直线和圆的方程精选练习题

合集下载

直线和圆方程练习题

直线和圆方程练习题

直线和圆练习题(一)1.直线2ax+(a2+1)y﹣1=0的倾斜角的取值范围是()A.[,]B.[0,]∪[,π]C.(0,]∪[,π) D.[0,]∪[,π)2.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离3.从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.04.下列四条直线,倾斜角最大的是()A.y=﹣x+1 B.y=x+1 C.y=2x+1 D.x=15.直线2xcosα﹣y﹣3=0(α∈[,])的倾斜角的变化范围是()A.[,]B.[,]C.[,)D.[,]6.已知曲线﹣=1与直线y=2x+m有两个交点,则m的取值范围是()A.(﹣∞,﹣4)∪(4,+∞)B.(﹣4,4)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,3)7.若两直线3x+4y+3=0与6x+my+1=0平行,则它们之间的距离为()A.B.C.D.8.曲线y=lnx+x﹣1上的点到直线2x﹣y+3=0的最短距离是()A.B. C. D.09.直线l1:3x﹣y+1=0,直线l2过点(1,0),且它的倾斜角是l1的倾斜角的2倍,则直线l2的方程为()A.y=6x+1 B.y=6(x﹣1)C.y=(x﹣1) D.y=﹣(x﹣1)10.不论k为何值,直线(2k﹣1)x﹣(k﹣2)y﹣(k+4)=0恒过的一个定点是()A.(0,0)B.(2,3)C.(3,2)D.(﹣2,3)11.若三条直线l1:4x+y=4,l2:mx+y=0,l3:2x﹣3my=4不能围成三角形,则实数m的取值最多有()A.2个B.3个C.4个D.5个12.若三条直线2x+3y+8=0,x﹣y﹣1=0和x+ky=0交于一点,则k的值为()A.﹣2 B.﹣C.2 D.13.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.14.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d2,则d1+d2的最小值是.15.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为.16.圆C1:x2+y2=4与圆C2:x2+y2﹣4x+2y+4=0的公切线有条.17.已知方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆C(1)求m的取值范围;(2)当m=﹣2时,求圆C截直线l:2x﹣y+1=0所得弦长;(3)若圆C与直线2x﹣y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值。。

