径。
例如,二氧化钛和氧化锌纳米材料具有优异的光催化性能,可用于水和空气的净化。
此外,无机材料在节能和环境友好材料方面也具有重要应用,例如高效发光二极管、太阳能电池和燃料电池等。
环境保护是无机化学应用的重要领域之一。
无机化学在环境污染治理、废物处理和水资源管理中发挥关键作用。
例如,离子交换树脂是一种常用的水处理材料,能够去除水中的有机污染物和硬水离子。
此外,氧化剂、吸附剂、光催化剂等无机材料也被广泛应用于大气污染防治和废气处理中。
无机化学的应用为改善环境质量和维护人类健康提供了技术支持。
能源转化是无机化学应用的另一个前沿领域。
在可持续能源的开发和利用中,无机化学起到了关键作用。
例如,金属催化剂在燃料电池中被用于电化学反应,将化学能转化为电能。
此外,太阳能电池中的无机材料也能将光能转化为电能。
能源转化的研究和改进有助于提高能源利用效率、减少对化石能源的依赖,实现可持续和清洁能源的利用。
无机化学在新兴产业中的应用前景如何

无机化学在新兴产业中的应用前景如何在当今科技飞速发展的时代,新兴产业如雨后春笋般涌现,而无机化学作为化学领域的重要分支,在这些新兴产业中发挥着至关重要的作用,并且展现出广阔的应用前景。
无机化学主要研究无机物质的组成、结构、性质及其变化规律。
这些无机物质包括金属、非金属、无机化合物以及它们的配合物等。
在新兴产业中,无机化学的应用涵盖了多个领域,从能源存储与转换到新材料的研发,从生物医药到环境保护,都能看到无机化学的身影。
先来说说能源领域。
随着全球对清洁能源的需求日益增长,锂离子电池作为一种高效的储能设备,在电动汽车、便携式电子设备等领域得到了广泛应用。
锂离子电池的正极材料通常是无机化合物,如钴酸锂、磷酸铁锂等。
通过对这些无机材料的结构和组成进行优化,可以提高电池的能量密度、循环寿命和安全性。
此外,钠离子电池作为一种潜在的替代技术,其正极和负极材料的研发也离不开无机化学的支持。
除了电池技术,无机化学在太阳能电池的发展中也发挥着关键作用。
例如,钙钛矿太阳能电池因其高效、低成本的特点而备受关注,而钙钛矿材料的制备和性能优化就需要深入的无机化学研究。
在新材料方面,无机化学更是大显身手。
纳米材料是当今材料科学研究的热点之一,无机纳米材料如纳米金、纳米银、碳纳米管等具有独特的物理和化学性质。
通过控制合成条件和表面修饰,可以赋予这些纳米材料特定的功能,如催化、传感、药物输送等。
无机化学中的晶体生长技术也为高性能半导体材料的制备提供了保障。
例如,氮化镓、碳化硅等宽禁带半导体材料在高温、高频、高功率电子器件方面具有巨大的应用潜力,其晶体的生长和质量控制离不开无机化学的理论和方法。
生物医药领域同样离不开无机化学。
金属配合物在药物研发中具有重要地位,例如铂类抗癌药物已经在临床上广泛应用。
此外,磁性纳米粒子在生物成像和靶向治疗中展现出良好的应用前景。
通过在纳米粒子表面修饰特定的生物分子,可以实现对肿瘤细胞的精准识别和治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无机化学的发展前景化学10本1王小苹110711031摘要:化学的发展,对人类社会的进步至关重要。
化学与人们的生活息息相关,了解化学的发展史,有助于我们更好的利用化学化学的历史渊源,不管是过去、现在还是未来,人类社会的发展都离不开化学,化学与人类生活息息相关。
在现代社会,化学与其他学科的关系越来越紧密,化学理论和分析方法也日益完善,随着一些新概念的出现,化学出现了多个分支,形成了不同的分析领域。
化学的历史渊源非常古老,可以说自从有了人类,化学便与人类结下了不解之缘。
钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器等等。
当时只是一种经验的积累,化学知识的形成和发展经历了漫长而曲折的道路。
而它的发展,又极大地促进了当时社会生产力的发展,成为人类进步的标志。
关键词:化学史化学家发展发展前景时期化学史大致分为以下几个时期:(一)化学的萌芽时期也就是从远古到公远古的工艺化学时期,元前1500年,人类学会在熊熊的烈火中由黏土制出陶器、由矿石烧出金属,学会从谷物酿造出酒、给丝麻等织物染上颜色,等等。
这些都是在实践经验的直接启发下经过长期摸索而来的最早的化学工艺,但还没有形成化学知识,只是化学的萌芽时期。
(二)炼丹和医药化学时期,约从公元前1500年到公元1650年,化学被炼丹术、炼金术所控制。
为求得长生不老的仙丹或象征富贵的黄金,炼丹家和炼金术士们开始了最早的化学实验,虽然他们都以失败告终,但在炼制长生不老药的过程中,在探索“点石成金”的方法中实现了物质间用人工方法进行的相互转变,积累了许多物质发生化学变化的条件和现象,为化学的发展积累了丰富的实践经验。
