Surgery Simulation

合集下载

一种改进的虚拟手术中人体软组织形变方法

一种改进的虚拟手术中人体软组织形变方法

一种改进的虚拟手术中人体软组织形变方法何巍;王魏平;师为礼;苗语;何飞;杨华民【摘要】Virtual surgery provides the surgery simulation for users on vision and force. It applies computer virtual reali-ty in modern medicine, uses medical image data and reconstructs virtual human soft tissue models. And the simulation and modeling of soft tissue deformation has become one of the most important research contents in virtual surgery sys-tem. An improved mass spring model is proposed in this paper for the soft tissue deformation simulation. Bending spring, shear spring and structure spring are added onto the surface model of quadrilateral mesh topological structural for soft tissues, which will make the surface model having volume feature. This model not only has the advantages of traditional spring mass model such as rapid modeling, simple principle and quick simulation, but also has the ability to control the deformation regions, which improves the accuracy of the simulation model, and meets the requirements of the realness and stability of interactive system. Experimental results show that the method is suitable for the real-time simulation of soft tissues with large deformation. It can effectively enhance the volume of deformation simulation and meet the requirements of real-time interactive systems.%虚拟手术是将计算机虚拟现实技术应用于现代医学,利用医学图像数据,重构出虚拟人体软组织模型,利用触觉交互设备,在视觉和触觉上为使用者提供手术场景的模拟和仿真.其中,软组织形变的仿真和建模是虚拟手术系统核心的研究内容之一.针对虚拟手术中软组织形变仿真,提出了一种改进的弹簧—质点模型.在正四边形网格拓扑结构表面模型中,增加了结构弹簧、剪切弹簧和弯曲弹簧,使表面模型具有体模型的特征.该模型继承了传统弹簧—质点模型的建模快、原理简单、仿真速度快等优点,同时还具有控制形变区域的能力,从而提高了仿真模型的精确度,满足交互系统的真实性和稳定性需求.实验表明该方法有效增强了形变仿真的体积特征,适合于软组织形变较大时的实时仿真,满足了虚拟手术系统实时性的要求.【期刊名称】《长春理工大学学报(自然科学版)》【年(卷),期】2015(038)006【总页数】6页(P118-122,126)【关键词】虚拟现实;弹簧—质点模型;软组织形变;碰撞检测【作者】何巍;王魏平;师为礼;苗语;何飞;杨华民【作者单位】长春理工大学计算机科学技术学院,长春 130022;长春理工大学计算机科学技术学院,长春 130022;长春理工大学计算机科学技术学院,长春 130022;长春理工大学计算机科学技术学院,长春 130022;长春理工大学计算机科学技术学院,长春 130022;长春理工大学计算机科学技术学院,长春 130022【正文语种】中文【中图分类】TP317.4随着计算机科学技术的不断发展,虚拟现实技术(Virtual Reality Technology VRT)已被广泛应用于现代科学研究的各个领域[1,2],其中利用虚拟现实技术进行生物医学仿真是当前的一个研究热点,虚拟手术系统是其中的典型应用。

英语笔译三级实务文章(三)

英语笔译三级实务文章(三)

英语三级笔译实务文章(第三单元)Japan Enters the Era of Smartphones and“Dumb walking”I'm sure I'm going to get hit,but after a few seconds I relax.It's OK.Everyone'sreacting for me.And then I realize there's two people who aren't.They're directly in front of me and they're not moving out of the way.I try moving left,but they do too.I swerve to the right,but they do too.We're stuck.It's so silly I have to look up.I expect to see two dumb walkers just like me.But instead I find a young couple, very much in love and very much refusing to let go of each other's hands just to get around an inconsiderate idiot on his smartphone.The girl gives me a look of such contempt that I quickly apologize and rush round them.That look was enough to ensure I'll never be dumb walking again.19.react:[riˈækt]v.(作出)反应20.swerve:[swɜːv]v.突然转向21.get around:避开22.inconsiderate:[ˌɪnkənˈsɪdərət] adj.不为别人着想的;不体谅别人的。