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。

45,1B。

不存在C。

不存在D。

-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。

a+b=1B。

a-b=1C。

a+b=√2D。

a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。

2x+y-1=0B。

2x+y-5=0C。

x+2y-5=0D。

x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。

4x+2y=5B。

4x-2y=5C。

x+2y=5D。

x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。

平行B。

垂直C。

斜交D。

与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。

4B。

13√10C。

26√5D。

207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。

-1/3B。

-3C。

1D。

38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。

2/3B。

-3/2C。

-2D。

-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。

3x+y-6=0B。

x-3y+2=0C。

x+3y-2=0D。

3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1+2√2D。

1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

圆与直线的方程练习题

圆与直线的方程练习题

圆与直线的方程练习题一、选择题1. 已知圆的方程为x^2 + y^2 = 4,则该圆的半径为()。

A. 1B. 2C. 4D. 82. 直线y = 2x + 1的斜率为()。

A. 0B. 1C. 2D. 1A. y = 3x + 2B. y = 3x 2C. x = 3D. y = 24. 若圆C的方程为(x 1)^2 + (y + 2)^2 = 16,则圆心坐标为()。

A. (1, 2)B. (1, 2)C. (2, 1)D. (2, 1)5. 两条平行线的斜率分别为2和2,则这两条直线()。

A. 相交B. 平行C. 重合D. 垂直二、填空题1. 已知直线l的斜率为3,且过点(2, 1),则直线l的方程为______。

2. 圆心在原点,半径为5的圆的方程为______。

3. 若直线y = kx + b与圆x^2 + y^2 = 4相切,则k的取值范围为______。

4. 两条直线y = 2x + 3和y = 0.5x + 1的交点坐标为______。

5. 已知点A(3, 4)和B(2, 6),则线段AB的中点坐标为______。

三、解答题1. 已知圆的方程为(x 2)^2 + (y + 3)^2 = 25,求该圆的半径和圆心坐标。

2. 求过点(1, 2)和(3, 4)的直线方程。

3. 已知直线y = 3x 2和圆x^2 + y^2 = 16,求直线与圆的交点坐标。

4. 证明:若两条直线分别垂直于同一条直线,则这两条直线平行。

5. 设圆C的方程为x^2 + y^2 + Dx + Ey + F = 0,已知圆心在x轴上,半径为3,求圆C的方程。

四、应用题1. 在平面直角坐标系中,点A(1, 2)到直线y = x + 3的距离是多少?2. 一圆的圆心位于直线y = 2x + 1上,且与直线y = 2x 1相切,圆的半径为2,求该圆的方程。

3. 两条直线l1:2x + 3y + 1 = 0和l2:4x y 5 = 0相交于点P,求点P的坐标。

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

直线与圆的方程试题及答案大题

直线与圆的方程试题及答案大题

直线与圆的方程试题及答案大题一、选择题1.设直线过点A(1, 2),斜率为-2,则直线方程是()– A. y = 2x + 3– B. y = -2x + 3– C. 2y = x + 3– D. -2y = x + 3答案:B2.设点A(-1,3)和B(2,-4),则直线AB的斜率为()– A. -1– B. 1– C. 2– D. -2答案:D二、填空题1.过点A(2,1)且与直线y = 2x + 3平行的直线的方程是y = ___________。

答案:2x - 12.过点A(1,-2)且与直线2y = 4x - 3垂直的直线的方程是y = ___________。

答案:-0.5x - 13.过点A(-3,4),斜率为2的直线方程是 y = ___________。

答案:2x + 10三、解答题1.求过点A(2,3)和B(-1,5)的直线方程。

解:直线AB的斜率 m = (5 - 3)/ (-1 - 2) = 2 / -3 = -2/3直线方程的一般形式为y = mx + c,其中c为常数。

将坐标A(2,3)代入直线方程,得到3 = (-2/3) * 2 + c => 3 = -4/3 + c。

解得c = 3 + 4/3 = 13/3,所以直线方程为y = -2/3x + 13/3。

2.已知直线的斜率为-1/2,过点A(3,4),求直线的方程。

解:直线方程的斜率为-1/2,过点A(3,4),所以直线方程可以表示为y = (-1/2)x + c。

将点A(3,4)代入直线方程,得到4 = (-1/2) * 3 + c => 4 = -3/2 + c。

解得c = 4 +3/2 = 11/2,所以直线方程为y = (-1/2)x + 11/2。

四、应用题1.在直角坐标系中,过点A(2,3)和B(-1,5)的直线与y轴交于点C,求点C的坐标。

解:由题意可知,过点A(2,3)和B(-1,5)的直线与y轴交于点C,所以C的横坐标为0。

直线与圆方程练习题及答案

直线与圆方程练习题及答案

直线和圆的方程一、选择题1 若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y xD.1)2()1(22=-++y x2 在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6π B .3π C .65π D .32π3 直线0=++c by ax 同时要经过第一第二 第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab4 已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为 45,则直线2l 的方程是( )A .1-=x yB .5331+=x y C .73+-=x y D .73+=x y5 不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6 直线0943=--y x 与圆422=+y x 的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7 已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8 过两点)9,3()1,1(和-的直线在x 轴上的截距是()A .23-B .32-C .52D .29 点)5,0(到直线x y 2=的距离为()A .25B .5C .23 D .25 10 下列命题中,正确的是( )A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内11 由点)3,1(P 引圆922=+y x 的切线的长是 ( )A .2B .19C .1D .412 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113 已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是A .03或B .03或-C .3D .3-14 如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-15 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( )A .3-B .6-C .23-D .32 16 由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43π D .23π 17 动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y xD .21)23(22=++y x 18 参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是( )A .圆心为)3,3(-,半径为9的圆B .圆心为)3,3(-,半径为3的圆C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆19 以点)1,5()3,1(-和为端点的线段的中垂线的方程是20 过点023)4,3(=+-y x 且与直线平行的直线的方程是21 直线y x y x 、在0623=+-轴上的截距分别为22 三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23 若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是三、解答题24 若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程25 求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程26 求点)2,3(-A 关于直线012:=--y x l 的对称点'A 的坐标已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程---直线和圆的方程答案一、二、19 02=--y x20 053=--y x 21 32和- 2212234<a三、24 设所求圆的方程为022=++++F Ey Dx y x ,则有⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=++=++=++8660420416024F E D F E F D F D 所以圆的方程是086622=+--+y x y x25 设),(y x M 为所求轨迹上任一点,则有2=MBMA042)1()2(222222=+-⇒=+-++∴y x x y x y x26 设),('b a A ,则有)54,513( 5451301222321232'-∴⎪⎩⎪⎨⎧=-=⇒⎪⎩⎪⎨⎧=---+⋅-=⋅-+A b a b a a b27 设圆C 的圆心为),(b a ,则6234004231)1(33322==⇒⎩⎨⎧-==⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧++=+-=-+r r b a b a b a b a a b 或或 所以圆C 的方程为36)34(4)4(2222=++=+-y x y x 或。

