函数的单调性及函数解析式的求法
函数的表示法和函数的性质(单调性)

函数的表示法课前预习: 函数的表示法(1) 解析法:用数学表达式表示两个变量之间的对应关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式。
归纳总结:解析法有两个有点:一是简明,全面的概括了变量间的变化规律,二是可以通过解析法求出任意一个自变量所对应的函数值。
缺点是并不是任意的函数都可以用解析法表示,仅当两个变量有变化规律时,才能用解析法表示。
(2) 图像法:以自变量x 的取值为横坐标,对应的函数y 值为纵坐标,在平面内描出个这些点构成了函数的图像,这种用图像表示两个变量的方法叫图像法。
归纳总结:图像法可以直观的表示函数局部变化规律,进而可以预测他的整体趋势,比如心电图等,图像可以是有限几个点,也可以试一段或几段直线或曲线。
在直角坐标系中,如果图像满足:垂直于x轴的直线与其至多有一个交点,那么这个图形一定是某函数的图像。
函数定义域的几何意义是函数图像上所有点纵坐标的取值范围。
(3) 列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格表示两个变量的对应关系叫列表法。
归纳总结:列表法不必通过计算就知道两个变量之间的对应关系,比较直观但他只能表示有限个元素之间的函数关系。
自我测评例一:垂直于x 轴的直线与函数xx y 1+=的图像的交点至多有( )A 1 B 2 C 3 D 4 提示:根据函数的性质:一对一 或者一对多。
例二:已知一次函数f(x)满足f(2)=1,f(3)=-5,求解析式。
典题精讲题型一: 求函数的解析式例一 已知f(x)是一次函数,且()[]{}78+=x x f f f ,求f(x)的解析式 分析:解答本题可利用待定系数法,设()()0≠+=a b ax x f ,再根据题设条件列方程求解待定系数k、b。
反思:本题以()x f 为一次函数作为切入点,运用待定系数法,构建所设参数的方程组从而解决问题,这是一种常用的解题方法,已知函数类型求函数解析式常用此方法。
考点02 求函数解析式的3种方法(解析版)

专题二 函数考点2 求函数解析式的3种方法【方法点拨】求函数解析式的常用方法1. 待定系数法:已知函数的类型,利用所给条件,列出方程或方程组,用待定系数法确定系数.2. 配凑法或换元法:已知复合函数f[g(x)]=F(x)的解析式,把F(x)配凑成关于g(x)的表达式,再用x 代替g(x),称为配凑法;或者,直接令g(x)=t ,解方程把x 表示成关于t 的函数,再代回,称为换元法,此时要注意新元t 的取值范围.3解方程组法(或赋值法):已知关于f(x)与f(1/x)或f(-x)的表达式,可通过对自变量的不同赋值构造出不同的等式通过解方程组求出f(x).【高考模拟】1.已知()f x 是偶函数,且当0x >时,2()f x x x =-,则当0x <时,()f x 的解析式为( ) A .2()f x x x =-B .2()f x x x =--C .2()f x x x =+D .2()f x x x =-+【答案】C【分析】利用()f x 是偶函数,()()f x f x -=,当0x <,()2f x x x -=+,即可求得答案 【解析】设0x <,则0x ->,当0x >时,()2f x x x =- ()2f x x x ∴-=+,()f x 是偶函数,则()()f x f x -=()2f x x x ∴=+ ()0x <故选C【点睛】本题主要考查了利用函数的奇偶性求函数的解析式,掌握解题方法,较为简单.2.已知幂函数()f x 的图象经过点()327,,则()f x 的解析式()f x =( ).A .3xB .3xC .9xD .3log x【答案】A【分析】 设幂函数解析式为()f x x α= ,将点()327,代入即可求解. 【解析】设幂函数为()f x x α= 函数经过点(3,27),273α∴= 解得3α=故()f x 的解析式()3f x x = 故选A【点睛】本题考查幂函数解析式的确定,是基础题;解题时需要认真审题,准确代入数值.3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为( ). A .2()1x f x x =-+ B .2()1x f x x =+ C .21()1x f x x +=+ D .2()1x f x x x =++ 【答案】B【解析】【分析】由奇函数得()()f x f x -=-,代入后求出解析式【解析】函数()21x a f x x bx +=++在[]1,1-上是奇函数 ()()f x f x ∴-=-,即()()00f f -=-,()00f =,001a a ==, 即()21x f x x bx =++()()11f f -=-,1122b b -=--+ 解得0b =则()21x f x x =+ 故选B【点睛】 本题考查了函数奇偶性的运用,当奇函数定义域取到零时有()00f =,然后再赋值法求出解析式,较为基础。
函数的单调性

O
x1
x
函数f (x)在给定区间 上为增函数。
如果对于定义域 I 内的某个区间D上的任意两个自变量 的值x1 、x2,当x1<x2时,都有f(x1)> f(x2), 那么就说f(x) 在区间D上是减函数 . 如何用x与 f(x)来描述下降的图象?
