如何分析数据

合集下载

数据分析怎么做

数据分析怎么做

数据分析怎么做1、要求明确:准确明确需求主要是与他人沟通与需求相关的一切内容,并清晰准确地理解和表达相关内容。

在需求沟通中,通过掌握需求的核心内容,可以减少反复沟通。

需求的核心内容可以从分析目的、分析主体、分析口径、分析思路、完成时间五个方面来确定。

此外,在沟通的过程中,可以适当提出自己的想法,让需求更加清晰立体。

2、确定思路:全面、深入分析思想是分析的灵魂,是细化分析工作的过程。

分析思路清晰有逻辑,能有效避免反复分析问题。

从分析目的出发,全面、深入地拆解分析维度,确定分析方法,最终形成完整的分析框架。

3、处理数据:高效当我们进行数据分析时,我们可能会得到混乱的数据,这就要求我们清洁、整理、快速、准确地加工成适合数据分析的风格。

但是如何快速准确地处理这些海量数据呢?此时需要使用数据分析软件,例如,思迈特软件Smartbi的自助ETL功能非常省心省力。

以工作流的形式提取数据模型的语义,通过易于操作的可视化工具将数据加工成具有语义一致性和完整性的数据模型。

系统支持的数据预处理方法包括:采样、拆分、过滤和映射、列选择、空值处理、并行、合并行、元数据编辑、JOIN、行选择、重复值去除等。

4、数据分析:合适的数据分析数据在分析过程中的地位是首要任务。

从分析的目的出发,运用适当的分析方法或模型,使用分析工具分析处理过的数据,提取有价值的信息。

5、显示数据:直观展示数据又称数据可视化,是以简单直观的方式传达数据中包含的信息,增强数据的可读性,让读者轻松看到数据表达的内容。

6、写报告:建议落地,逻辑清晰撰写报告是指以文件的形式输出分析结果,其内容是通过全面科学的数据分析来显示操作,可以为决策者提供强有力的决策依据,从而降低操作风险,提高利润。

在撰写报告时,为了使报告更容易阅读和有价值,需要注意在报告中注明分析目标、口径和数据来源;报告应图文并茂,组织清晰,逻辑性强,单一推理;报告应反映有价值的结论和建议。

7、效果反馈:及时所谓效果反馈,就是选择合适有代表性的指标,及时监控报告中提出的战略执行进度和执行效果。

十种常用的数据分析方法

十种常用的数据分析方法

⼗种常⽤的数据分析⽅法01 细分分析 细分分析是分析的基础,单⼀维度下的指标数据的信息价值很低。

细分⽅法可以分为两类,⼀类逐步分析,⽐如:来北京市的访客可分为朝阳,海淀等区;另⼀类是维度交叉,如:来⾃付费SEM的新访客。

细分⽤于解决所有问题。

⽐如漏⽃转化,实际上就是把转化过程按照步骤进⾏细分,流量渠道的分析和评估也需要⼤量⽤到细分的⽅法。

02 对⽐分析 对⽐分析主要是指将两个相互联系的指标数据进⾏⽐较,从数量上展⽰和说明研究对象的规模⼤⼩,⽔平⾼低,速度快慢等相对数值,通过相同维度下的指标对⽐,可以发现,找出业务在不同阶段的问题。