在欧洲文艺复兴时期,出版了一些有关化学的书耕,第一次有了“化学”这个名词。
英语的chemistry起源于alchemy,即炼金术。
chemist至今还保留昔两个相关的含义:化学家和药剂师。
但随着炼丹术、炼金术的衰落,人们更多地看到它荒唐的一面,化学方法转而在医药和冶金方面得到正当发挥,中、外药物学和冶金学的发展为化学成为一门科学准备了丰富的素材。
这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。
(三)燃素化学时期,从1650年到1775年,是近代化学的孕育时期。
随着冶金工业和实验室经验的积累,人们总结感性知识,进行化学变化的理论研究,使化学成为自然科学的一个分支。
这一阶段开始的标志是英国化学家波义耳为化学元素指明科学的概念。
继之,化学又借燃素说从炼金术中解放出来。
燃素说认为可燃物能够燃烧是因为它含有燃素,燃烧过程是可燃物中燃素放出的过程,尽管这个理论是错误的,但它把大量的化学事实统一在一个概念之下,解释了许多化学现象。
在燃素说流行的一百多年间,化学家为解释各种现象,做了大量的实验,发现多种气体的存在,积累了更多关于物质转化的新知识。
特别是燃素说,认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近代化学思维的基础。
这一时期,不仅从科学实践上,还是从思想上为近代化学的发展做了准备。
(四)定量化学时期:从1775年到1900年,是近代化学发展的时期。
1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期,使化学沿着正确的轨道发展。
19世纪初,英国化学家道尔顿提出近代原子学说,接着意大利科学家阿伏加德罗提出分子概念。
自从用原子-分子论来研究化学,化学才真正被确立为一门科学。
这一时期,建立了不少化学基本定律。
俄国化学家门捷列夫发现元素周期律,德国化学家李比希和维勒发展了有机结构理论,这些都使化学成为一门系统的科学,也为现代化学的发展奠定了基础。
(五)科学相互渗透时期:基本上从20世纪初开始,是现代化学时期。
20世纪初,物理学的长足发展,各种物理测试手段的涌现,促进了溶液理论、物质结构、催化剂等领域的研究,尤其是量子理论的发展,使化学和物理学有了更多共同的语言,解决了化学上许多未解决的问题,物理化学、结构化学等理论逐步完善。
同时,化学又向生物学和地质学等学科渗透,使过去很难解决的蛋白质、酶等结构问题得到深入的研究,生物化学等得到快速的发展。
诚然,科学的发展是没有止境的,因而化学的发展也决不会停滞不前。
这里主要讲述近二百多年来的化学史故事。
这是化学得到快速发展的时期,是风云变幻英雄辈出的时期。
让我们一道去体验当年化学家所经历的艰难险阻,在近代化学史峰回路转的曲折历程中不倦跋涉,领略他们拨开重重迷雾建立新理论、发现新元素、提出新方法时的无限风光。
中国化学史上的“世界第一”:1.公元前100年中国发明了造纸术。
公元105年东汉蔡伦总结并推广了造纸技术,而欧洲人还在用羊皮抄书呢!2.公元700~800年唐朝孙思邈在《伏硫磺法》中记载了黑火药的三组分(硝酸钾、硫磺和木炭)。
火药于13 世纪传入阿拉伯,14世纪才传入欧洲。
3.公元前200~后400年中国炼丹术兴起。
魏伯阳的《周易参同契》和葛洪的《抱朴子》记录了汞、铅、金、硫等元素和数十种药物的性状与配制。
公元750年中国炼丹术传入阿拉伯。
4.公元800年唐朝茅华是世界上第一位发现氧气的人。
他比英国的普利斯特里(1774年)和瑞典的舍勒(1773年)约早1000年。
5.我国是“纤维之王”──蚕丝的故乡。
公元前2000年中国己经养蚕。
公元200年养蚕技术传入日本。
6.公元前600年中国已掌握冶铁技术,比欧洲早1900多年。
公元前200年,中国炼出了球墨铸铁,比英、美领先2000年。
7. 1000多年前中国就能炼锌,早于欧洲400年。
8.公元前2000年中国已会熔铸红铜。
公元前1700年中国已开始冶铸青铜。
公元900多年我国的胆水浸铜法是世界上最早的湿法冶金技术(置换法)。
9. 1700多年前,中国已能炼铅及铜铅合金。
10.公元前800~公元前600年中国已制造陶器。
公元200年中国比较成熟地掌握了制瓷技术。
11. 3000多年前,我国已利用天然染料染色。
我国是世界上最早发现漆料和制作漆器的国家,约有7000年历史。
12.公元前4000~公元前3000年中国已会酿造酒。