y
y f ( x)
f (x1 )
在给定区间上任取x1 , x2 ,
例 : 证明函数f ( x) 2 x 1在区间( , )上是增函数。
证明: x1 , x2是区间(, )内任意 设
两个实数,且x1 x2 。 (取值)
(作差) f ( x1 ) f ( x2 ) (2 x1 1) (2 x2 1) 2(x1 x2 ) x1 x2 , x1 x2 0
1 A. a 2
1 B. a 2
1 C. a 2
1 D. a 2
4、已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4)上是减函
数,求实数a的取值范围。 a 3
1 5.函数f ( x) 在(0, )上是增函数还是 x 减函数?证明你的结论. 减函数
证明: 设x1,x2∈(0,+∞),且x1<x2,则 y
③若函数在两个区间上都是减函数,能否说出函数 在并集上也是减函数?
1 例如 : f ( x) 在( , 0)以及(0, )上都是减函数, x 1 f ( x) 在( , 0, )上是减函数吗? 0)( x f(x)在定义域上是减函数吗? 取x1=-1,x2=1 f(-1)=-1;f(1)=1 -1<1;f(-1)<f(1)
b , ) 2a 是减函数 在[
例1:下图是定义在[-5,5]上的函数y=f(x)的图象, 根据图象说出y=f(x)的单调区间,以及在每一单调区 间上, y=f(x)是增函数还是减函数.
高中数学函数单调性的判定和证明方法(详细)

⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -
=
=
∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。
判断函数单调性的常用方法

判断函数单调性的常用方法判断函数单调性的常用方法一、定义法设$x_1.x_2$是函数$f(x)$定义域上任意的两个数,且$x_1f(x_2)$,则此函数为减函数。
例如,证明:当$x>0$时,$x>\ln(1+x)$。
f'(x)=\frac{1}{1+x}>0$,所以$f(x)$为严格递增的。
因为$f(x)>\lim\limits_{x\to 0}-\ln(1+x)=-\ln(1+0)=0$,所以$x>\ln(1+x)$。
二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题。
若函数$f(x)。
g(x)$在区间$B$上具有单调性,则在区间$B$上有:⑴$f(x)$与$f(x)+C$($C$为常数)具有相同的单调性;⑵$f(x)$与$c\cdot f(x)$当$c>0$时具有相同的单调性,当$c<0$时具有相反的单调性;⑷当$f(x)。
g(x)$都是增(减)函数,则$f(x)+g(x)$都是增(减)函数;⑸当$f(x)。
g(x)$都是增(减)函数,则$f(x)\cdot g(x)$当两者都恒大于时也是增(减)函数,当两者都恒小于时也是减(增)函数。
三、同增异减法是处理复合函数的单调性问题的常用方法。
对于复合函数$y=f[g(x)]$满足“同增异减”法(应注意内层函数的值域),可令$t=g(x)$,则三个函数$y=f(t)。
t=g(x)。
y=f[g(x)]$中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;2)互为反函数的两个函数有相同的单调性;3)如果$f(x)$在区间$D$上是增(减)函数,那么$f(x)$在$D$的任一子区间上也是增(减)函数。
设单调函数$y=f(x)$为外层函数,$y=g(x)$为内层函数。
第二章 2·2函数的单调性与最值

1.函数单调性的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数图象自左向右看图象是上升的自左向右看图象是下降的2.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M 称为单调区间.3.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.(3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.(×)(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.(2014·北京)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1) 答案 A解析 A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 项,函数y =2-x =(12)x 在R上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误. 2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A .-2 B .2 C .-6 D .6 答案 C解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 由y =ax 在(0,+∞)上是减函数,知a <0; 由y =-bx 在(0,+∞)上是减函数,知b <0.∴y =ax 2+bx 的对称轴x =-b2a<0, 又∵y =ax 2+bx 的开口向下,∴y =ax 2+bx 在(0,+∞)上是减函数.故选B. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =(12)x D .y =x +1x(2)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)(3)y =-x 2+2|x |+3的单调增区间为________. 答案 (1)A (2)D (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1) ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax (a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数, f (x )min =f (1)=a +3.所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用 命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0 D .f (x 1)>0,f (x 2)>0 答案 B解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)答案 C解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14C .-14≤a <0D .-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A .(8,+∞) B .(8,9]C .[8,9]D .