simulation-based medical education masterclass

simulation-based medical education masterclass

simulation-based medical educationmasterclassSimulation-Based Medical Education MasterclassSimulation-Based Medical Education (SBME) refers to a teaching and learning strategy that utilizes simulated scenarios to enhance medical professionals' skills and competencies. This innovative approach provides a safe and controlled environment for learning, allowing healthcare providers to practice and refine their clinical expertise without risking patient safety. In this article, we will delve into the details of SBME, exploring its benefits, applications, and how it can revolutionize medical education.1. What is Simulation-Based Medical Education (SBME)?SBME is an educational methodology that utilizes advanced simulation technologies to replicate real-life medical scenarios. It offers a safe and realistic environment for healthcare professionals to practice their skills, enhance decision-making abilities, and manage critical situations. These simulations can range from basic skills training, such as performing a proper physical examination, to complex procedures like surgery or emergency medicalinterventions.2. Why choose Simulation-Based Medical Education?Simulation provides numerous advantages over traditional medical education methods:- Safety: SBME eliminates the risk of harm to real patients during training. Professionals can make mistakes and learn from them without compromising patient safety.- Skills development: Simulation allows healthcare providers to repeatedly practice procedures until they achieve proficiency. Additionally, SBME offers opportunities to improve teamwork, communication, and leadership skills in interdisciplinary settings. - Realistic scenarios: Simulated scenarios closely mimic real-life situations, providing a lifelike experience that enhances the transfer of knowledge to clinical practice.- Individualized learning: SBME allows learners to practice at their own pace, with the ability to pause, reflect, and receive immediate feedback, fostering personalized and self-directed learning.- Ethical considerations: Simulation enables professionals to practice high-risk procedures and challenging ethical situationswithout the potential harm to patients, allowing for a better understanding of ethical dilemmas and improved decision-making. - Research opportunities: SBME can be used to conduct research to improve medical education and patient outcomes. Simulations provide a controlled environment for experimenting with different teaching methods and evaluating their effectiveness.3. Applications of Simulation-Based Medical EducationSBME can be applied across various medical disciplines and stages of professional development:- Skill acquisition: Simulations are used to teach and assess basic skills, such as venipuncture, airway management, or wound suturing. Learners can practice these techniques until they achieve proficiency before attempting them on real patients.- Teamwork and communication: Interprofessional simulations promote effective communication, collaboration, and teamwork among healthcare providers. These simulations include scenarios that require coordination between professionals from different disciplines, encouraging a patient-centered approach.- Crisis resource management: SBME enhances crisis resourcemanagement skills, such as effective decision-making, prioritization, and resource allocation during emergency situations. These simulations allow professionals to experience and practice managing critical scenarios, ensuring preparedness and optimal patient outcomes.- Procedural competence: Simulation-based training helps healthcare professionals acquire and perfect complex procedures, such as laparoscopic surgery or central line insertion. Practicing these procedures in a simulated environment improves technical skills and hand-eye coordination.- Assessment and certification: SBME provides an objective and standardized assessment platform for evaluating healthcare professionals' skills and competencies. Simulations allow for structured evaluation, providing valuable feedback for individual growth and program improvement.4. Implementing Simulation-Based Medical EducationImplementing SBME requires careful planning and consideration:- Technology and equipment: Setting up a simulation center or simulation lab requires investment in simulators, models, virtualreality tools, and mannequins. These resources should match the educational objectives and target audience.- Faculty training: Educators must undergo training on simulation techniques, debriefing, scenario development, and simulator operation. Proper knowledge and skills are essential to facilitate effective learning experiences for participants.- Curriculum integration: SBME should be integrated into existing medical education curricula. Identifying appropriate contexts for simulation-based training and aligning it with theoretical teaching enhances the learning experience and knowledge retention.- Debriefing sessions: Debriefing is an essential component of SBME as it allows learners to reflect on their performance and receive feedback. Effective debriefing techniques promoteself-reflection, identify areas for improvement, and bridge the gap between simulated practice and real-life scenarios.- Continuous improvement: Simulation programs should undergo regular evaluation and improvement to meet evolving educational needs. Ongoing feedback from participants and faculty, coupled with research, allows for the refinement and enhancement of the simulation-based curriculum.In conclusion, Simulation-Based Medical Education is atransformative approach that enhances medical professionals' skills, knowledge, and patient care. By providing a safe and realistic learning environment, SBME enables learners to practice and perfect various clinical scenarios, improve decision-making skills, and enhance teamwork and communication. With careful planning and integration, SBME has the potential to revolutionize medical education and improve patient outcomes.。