直线与圆的方程基础练习题

直线与圆的方程基础练习题

一、直线与方程练习1、直线l 与两条直线1=y ,07=--y x 分别交于P 、Q 两点.线段PQ 的中点坐标为()1 1-,,那么直线l 的斜率是( ) A .32 B . 23 C . 32- D . 23- 2.若直线(m-1)x+y=4m-1与直线2x-3y=5互相平行,则m 的值是_ 3.直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A.213,B.--213,C.--123, D.-2,-3 4.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )A.重合B.平行C.垂直D.相交但不垂直5.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )(A )2x -3y =0; (B )x +y +5=0;(C )2x -3y =0或x +y +5=0 (D )x +y +5或x -y +5=06.直线x=3的倾斜角是( )A.0B.2π C.π D.不存在 7.点(2,1)到直线3x -4y + 2 = 0的距离是( ) (A )54 (B )45 (C )254 (D )425 8.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为( )(A )3x +4y -5=0 (B )3x +4y +5=0(C )-3x +4y -5=0 (D )-3x +4y +5=09.直线,31k y kx =+-当k 变动时,所有直线都通过定点( )(A )(0,0) (B )(0,1)(C )(3,1) (D )(2,1)10. ABC ∆中,点A (),1,4-AB 的中点为M (),2,3重心为P (),2,4求边BC 的长二、圆与方程练习题1.方程222460x y x y ++--=表示的图形是( ) A.以(12)-,为圆心,11为半径的圆 B.以(12),为圆心,11为半径的圆 C.以(12)--,为圆心,11为半径的圆 D.以(12)-,为圆心,11为半径的圆2.点(11),在圆22()()4x a y a -++=的内部,则a 的取值范围是( )A.11a -<< B.01a << C.1a <-或1a > D.1a =±3.若22(1)20x y x y λλλ++-++=表示圆,则λ的取值范围是( )A.(0)+,∞ B.114⎡⎤⎢⎥⎣⎦, C.1(1)()5+-,∞∞, D.R 4. 圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( )A. 30x y ++= B .250x y --=C .390x y --=D .4370x y -+=4.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A 1±B 21±C .33±D 3± 5. 圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( )B. 30x y ++= B .250x y --=C .390x y --=D .4370x y -+=6. 已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2B .22-C .12-D .12+ 7.圆122=+y x 上的点到直线02543=-+y x 的距离的最小值是( )A .6B .4C .5D .18、圆0204222=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则c 的值为( )A . 10B .-68C . 12D . 10或-689.如果圆220x y Dx Ey F ++++=与x 轴相切于原点,则( )A .0,0E D F ≠==B .0,0,0D E F ≠≠=C .0,0DEF ≠== D .0,0F D E ≠==10.圆x 2+y 2+4x=0的圆心坐标和半径分别是( )A.(-2,0),2B.(-2,0),4C.(2,0),2D.(2,0),4三、直线与圆的方程1.已知一圆经过点A (2,-3)和B (-2,-5),且圆心C 在直线l :230x y --=上,求此圆的方程.2.已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点. (1) 当l 经过圆心C 时,求直线l 的方程;(2) 当弦AB 被点P 平分时,写出直线l 的方程;(3) 当直线l 的倾斜角为45º时,求弦AB 的长.3.已知定点A(0,1),B(0,-1),C(1,0)。