(0,8)(2)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案 (1)B (2)D解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (12分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[4分] ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数.[6分](2)解 ∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,[8分] f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4, ∴f (1)=2,∴f (a 2+a -5)<2=f (1),[10分] ∵f (x )在R 上为增函数,∴a 2+a -5<1⇒-3<a <2,即a ∈(-3,2).[12分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f (x )在给定区间上的单调性; 第二步:(转化)将函数不等式转化为f (M )<f (N )的形式;第三步:(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组; 第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒 本题对函数的单调性的判断是一个关键点.不会运用条件x >0时,f (x )>1,构造不出f (x 2)-f (x 1)=f (x 2-x 1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f (M )<f (N )的形式.解决此类问题的易错点:忽视了M 、N 的取值范围,即忽视了f (x )所在的单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.A 组 专项基础训练 (时间:35分钟)一、选择题1.下列四个函数中,在区间(0,1)上是减函数的是( ) A .y =log 2xB .y =x 13C .y =-⎝⎛⎭⎫12xD .y =1x 答案 D解析 y =log 2x 在(0,+∞)上为增函数;y =x 13在(0,+∞)上是增函数;y =⎝⎛⎭⎫12x 在(0,+∞)上是减函数,y =-⎝⎛⎭⎫12x 在(0,+∞)上是增函数;y =1x 在(0,+∞)上是减函数,故y =1x 在(0,1)上是减函数.故选D. 2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( ) A .(0,1]B .[1,2]C .[1,+∞)D .[2,+∞) 答案 C解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c <b <a B .b <a <c C .b <c <a D .a <b <c 答案 B解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 答案 B解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1, ∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ) A .(0,34) B .(0,34]C .[0,34)D .[0,34]答案 D解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数, 当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34,综上a 的取值范围是0≤a ≤34.二、填空题6.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 答案 [3,+∞)解析 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0, 解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数在(-∞,-1]上单调递减,在[3,+∞)上单调递增.又因为y =t 在[0,+∞)上单调递增,所以函数f (x )的增区间为[3,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又a x -a 是增函数,故a >1,所以a 的取值范围为1<a ≤2. 8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.三、解答题9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞) 答案 A解析 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2. 结合图象可知函数的单调减区间是[1,2].12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,ab =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.(2015·山东)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.答案 2解析 由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞),当a =1时,定义域为{x |x >0且x ≠1}, 当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。
求函数解析式的六种常用方法

求函数解析式的九种常用方法一、换元法已知复合函数f [g (x)]的解析式,求原函数f(x)的解析式, 把g (x)看成一个整体t ,进行换元,从而求出f(x)的方法。
例1 已知f(xx 1+)= x x x 1122++,求f(x)的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t)= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t-1)= t 2-t+1 故 f (x)=x 2-x +1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f(x +1)= x+2x ,求f (x)的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f(x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x,则有f(x)= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