情景模拟定位分工抢救模式在CSICU_急救培训中的应用

情景模拟定位分工抢救模式在CSICU_急救培训中的应用

情景模拟定位分工抢救模式在CSICU急救培训中的应用梁云萧,莫丽勤,徐瑞馨,曾云云,覃圆圆,李雪华广西医科大学第一附属医院心胸外科,广西南宁 530021[摘要] 目的探究情景模拟定位分工抢救模式在心脏外科重症监护室(cardiothoracic surgery intensive care unit, CSICU)急救培训中的应用。

方法选取广西医科大学第一附属医院CSICU的30名护士进行抢救培训,其中2022年3—4月实施常规抢救模式培训,2022年5—6月实施情景模拟定位分工抢救模式培训。

比较两种急救培训模式的应用效果。

结果与实施常规抢救模式相比,实施情景模拟定位分工抢救模式后,医生对护士抢救配合的满意度提升,护士的操作能力、临床实际综合能力提升,各急救措施准确落实到位的时间均缩短,差异有统计学意义(P<0.05)。

结论通过情景模拟定位分工抢救模式培训,可增强团队间的配合度,提高护士的综合能力及应急能力,促使急救措施快速落实。

[关键词] 情景模拟;定位分工抢救;急救;培训;心脏外科重症监护室[中图分类号] R19 [文献标识码] A[文章编号] 1672-5654(2023)02(b)-0014-04 Application of Scene Simulation Localization Division of Rescue Mode in CSICU First Aid TrainingLIANG Yunxiao, MO Liqin, XU Ruixin, Zeng Yunyun, QIN Yuanyuan, LI XuehuaDepartment of Cardiothoracic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021 China[Abstract]Objective To explore the application of scene simulation localization division of rescue mode in emer⁃gency training in cardiothoracic surgery intensive care unit (CSICU). Methods Thirty nurses from the CSICU of the First Affiliated Hospital of Guangxi Medical University were selected for rescue training, including regular rescue mode training from March to April 2022 and scene simulation localization division of rescue mode training from May to June 2022. Compared the application effects of the two emergency training modes. Results Compared with the implementation of the conventional rescue mode, the implementation of the scene simulation localization division of rescue mode improved doctors' satisfaction with nurse rescue cooperation, improved nurses' operational ability, and clinical practical comprehensive ability, and shortened the time for accurate implementation of various emergency measures, and the difference was statistically significant (P<0.05). Conclusion The training of scene simulation local⁃ization division of rescue mode can enhance the cooperation between teams, improve the comprehensive ability and emergency response ability of nurses, and promote the rapid implementation of emergency measures.[Key words] Scene simulation; Localization division of rescue; First aid; Training; Cardiothoracic surgery intensive care unit心脏外科重症监护室(cardiothoracic surgery in⁃tensive care unit, CSICU)是收治心脏危重患者的场所,具有急危重、病情变化快等特点,心肺复苏及心血管急救时有发生[1]。

CASSOS2001—计算机辅助正颌外科模拟和预

CASSOS2001—计算机辅助正颌外科模拟和预

目 次封面.............................................................................错误!未定义书签。

中文摘要 (II)英文摘要 (IV)目次 (V)1 引言 (1)2 材料与方法 (2)3 典型病例 (5)4 结果 (18)5 讨论 (19)参考文献 (26)综述计算机辅助正颌外科的研究进展 (29)作者简历 (37)VCASSOS 2001—计算机辅助正颌外科模拟和预测系统的准确性评估1 引言通过准确的手术预测与模拟,制定合理的手术方案是牙颌面畸形患者正颌外科治疗取得成功的关键。