常见的对⽐⽅法包括:时间对⽐,空间对⽐,标准对⽐。

时间对⽐有三种:同⽐,环⽐,定基⽐。

例如:本周和上周进⾏对⽐就是环⽐;本⽉第⼀周和上⽉第⼀周对⽐就是同⽐;所有数据同今年的第⼀周对⽐则为定基⽐。

通过三种⽅式,可以分析业务增长⽔平,速度等信息。

03 漏⽃分析 转化漏⽃分析是业务分析的基本模型,最常见的是把最终的转化设置为某种⽬的的实现,最典型的就是完成交易。

但也可以是其他任何⽬的的实现,⽐如⼀次使⽤app的时间超过10分钟。

漏⽃帮助我们解决两⽅⾯的问题: 在⼀个过程中是否发⽣泄漏,如果有泄漏,我们能在漏⽃中看到,并且能够通过进⼀步的分析堵住这个泄漏点。

在⼀个过程中是否出现了其他不应该出现的过程,造成转化主进程收到损害。

04 同期群分析 同期群(cohort)分析在数据运营领域⼗分重要,互联⽹运营特别需要仔细洞察留存情况。

通过对性质完全⼀样的可对⽐群体的留存情况的⽐较,来分析哪些因素影响⽤户的留存。

同期群分析深受欢迎的重要原因是⼗分简单,但却⼗分直观。

同期群只⽤简单的⼀个图表,直接描述了⽤户在⼀段时间周期(甚⾄是整个LTV)的留存或流失变化情况。

以前留存分析只要⽤户有回访即定义为留存,这会导致留存指标虚⾼。

05 聚类分析 聚类分析具有简单,直观的特征,⽹站分析中的聚类主要分为:⽤户,页⾯或内容,来源。

大数据常见的9种数据分析手段

大数据常见的9种数据分析手段

大数据常见的9种数据分析手段一、数据清洗数据清洗是指对原始数据进行预处理,去除重复数据、缺失数据和异常值,以保证数据的准确性和完整性。

常见的数据清洗手段包括去重、填充缺失值和异常值处理等。

1. 去重:通过对数据进行去重操作,去除重复的数据,以避免在后续分析过程中对同一数据进行重复计算,提高数据分析效率。

2. 填充缺失值:对于存在缺失数据的情况,可以使用插值法、均值法等方法对缺失值进行填充,以保证数据的完整性。

3. 异常值处理:对于异常值,可以通过箱线图、Z-Score等方法进行检测和处理,以排除异常值对数据分析结果的干扰。

二、数据预处理数据预处理是指对清洗后的数据进行进一步的处理,以满足后续数据分析的需求。

常见的数据预处理手段包括数据变换、数据归一化和数据离散化等。

1. 数据变换:通过对数据进行变换,可以将非线性关系转化为线性关系,提高数据分析的准确性。

常见的数据变换方法包括对数变换、指数变换和平方根变换等。

2. 数据归一化:对于不同量纲的数据,可以使用数据归一化方法将其转化为统一的范围,以消除不同量纲对数据分析的影响。

常见的数据归一化方法包括最小-最大归一化和Z-Score归一化等。

3. 数据离散化:将连续型数据转化为离散型数据,可以简化数据分析过程,提高计算效率。

常见的数据离散化方法包括等宽离散化和等频离散化等。

三、数据可视化数据可视化是将数据以图表等形式展示出来,使数据更加直观、易于理解和分析的过程。

常见的数据可视化手段包括柱状图、折线图、散点图和饼图等。

1. 柱状图:用于展示不同类别或变量之间的数量关系,可以直观地比较各类别或变量的大小。

2. 折线图:用于展示数据随时间或其他变量的变化趋势,可以观察到数据的趋势和周期性变化。

3. 散点图:用于展示两个变量之间的关系,可以观察到变量之间的相关性和趋势。