直线和圆的方程测试题

直线和圆的方程测试题

直线和圆的方程测试题题目一:直线的方程1. 给定两个点A(2, 3)和B(4, 1),求过这两个点的直线方程。

解析:首先计算两点的斜率k\[k = \frac{y_2-y_1}{x_2-x_1} = \frac{1-3}{4-2} = -1\]进一步,我们可以使用点斜式方程:\[y-y_1 = k(x-x_1)\]\[y-3 = -1(x-2)\]\[y-3 = -x+2\]\[x+y = 5\]所以,过点A(2, 3)和B(4, 1)的直线方程为 \(x+y = 5\)。

题目二:圆的方程2. 以点C(5, 3)为圆心,半径为r = 2的圆,求圆的方程。

解析:对于以点C(x, y)为圆心,半径为r的圆,圆的方程可以表示为:\[(x-x_0)^2 + (y-y_0)^2 = r^2\]将圆心C(5, 3)和半径r=2代入,得到:\[(x-5)^2 + (y-3)^2 = 4\]所以,以点C(5, 3)为圆心,半径为r = 2的圆的方程为 \((x-5)^2 + (y-3)^2 = 4\)。

题目三:直线和圆的交点3. 已知直线方程为 \(3x-y = 2\),以点D(1, 0)为圆心,半径为r = 1的圆。

求直线和圆的交点坐标。

解析:我们可以使用联立方程的方法来求解直线和圆的交点。

首先,将直线方程转换为一般式方程:\[3x-y-2 = 0\]然后,将直线方程带入圆的方程:\[(x-1)^2 + (y-0)^2 = 1\]通过联立这两个方程,我们可以得到交点的坐标。

将直线方程改写为 \(y = 3x-2\),然后代入圆的方程:\[(x-1)^2 + (3x-2-0)^2 = 1\]展开并整理方程,得到二次方程:\[10x^2 - 22x + 11 = 0\]解这个二次方程,可以得到两个解x1和x2:\[x_1 = \frac{11}{10}, \quad x_2 = 1\]将x值代入直线方程,可以得到对应的y值:\[y_1 = 3\left(\frac{11}{10}\right)-2 = \frac{13}{10}, \quad y_2 = 3(1)-2 = 1\]所以,直线 \(3x-y = 2\) 和圆 \((x-1)^2 + (y-0)^2 = 1\) 的交点坐标为\(\left(\frac{11}{10}, \frac{13}{10}\right)\) 和 (1, 1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和圆的方程精选练习题
1.直线x+3y-3=的倾斜角是多少?
答:倾斜角为π/6.
2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方
程是什么?
答:圆C的方程为(x-2)^2+(y+1)^2=1.
3.直线ax+by+c同时要经过第一、第二、第四象限,则a、
b、c应满足什么条件?
答:ab0.
4.直线3x-4y-9=与圆x+y=4的位置关系是什么?
答:相交但不过圆心。

5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边
长分别为a、b、c的三角形是什么类型的?
答:是锐角三角形。

6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?
答:截距为2/5.
7.点(2,5)到直线y=2x的距离是多少?
答:距离为1/√5.
8.由点P(1,3)引圆x+y=9的切线的长度是多少?
答:长度为2.
9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?
答:a的值等于-1/3.
10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?
答:a的值等于-3/2.
11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?
答:直线与圆相交,但不过圆心。

12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?
答:a的值为-1.
13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于
A、B两点,则AB的垂直平分线的方程是什么?
答:垂直平分线的方程为2x-y-5=0.
14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?
答:中垂线的方程为2x+y=7.
15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?
答:由于两条直线平行,所以它们的斜率相同。

直线3x-
y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的
斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-
4=3(x-3),即y=3x-5.
16.直线3x-2y+6在x、y轴上的截距分别是多少?
答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.
17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。