1958年丹麦皇家牙学院开发出了世界上第一套计算机辅助的头影测量系统,之后Oka于1978年将数字图像处理技术应用于X线头颅片,以及以此为基础于80年代开发出的数字图像处理X线头影测量系统进一步促进了计算机辅助X线头影测量系统的发展[1.2]。

同时,兴起于20世纪50年代的软组织测量技术也从早期手工测量的方法发展为后期计算机辅助分析的方法。

这些为计算机辅助正颌手术术前模拟和预测技术的发展奠定了基础。

随着信息时代计算机应用的普及化,更多的正颌外科医生摆脱了通过传统手工测量、描迹、剪裁进行手术模拟的方法,而采用计算机辅助的头影测量系统,使手术模拟预测从简单的线条图进步到更直观的彩色照片,使患者能够清楚地了解术后面形,从而参与手术设计。

目前国内外最常用的软组织测量方法有Burston、Holdaway、Bisharad等法[3]。

以此为基础开发的目前临床上应用最多的计算机预测系统有Quick Ceph、DentoFacial Planner(DFP)、计算机辅助正颌外科手术模拟和预测系统(CASSOS 2001)等[4]。

其中CASSOS 2001为针对亚洲人群的主要预测软件系统。

本研究通过对比患者术前模拟及术后真实状况的数据,来评估CASSOS 2001系统,并以此来分析该预测系统的准确性。

conform的过去式和用法例句

conform的过去式和用法例句

conform的过去式和用法例句conform做动词有使一致;遵从等意思,那么你知道conform的过去式是什么吗?下面为大家带来的conform的过去式和用法例句,接下来一起来学习一下吧。

conform的过去式和其他时态:过去式: conformed过去分词: conformed现在分词: conformingconform的用法:conform的用法1:conform的基本意思是“使&hellip;与&hellip;相符合或一致”,多指人的行为与规则、规章、指令等一致,也可指理论、状态、习俗、思想等“与&hellip;相符合”,引申可表示为“遵守”“顺从”等。

conform的用法2:conform既可用作及物动词,也可用作不及物动词,常与介词to或with连用,表示“顺应”“相符”等。

conform的过去式例句:1. We conformed with social and family expectations.我们遵从社会和家庭的期望行事。

2. He has conformed his life to certain principles.他使自己的生活符合某些准则.3. This is merely one of the many instances of metaphysical theories seemingly conformed by facts.这只不过是许许多多似乎有事实证明的形而上学理论之一罢了.4. A surgery conformed to standard practice is not medical malpractice.遵守标准惯例的手术不能算作医疗事故.5. The chains would have conformed to the overall average.枪击链的长度应该和整体平均值相符合.6. Its basic parameter conformed to the correlation application standard.其基本参数符合相关应用标准.7. However, he conformed confirmed by the Senate last week.但是他上周刚刚被议会认可.8. He also did predestinate conformed to the image of his son.他也预先命中注定适合他儿子的形象.9. John never really conformed to the way of life in South Africa.约翰从未真正适应南非的生活方式.10. Explain the three basic delivery steps for conformeddimensions.简述对一致性维度的三种基本的交付步骤.11. The OPPLC was conformed by differential scanning calorimetry ( DSC ).差热分析( DSC ) 的结果表明形成了OPPLC这一新的物相.12. Industrial experiments and the practical operation results were conformed to the simulation.试验结果表明,苯甲酸精馏装置的实际运转结果与模拟计算的情况基本吻合.13. Cabbage can be picked anytime any time after the heads have conformed.只要卷心菜成形了随时可以采摘.14. The driver&#39;s account of the accident was conformed by several eyewitnesses.那位司机关于事故的陈述与几名目击证人一致.15. These are very simple requirements, but they must be conformed with.这些要求很简单, 但必须遵守.。

骨科手术仿真模拟训练系统的构建研究

骨科手术仿真模拟训练系统的构建研究

现代电子技术Modern Electronics TechniqueJun.2023Vol.46No.122023年6月15日第46卷第12期0引言虚拟现实技术通常是通过计算机的模拟,将现实世界的真实场景模拟到虚拟环境中,并且可以提供给用户多种交互方式,这样就会给使用者一种等同于真实环境的沉浸式体验[1]。