4. 饼图:用于展示不同类别或变量在整体中的占比情况,可以直观地比较各类别或变量的重要性。

如何进行数据分析和解读

如何进行数据分析和解读

如何进行数据分析和解读数据分析和解读是当今社会中一项重要的技能,无论是在科研、商业决策还是日常生活中都能发挥着巨大的作用。

在这篇文章中,我们将探讨如何进行数据分析和解读,并给出一些实用的技巧和指导。

一、数据收集和整理数据分析的第一步是收集和整理数据。

数据可以来自于各种渠道,比如调查问卷、实验记录、传感器数据等。

在收集数据时,我们需要保证数据的准确性和可靠性。

同时,要注意避免采样误差和样本偏差的问题。

二、数据清洗和处理收集到的原始数据通常存在一些噪声和缺失值,需要进行数据清洗和处理。

数据清洗包括去除重复值、处理缺失值、处理异常值等。

处理完毕后,我们需要对数据进行标准化或归一化,以便进行后续的统计分析。

三、探索性数据分析探索性数据分析(EDA)是一种初步的数据分析方法,旨在发现数据中的模式、趋势和异常。

在进行EDA时,我们可以利用统计图表和可视化工具来展示数据的分布、关系和变化趋势。

通过EDA,我们可以对数据有个初步的认识,并为后续的分析提供有用的信息。

四、统计分析方法统计分析是数据分析的核心环节,它涵盖了很多常用的分析方法和技术。

常见的统计分析方法包括描述统计、推断统计和回归分析等。

通过这些方法,我们可以利用样本数据得出总体的特征和参数,进行推断和预测。

五、数据可视化数据可视化是将数据通过图表、图像、地图等形式呈现出来,使得数据更加直观明了。

数据可视化能够帮助我们发现数据中的模式、规律和趋势,提高对数据的理解和洞察。

在进行数据可视化时,我们应该选择合适的图表类型,美化图表风格,并注意传达明确的信息。

六、解读和应用数据分析的最终目的是为了解读数据并作出合理的决策。

在进行数据解读时,我们需要注意潜在的偏差和误差,并进行合理的推断和解释。

同时,我们还要将数据分析的结果应用到实践中,为决策和问题解决提供科学依据。

总结起来,数据分析和解读是一个复杂而又关键的过程。

在进行数据分析时,我们需要注重数据的收集和整理、数据的清洗和处理、探索性数据分析、统计分析方法的应用、数据可视化和数据解读与应用。

【大数据分析】5种经典的数据分析思维和方法

【大数据分析】5种经典的数据分析思维和方法

5种经典的数据分析思维和方法:启方:数据分析不是个事儿在数据分析中,数据分析思维是框架式的指引,实际分析问题时还是需要很多“技巧工具”的。

就好比中学里你要解一元二次方式,可以用公式法、配方法、直接开平方法、因式分解法。

数据分析里也有技巧,在一些通用的分析场景下可以快速使用,而且对未来构建数据分析模型也有帮助。

接下来就分享常见的5种数据分析方法,分别是:公式法、对比法、象限法,二八法,漏斗法,常常多种结合一起使用。

注:主要偏思维层面的,基于业务问题对数据的探索性分析,不同于专业统计学中的数据处理方法。

一、公式法所谓公式法就是针对某个指标,用公式层层分解该指标的影响因素,这个我在指标化思维中提到过。

举例:分析某产品的销售额较低的原因,用公式法分解•某产品销售额=销售量 X 产品单价•销售量=渠道A销售量 + 渠道B销售量 + 渠道C销售量+ …•渠道销售量=点击用户数 X 下单率•点击用户数=曝光量 X 点击率第一层:找到产品销售额的影响因素。