答:由于三点在同一条直线上,所以它们的斜率相同。

可以通过前两个点求出斜率,即(3-(-3))/(4-2)=3.因此,斜率为3的直线过点(5,k),所以有(k-(-3))/(5-2)=3,解得k=6.
18.若方程x+y-2x+4y+1+a=0表示的曲线是一个圆,求a 的取值范围。

答:将方程化简得5y^2+2ay+5x^2-2x+1=0.由于这是一个圆的方程,所以它必须满足以下两个条件:首先,系数a必须为0,否则方程表示的是一个椭圆或双曲线;其次,方程的常数项必须为负数,否则方程表示的是一个点或者空集。

因此,a的取值范围为a∈[-5/2,0)。

19.已知直线x+y=4和圆(x-3)^2+(y+2)^2=4相交于点P和Q,求直线PQ的方程。

答:将直线x+y=4化为y=-x+4的形式,代入圆的方程,得到(x-3)^2+(-x+2)^2=4.化简得到2x^2-12x+13=0,解得
x=3±√2.将x的值带入直线方程y=-x+4,得到相应的y值。

因此,点P和Q的坐标分别为(3+√2,1-√2)和(3-√2,1+√2)。

可以通过这两个点求出直线PQ的斜率为-1,因此直线PQ的方程为y=-x+4.
20.过点P(-1,6)且与圆C:(x-2)^2+(y-4)^2=9截得的弦AB 长是多少?已知直线l:3x-y-6=0与圆C相交于点M和N,求线段MN的长度。

答:首先求出圆心坐标为(2,4),半径为3.点P到圆心的距离为√((2-(-1))^2+(4-6)^2)=5,因此点P到圆的距离为2,即点P到圆的切线长度为2×3=6.因此,弦AB的长度为2×√(9-
2^2)=4√5.
直线l的斜率为3,因此它与圆C的切线的斜率为-1/3.圆
心到直线l的距离为|(3(-3)-(-1))/√(3^2+(-1)^2)|=2/√10.因此,切
点M和N的坐标分别为(3-2/√10,4+1/√10)和(3+2/√10,4-1/√10)。

线段MN的长度为√((3+2/√10-3+2/√10)^2+(4-1/√10-4-
1/√10)^2)=4/√10.
21.求直线y=2x-1被圆C:(x-2)^2+(y-3)^2=4截得的线段长度。

答:将直线y=2x-1代入圆的方程,得到(x-2)^2+(2x-
4)^2=4.化简得到5x^2-20x+17=0,解得x=(2±√3)/5.将x的值带
入直线方程,得到相应的y值。

因此,直线被圆截得的线段长度为√((2+√3)^2+(3+2√3)^2-(2-√3)^2-(3-2√3)^2)=4√3.
22.已知P是直线3x+4y+8=0上的动点,PA和PB是圆(x-1)^2+(y-2)^2=2的切线,A、B是切点,C是圆心,求四边形PACB的最小面积。

答:首先求出圆心坐标为(1,2),半径为√2.过点A的切线
的斜率为-1/2,过点B的切线的斜率为2.因此,点A和点B
的坐标分别为(1-1/√5,2-2/√5)和(1+1/√5,2+2/√5)。

四边形PACB 的面积为∣(3x+4y+8)/2+(x+y-3)/2+(x-2y-1)/2+(3x-2y-
5)/2∣=∣2x+2y-1∣。

由于P点在直线3x+4y+8=0上,因此可以将其表示为y=-3x/4-2,代入上式中,得到四边形PACB的最小面积为√(5)/2.
23.如果实数x、y满足等式(x-2)^2+y^2=3,那么y的最大值是多少?
答:将等式展开得到x^2-4x+4+y^2=3,即x^2-4x+y^2=1.这是一个以(2,0)为圆心,半径为1的圆的方程。

因此,y的取值范围为[-1,1]。

当y=1时,x=2,此时y取到最大值1.
24.点P(x,y)在直线x+y-4=0上,求x^2+y^2的最小值。

答:将直线x+y-4=0表示为y=-x+4的形式,代入
x^2+y^2中,得到x^2+(-x+4)^2=x^2-2x+16.因此,x^2+y^2的最小值为16.。

相关文档
最新文档