例3 已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f (x )的解析式.解:设二次函数f(x )= ax 2+bx+c,则 f(0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a +b)x+a+b ② 由f(x+1)= f (x)+2x +8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f(x)= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f (x )满足f(x )+2 f(x 1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f(x),必须消去已知中的f(x 1),若用x 1去代替已知中x,便可得到另一个方程,联立方程组求解即可.解:∵ f(x )+2 f(x1)= x (x ≠0) ① 由x 1代入得 2f(x)+f(x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f(x )=x 32-3x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足,求的解析式。
函数的概念与性质

函数一、函数的有关概念 1、 函数的定义:设A 、B 为非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A B →为从集合A 到集合B 的一个函数,记作:y=f(x),x A ∈其中x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(叫做函数的值域。
2、分段函数:如果一个函数在定义域的不同子集上因对应法则不同而用几个不同的式子来表示,这样的函数叫做分段函数。
注:分段函数的求法是分别求出各个区间上的函数关系,再组合在一起,但要注意各区间之间的点要不重不漏。
3、 复合函数:如果y=f(u)的定义域与y=g(x)的值域有交集,那么函数y=f(g(x))叫做复合函数,其中y=f(u)叫做外层函数,u=g(x)叫做内层函数。
4、 (1)映射:设A 、B 是两个集合,如果按照某种确定的对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作:A B → (2)象、原象设给定一个集合A 到集合B 的映射,且a B b A ∈∈且,如果元素a 和元素b 对应,元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 满射、单设、一一映射注:设集合A 有n 个元素,集合B 有m 个元素,则从A 到B 的映射有nm 个. 注:1) 函数的三要素:定义域,值域,对应法则; 2)两个函数是同一函数的条件:三要素相同。
函数的概念【例题1】下列各组函数中,表示同一函数的是( )A.f(x)=x ,g(x)=2x B. f(x)=2x ,g(x)=2)(xC.f(x)=112--x x ,g(x)=x+1 D.f(x)=11-⋅+x x ,g(x)=12-x【练习】存在函数f(x)满足,对于任意x ∈R 都有A. f(sin2x)=sinxB. f(sin2x)=x 2+xC. f(x 2+1)=1x +D. f(x 2+2x)= 1x + 分段函数【例题】函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则f(f(10))=A.lg101B.2C.1D.0【练习】⎩⎨⎧≥<+-=0,0,3)(x a x a x x f x(a>0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A.(0,1) B.[31,1) C.(0, 31] D.(0, 32]【例题】设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x f xx ,则满足f(x)≤2的x 的取值范围是( ) A.[-1,2] B.[0,2] C.[1,+∞) D.[0,+∞)【练习】若函数⎩⎨⎧>+≤+-=2,log 32,6(x x x x f xa ),(a>0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点五:函数解析式的求法
(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以
x 替代g (x ),便得f (x )的解析式(如例(1));
(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));
(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));
(4)方程思想:已知关于f (x )与f ⎝ ⎛⎭
⎪⎫1x
或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).
例6 (1)已知f ⎝
⎛⎭
⎪⎫x +1x =x 2+1
x
2,求f (x )的解析式;
(2)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).
变式.(1)已知f (x +1)=x +2x ,求f (x )的解析式;
(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.
例7 已知2f (1/x )+f (x )=x(x ≠0) 。
求f (x )
变式 已知f (1/x )+af (x )=ax(x ≠0,a ≠±1) 。
求f (x )
函数单调性与最大(小)值
知识点一 增函数、减函数、单调性、单调区间的概念:
一般地,设函数f(x)的定义域为A ,区间
如果对于内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间上是增函数;
如果对于内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在区间上是减函数.
如果函数f(x)在区间D 上是增函数或者减函数,那么函数f(x)在这一区间上具有严格的单调性,区间D 叫做函数的单调区间。
知识点二:常见函数的单调性
(1)一次函数的单调性:对函数y ax b =+(0)a ≠ 当0>a 时,函数)(x f 单调增加; 当0<a 时,函数)(x f 单调减小. (2)反比例函数单调性:对函数(k 0)k
y x
=
≠
当0k >时,函数)(x f 单调减小; 当0k <时,函数)(x f 单调增加.
(3)二次函数的单调性:对函数c bx ax x f ++=2
)()0(≠a ,
当0>a 时函数)(x f 在对称轴a b
x 2-
=的左侧单调减小,右侧单调增加; 当0<a 时函数)(x f 在对称轴a
b
x 2-=的左侧单调增加,右侧单调减小
知识点三:单调性的证明 1)定义法
(1)取值.设是定义域内一个区间上的任意两个量,且;
(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论.