某产品销售额=销售量X 产品单价。

是销量过低还是价格设置不合理?第二层:找到销售量的影响因素。

分析各渠道销售量,对比以往,是哪些过低了。

第三层:分析影响渠道销售量的因素。

渠道销售量=点击用户数X 下单率。

是点击用户数低了,还是下单量过低。

如果是下单量过低,需要看一下该渠道的广告内容针对的人群和产品实际受众符合度高不高。

第四层:分析影响点击的因素。

点击用户数=曝光量X点击率。

是曝光量不够还是点击率太低,点击率低需要优化广告创意,曝光量则和投放的渠道有关。

通过对销售额的逐层拆解,细化评估以及分析的粒度。

公式拆解法是针对问题的层级式解析,在拆解时,对因素层层分解,层层剥尽。

二、对比法对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

我们知道孤立的数据没有意义,有对比才有差异。

一些直接描述事物的变量,如长度、数量、高度、宽度等。

通过对比得到比率数据,增速、效率、效益等指标,这才是数据分析时常用的。

数据分析的基本流程和步骤

数据分析的基本流程和步骤

数据分析的基本流程和步骤随着信息时代的到来,数据已经成为我们生活中不可或缺的一部分。

在这个数据爆炸的时代,如何从海量的数据中提取有价值的信息,成为了一项重要的技能。

数据分析作为一种强大的工具,可以帮助我们理解数据背后的故事,为决策提供支持。

在本文中,我们将介绍数据分析的基本流程和步骤。

1.明确问题:数据分析的第一步是明确问题。

在开始分析之前,我们需要明确要解决的问题是什么。

例如,我们可能想了解某个产品的销售情况,或者分析用户的购买行为。

明确问题有助于我们制定合适的分析方案。

2.收集数据:数据分析的第二步是收集数据。

数据可以来自各种渠道,例如企业内部的数据库、互联网上的公开数据、用户调查等。

在收集数据时,我们需要确保数据的准确性和完整性。

3.数据清洗:在收集到数据后,我们需要对数据进行清洗。

数据清洗是指去除数据中的错误、重复或缺失的部分,以确保数据的质量。

清洗数据可以使用各种工具和技术,例如数据清洗软件、编程语言等。

4.数据探索:数据清洗后,我们可以开始对数据进行探索。

数据探索是指通过可视化、统计分析等方法,深入了解数据的特征和规律。

通过数据探索,我们可以发现数据中的趋势、异常值等信息。

5.数据建模:在数据探索的基础上,我们可以开始建立数据模型。

数据模型是一个数学或统计模型,用于描述数据之间的关系和规律。

常用的数据建模方法包括回归分析、聚类分析、决策树等。

6.模型评估:建立数据模型后,我们需要对模型进行评估。

模型评估是指通过各种指标和方法,评估模型的准确性和可靠性。

评估模型的好坏可以帮助我们判断模型是否适用于解决当前的问题。

7.模型应用:在模型评估通过后,我们可以将模型应用于实际问题中。

模型应用可以帮助我们预测未来的趋势、做出决策等。

通过模型应用,我们可以将数据分析的结果转化为实际行动。

8.结果解释:最后一步是对数据分析的结果进行解释。

结果解释是指将数据分析的结果以清晰、易懂的方式呈现给他人。

通过结果解释,我们可以将数据分析的成果分享给他人,促进决策的制定和实施。

如何进行定量数据分析

如何进行定量数据分析

如何进行定量数据分析数据分析是如今工作中必不可少的一项技能,它可以帮助我们理解和解决各种问题。

而在进行数据分析时,定量数据分析是一种重要的方法。

本文将从准备工作、数据收集、数据清洗、数据分析和结果解读等方面介绍如何进行定量数据分析。

一、准备工作在进行定量数据分析之前,我们需要明确问题的目标和范围,以确保分析的方向和方法正确。

同时,我们还需要确定所需的数据类型和规模,并准备相应的工具和软件。

二、数据收集数据收集是定量数据分析的第一步,它是获取可信、准确的数据的关键。

我们可以通过问卷调查、实地观察、文献查阅等方式收集数据。

在收集数据时,应注意数据的来源和可靠性,避免出现采样偏差和数据缺失等问题。

三、数据清洗数据清洗是定量数据分析的重要环节,它包括数据筛选、数据变换和数据填充等操作。

通过数据清洗,我们可以排除无效数据和异常值,提高数据的质量和可靠性。

同时,还需进行数据变换,将数据转化成适合分析的形式,如数据标准化、数据归一化等。

此外,对于缺失数据,我们可以使用合理的填充方法进行处理。

四、数据分析数据分析是定量数据分析的核心步骤,它包括描述统计和推断统计两个方面。

描述统计是通过对数据的整体情况进行概括和描述,如平均值、标准差、频率分布等。

而推断统计则是通过对样本数据进行分析,从而推断出总体的特征和规律,如假设检验、置信区间等。

在进行数据分析时,可以结合相应的统计工具和软件,如Excel、SPSS等。

五、结果解读在进行定量数据分析后,我们需要对结果进行解读,并给出相应的结论。

在解读结果时,应注意分析的合理性和可靠性。

同时,还需结合问题的背景和目标,提出相应的建议和改进措施。

总结起来,进行定量数据分析需要经过准备工作、数据收集、数据清洗、数据分析和结果解读等多个阶段。

其中,数据清洗和数据分析是关键步骤,对结果的准确性和可靠性起着重要作用。

通过合理的数据分析方法和工具,我们可以更好地理解和解决问题,提高工作效率和决策能力。

如何做好数据分析工作