公元前1000年我国已掌握制酒技术,比欧洲的“淀粉发酵法”制造酒精早2000多年。
13. 3000多年前,我们祖先发现石油。
古书载“泽中有火”即指地下流出石油溢到水面而燃烧。
宋朝沈括所著《梦溪笔谈》第一次记载石油的用途,并预言:“此物必大行于世”。
14.世界上最早开发和利用天然气的是中国的四川省邛崃和陕西省鸿门两地。
15.我国祖先很早便开始使用木炭和石炭(又叫黑炭,即煤),而欧洲人16世纪才开始利用煤。
16. 1939年,中国化工专家侯德榜提出“联合制碱法”,1939年侯德榜完成了世界上第一部纯碱工业专著《制碱》。
17. 1965年,我国在世界上第一个用人工的方法合成活性蛋白质──结晶牛胰岛素。
(由于署名原因,诺贝尔化学奖与国人擦肩而过) 18.七十年代,中国独创无氰电镀新工艺取代有毒的氰法电镀,是世界电镀史上的创举。
19. 1977年我国在山东发现了迄今为止的世界上最大的金刚石──常林钻石。
20.全世界海盐产量5000万吨,其中我国生产1300多万吨,居世界第一。
早在3000多年前,我国就采用海水煮盐了,是世界上制盐最早的国家。
21.世界上已知的140多种有用矿,我国都有。
是世界上冶炼矿产最早的国家。
我国最早的化学研究机构在20世纪初,我国所需要的纯碱全靠进口,为改变这一状况,我国著名的爱国实业家范旭东(1884-1945)先生,在兴办精盐公司的基础上,于1917年在塘沽创办了永利制碱公司。
范旭东以以久大精盐公司化验室为基础,决定成立一个名为“黄海”的化学工业研究社。
1922年8月,黄海化学工业研究社方面塘沽正式成立。
被称为“西圣”的孙颖川博士毅然辞去英办开滦矿务局总化验师的高职,来到“黄海”任社长,张子丰先生任副社长。
后来,留美归来的张克思、卞伯年、卞松年、区嘉伟、江道江等博士,留法归来的徐应达博士,留德归来的聂汤谷、肖乃镇博士,以及国内的大学毕业生方心芳、金培松等助理研究员,也先后来到“黄海”。
著名的侯德榜博士当时也在“黄海”。
经过7年的艰苦努力,终于生产出第一批“永利纯碱”,在美国费城举办的万国博览会上,该产品获得金质奖章。
1932年,“黄海”接受了中华教育资金董事会的资助,决定用海州磷肥石矿作磷肥试验,为硫酸铵的生产奠定了基础。
1933年,集中了中国炼丹的有关文章和文献,准确探索古代中国化学的渊源。
这时的“黄海”正处于黄金时代,拥有博士10人,留学生、大学生60多人,不但开展广泛的研究工作,而且还代为海关检查食品。
1937年日寇入侵,“黄海”被迫迁至四川五通桥。
由于五通桥没有海盐,制碱遇到困难。
在这关键的时候,侯德榜博士挺身而出。
经过500多次实验,历时一年多,震惊世界的侯氏制碱法诞生了,“黄海”又东山再起。
1944年7月,范旭东继“黄海”之后,又在研究社里创立了“海洋化工研究所”。
1952年,中国科学院接收了黄海化学研究社,改名为中国科学院工业化学研究所。
从此“黄海”的作用越来越大,“黄海”的学者、科学家、技术人员,成了新中国化学工业的栋粱。
中国化学中杰出作家及杰作:1.焰色反应被称为“山中宰相”的我国南朝著名科学家陶弘景(公元454—536年)在实践中发现,硝石(硝酸钾)“以火烧之,紫青烟起”。
从而找到了鉴别外表极为相似的硝石与朴硝(硫酸钠)的最筒便方法。
这个方法其实就是我们今天所说的“焰色反应”。
陶弘景发现“焰色反应”并应用于物质的鉴别,比欧洲最早发现者德国化学家马格拉夫早一千二百多年。
2.自燃西晋时期的政治家、哲学家和诗人张华(公元232—300年)于公元290年前出版的新著《博物志》一书,是世界上记载“自燃”现象的最早文字记载。
3.碳酸气西晋时期张华所著《博物志》一书中,已有烧白石作白灰有气体发生的记载。
白石就是白石灰石,白灰就是石灰,所产生的气体就是碳酸气即二氧化碳。
十七世纪后,才有比利时人地碳酸气作专门的研究。
4.深井天然气中国人于公元前1世纪就已用传统的方法打出了4800尺深的钻井,并用竹管把天然气从井里引到锅灶里,用来蒸煮食物和熬制食盐。
比欧洲人早一千九百多年。
5.氧气我国唐朝学者马和在公元八世纪时期就已发现了氧气的存在并提出了制取的方法,但由于其原著《平龙认》一书已失传,无法进一步研究和考证。
过了一千多年三个欧洲人(普利斯特里、拉瓦锡、舍勒)才在各自不同国家里发现了氧气的存在。
《史记·封禅书》里就有“黄帝作室鼎三”,以及“禹收牧贡金铸九鼎”这一类的话。
据史学家的考证和判断,那时所谓的“金”不是黄金而是青铜。
说明我国从黄帝、夏禹起,即公元前2500多年就会冶炼青铜来铸造器物了。
6.石油我国人民知道和利用石油的时间,比世界各国都要早。