2).图象法:借助图象直观判断. 3).复合函数单调性判断方法:设
若内外两函数的单调性相同,则在x 的区间D 内单调递增, 若内外两函数的单调性相反时,则在x 的区间D 内单调递减. (同增异减)
知识点四:最大(小)值
.
【典型例题】
考点1.根据图像判定函数单调性
【例1】右图是定义在闭区间[-5, 5]上的函数y =f(x)的图象,根据图象说出y
=f(x)的单调区间,以及在每一单调区间上, y =f(x)是增函数还是减函数.
【变式1】如图是定义在闭区间 [-5,6]上的函数y =f(x)的图象,根据图象说出
函数y =f(x) 的单调区间,以及在每一单调区间上,函数y =f(x)是增函数还是减函数.
考点二.判断函数的单调性 【例2】写出下列函数的单调区间
(1)
(2)3422
--=x x y ; (3)||2)(2x x x f -=; (4) |2|)(2x x x f -=
【例3】下列函数中,在区间)2,0(上递增的是( ) A .x
y 1= B .x y -= C .1-=x y D .122
++=x x y
【变式1】 函数y =x 2
-6x +10在区间(2,4)上是 ( ) A .递减函数
B .递增函数
C .先递减再递增
D .先递增再递减
【变式2】讨论函数2
()1f x x =-与f (x )=x +a x
(a >0)的单调性
考点3 用定义法证明函数的单调性
【例4】(1)证明函数2
()+1f x x =在-∞(,0)
上是减函数;
(2)求证:函数11
)(--
=x
x f 在区间)0,(-∞上是单调增函数。
【变式1】证明函数y=2x+5的单调性
【变式2】判断函数f (x )=在(1,2)上的增减情况.
考点四 利用单调性求最值 【例5】已知函数2
()2
f x x =
-((]2,6x ∈),求函数的最大值和最小值.
【变式1】求函数f (x )=
2x
x +1
在区间[1,2]内的最大值和最小值.
考点四 单调性的运用
【例6】函数在上是减函数,则求m 的取值范围 .
【例7】函数f (x )是R 上的减函数,求f (a 2
-a +1)与f (34 )的大小关系 .
【变式1】已知函数上是单调函数,的取值范围是 .
【变式2】已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是
1.已知映射f:A →B ,在f 的作用下,下列说法中不正确的是( )
A . A 中每个元素必有象,但
B 中元素不一定有原象 B . B 中元素可以有两个原象
C . A 中的任何元素有且只能有唯一的象
D . A 与B 必须是非空的数集
4.函数的图象与直线的公共点数目是( )
A .
B .
C .或
D .或
5.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B . C . D . 6.已知,若,则的值是( )
A .
B .或
C .,或
D .
7.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) A .沿轴向右平移个单位 B .沿轴向右平移个单位 C .沿轴向左平移个单位 D .沿轴向左平移个单位
8. 下列函数中,在区间 )(2,0上为增函数的是( ).
A .
B .
C .
D . 9.函数 的增区间是( ) A . B . C . D .
10. 在 上是减函数,则a 的取值范围是( ) A . B . C . D .
12.当 时,函数 的值有正也有负,则实数a 的取值范围是( ) A . B . C . D .
12.若函数在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数 在区间(a ,c )上( )
A. 必是增函数
B. 必是减函数
C. 是增函数或是减函数
D. 无法确定
增减性
13.函数在区间单调递增、在区间(]0,∞-上单调递减,则满足<的x 取值范围是( ) A .(,) B .(,) C .(,) D .
14.已知,则的解析式为( )
A .
B .
C .
D .
1.函数 ,当 时,是增函数,当 (]2,-∞-∈x 时是减函数,则f(1)=_____________
2.函数f (x ) = x 2
+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 3.设函数则实数的取值范围是_______________. 4.若二次函数的图象与x 轴交于,且函数的最大 值为,则这个二次函数的表达式是_______________.
1.根据下列条件,求函数的解析式:
(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);
(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);
(3)已知f(x-3)=x 2
+2x+1,求f(x+3); (4)已知;
(5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x).。