如何做好数据分析工作

如何做好数据分析工作数据分析是一项关键的工作,可以帮助我们从大量数据中提取出有用的信息,以支持决策制定和业务发展。

以下是一些建议,帮助您提高数据分析工作的效率和质量。

确定目标和问题在开始数据分析之前,首先要明确您的目标和问题。

这可以帮助您集中注意力并确保您的分析有针对性。

明确您要回答的问题以及需要获得的信息,可以确保您的分析结果具有实际意义。

收集和准备数据数据的质量和准备程度对于数据分析的成功至关重要。

确保您收集的数据准确且完整,并且已按照需要的格式进行整理和清洗。

如果数据不完整或存在错误,可能会导致分析结果不准确或误导性。

使用适当的工具和技术选择适当的工具和技术对于高效完成数据分析任务至关重要。

根据您的需求和技术水平,选择合适的数据分析软件或编程语言。

常见的工具包括Excel、Python和R等。

熟练掌握工具的使用可以提高分析工作的效率。

应用统计和可视化技巧统计和可视化技巧是数据分析工作中的重要组成部分。

使用适当的统计方法和技术可以帮助您从数据中提取出有意义的信息和洞察。

同时,使用可视化工具可以将复杂的数据转化为易于理解和传达的图表和图形。

进行数据解释和推断数据分析的最终目标是得出有实际意义的结论和推断。

在进行数据解释和推断时,要确保您的推断基于可靠的统计分析和合适的假设。

避免主观臆断或未经验证的推断,以确保您的分析结果具有可信度。

持续研究和提高数据分析是一个不断发展的领域,新的工具和技术不断涌现。

为了保持竞争力和提高专业素养,持续研究和提高是必要的。

参加培训、阅读相关书籍和论文,与同行交流经验都是不错的研究途径。

以上是如何做好数据分析工作的一些建议。

通过明确目标和问题、准备数据、使用适当的工具和技术、应用统计和可视化技巧、进行数据解释和推断以及持续学习和提高,您可以提高数据分析工作的质量和价值,为决策制定和业务发展提供有力支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较同一个相邻的记录集 select YM, sum(sale* cost) sales, lag(sum(sale* cost),1) over(order by YM ) prev1_sales, lag(sum(sale* cost),2) over(order by YM ) prev2_sales from cux_tran_oh group by YM

平均周转率 select sum(PICK * cost * PICK/(og+po+org_tran))/sum(PICK* cost) from cux_tran_oh where og+po+org_tran > 0


按品牌查找上一年度订单成本总额占区域订单成本 20% 以上的城市,每个城市所占的订单成本比例 select s.*,100 * round(sales / brand_sales, 2) || '%' Percent from (select brand,city, sum(sale* cost) sales, sum(sum(sale* cost)) over(partition by brand) brand_sales from cux_tran_oh group by brand,city ) s where sales > brand_sales * 0.2

滚动统计(累积/均值) select YM, sum(sale* cost) sales, sum(sum(sale* cost)) over(order by YM rows between unbounded preceding and current row) total_sales from cux_tran_oh group by YM
品牌周转率 select rownum,r.* from ( select brand,sum(PICK * cost * PICK/(og+po+org_tran))/sum(PICK* cost) rate from cux_tran_oh tran where og+po+org_tran > 0 group by brand having sum(PICK* cost) > 0 order by rate desc) r

Top/Bottom N查询 按品牌查找订单成本前3名的城市 select * from (select brand,city, sum(sale* cost) sales, sum(sum(sale* cost)) over(partition by brand) brand_sales, rank() over(partition by brand order by sum(sale* cost) desc NULLS LAST) rank from cux_tran_oh group by brand,city) where ra对数据进行分区,然后累积每个品牌每个 城市的订单成本 select brand,city, sum(sale* cost) sales, sum(sum(sale* cost)) over(partition by brand) brand_sales from cux_tran_oh group by brand,city

空值放最后 NULLS LAST/FIRST select brand, city, sum(sale* cost) sales, sum(sum(sale* cost)) over(partition by brand) brand_sales, rank() over(partition by brand order by sum(sale* cost) desc NULLS LAST) rank from cux_tran_oh group by brand,city

全统计 select YM, sum(sale* cost) sales, sum(sum(sale* cost)) over(order by YM rows between unbounded preceding and unbounded following) total_sales, sum(sum(sale* cost)) over() t_sales from cux_tran_oh group by YM

First/Last排名查询 select brand,sum(sale* cost) sales from cux_tran_oh group by brand order by sales desc select min(brand) keep (dense_rank first order by sum(sale* cost) desc) first, min(brand) keep (dense_rank last order by sum(sale* cost) desc) last from cux_tran_oh group by brand

first_value/last_value 相邻三个月的平均值
select YM, sum(sale* cost) sales, first_value(sum(sale* cost)) over(order by YM rows between 1 preceding and 1 following) first_sales, last_value(sum(sale* cost)) over(order by YM rows between 1 preceding and 1 following) last_sales, avg(sum(sale* cost)) over(order by YM rows between 1 preceding and 1 following) avg_sales from cux_tran_oh group by YM

如何分析数据
找平均值,排名 ABC分类 横向,纵向对比
Excel Oracle 分析函数 BI工具

数据表 cux_tran_oh OH 现有量 OG完好量 OS 发货区 PO本月采购 ORG_TRAN 本月中转 SALE本月销售 COST单位成本 pick 挑库数量 brand 品牌 city 城市

总结 Over函数指明在那些字段上做分析,其内跟 Partition by表示对数据进行分组。注意 Partition by可以有多个字段 Over函数可以和其它聚集函数、分析函数搭配, 起到不同的作用。例如这里的SUM,还有诸如 Rank,Dense_rank等。

总结 ①假如客户就只需要指定数目的记录,那么采用 row_number是最简单的,但有漏掉的记录的 危险 ②假如客户需要所有达到排名水平的记录,那么 采用rank或dense_rank是不错的选择。至于 选择哪一种则看客户的需要,选择dense_rank 或得到最大的记录
LOGO
如何分析数据
2013-01-11 simonliu
分析数据
提升公司、部门、个人的价值

为何分析数据
发现公司营运异常,减少损失 表扬好的,警告差的 为持续改进做数据支持 资讯就是数据,EBIS需要分析数据


按层次查询 ABC分类 ntile select brand,city, sum(sale* cost) sales, sum(sum(sale* cost)) over(partition by brand order by sum(sale* cost) desc) brand_sales, ntile(4) over(partition by brand order by sum(sale* cost) desc) til from cux_tran_oh group by brand,city

分区后排名
select brand,city, sum(sale* cost) sales, rank() over(partition by brand order by sum(sale* cost) desc) rank, dense_rank() over(partition by brand order by sum(sale* cost) desc) dense_rank, row_number() over(partition by brand order by sum(sale* cost) desc) row_number from cux_tran_oh group by brand,city
应该分析哪些数据
查找公司、部门、个人工作中的可能问题
库存周转率太低,明明库存很大,销量很低,还采购 库存残损品太多,快要过期,还不减价销售 天天有出差报销,有可能吗 亏损的生意,都有审批吗 操作失误,能发现吗
反省公司、部门、个人的目标
做这笔生意有多少钱赚,学会分析品牌 库存少点,如何提高周转率 应收少点,学会与客户谈判 客户满意了吗,意见收集了吗,改进了吗

排名 Rank, Dense_rank, row_number select brand,city, sum(sale* cost) sales, rank() over(order by sum(sale* cost) desc) rank, dense_rank() over(order by sum(sale* cost) desc) dense_rank, row_number() over(order by sum(sale* cost) desc) row_number from cux_tran_oh group by brand,city
相关文档
最新文档