现阶段虚拟现实技术已在自动驾驶、VR 影视、虚拟游戏、医疗等领域取得了广泛的应用[2⁃3]。

而虚拟手术则是将虚拟现实中的物体碰撞检测、姿态传感、3D 物体旋转、虚拟场景构建等相关理论技术引入到医学领域[4⁃5]。

现有的医学临床实践培训相对比较依赖尸体、模型、动物等,而且成本高、风险系数大。

而虚拟现实技术的出现给这一医学问题提供了解决方法,在减少手术成本、提高培训效率、降低可行性风险方面,虚拟交互手术比传统临床培训更具优势[4⁃5]。

国内外目前针对虚拟现实系统的开发在医学各个领域也取得了很多成效[6⁃7]。

在智能仿真医学方面,研究人员将计算机技术与医学进一步融合拓展,市面上已经有很多成熟的产品投入使用[8]。

肖文君等人设计了医学图像观察系统,为医师在医学中的诊断提供了支持[9]。

为了能够增强使用者的沉浸感和体验感,虚拟过程复现医生在使用手术器械对人体器官进行触碰、感知、操作等情景,虚拟手术仿真系统具有提供实时力反馈的能力[10]。

王穗源等人探讨研究了数字化虚拟技术在胫骨DOI :10.16652/j.issn.1004⁃373x.2023.12.024引用格式:弭博岩,王鹏龙,王萌,等.骨科手术仿真模拟训练系统的构建研究[J].现代电子技术,2023,46(12):141⁃145.骨科手术仿真模拟训练系统的构建研究弭博岩,王鹏龙,王萌,郑奋(海军军医大学计算机与仿真技术教研室,上海200000)摘要:针对现阶段骨科手术培训实践性弱、手术风险系数大、耗材成本高的缺点,文中提出一种将虚拟现实技术与骨科手术相结合的骨科手术训练系统。

基于虚拟运动中心概念的机构设计理论与方法

基于虚拟运动中心概念的机构设计理论与方法

附件2论文中英文摘要格式作者姓名:裴旭论文题目:基于虚拟运动中心概念的机构设计理论与方法作者简介:裴旭,男,1979年10月出生,2004年9月师从于北京航空航天大学宗光华教授、于靖军副教授(副导师),于2009年7月获博士学位。

中文摘要现代机械装备或产品正向“重大精尖”和“微小精密”方向迅猛发展,对作为其骨架与执行器的机构(包括少自由度功能机构、柔性机构等)提出了更高、更为特殊的功能要求。

建立基于超精密运动的创新设计理论与方法已成为当前机构学研究的一个重要主题。

鉴于对精度、控制等产生消极影响的寄生运动在多数机构中普遍存在,而在拓扑层面上就能采取减小或抑制寄生运动的措施,往往能起到事半功倍之效。

在微创外科领域应用甚广的虚拟运动中心(VCM)机构即可实现类似的功效,其功能也被业界广泛认同。

同时,在装备制造业、航空航天等工业领域的应用也大有潜力可挖。

以加工刀头Z3为例,由于主体采用的是传统3-PRS 构型,寄生运动的影响比较明显,如果从VCM型综合的角度加以优化,可在性能方面得到显著改善。

而柔性VCM 机构则提供了一种综合新型高精度大行程柔性铰链(机构)的可能性。

论文在多项国家自然科学基金的资助下,以一类特殊的少自由度功能型机构——VCM机构为研究对象,对其构型综合与设计方法进行了系统深入的研究,并通过将VCM概念和柔性机构有机结合,建立了一套行之有效的大行程高精度柔性铰链(及柔性机构)分析、设计方法和理论。

论文的主要研究工作和创新性成果如下:1.基于对当前刚柔两类并联机构构型综合方法研究的现状分析,指出了可统一实现刚柔并联机构构型综合的可行性。

以旋量理论为数学工具,结合模块化思想理念,提出了一种可以实现刚柔机构统一构型综合的普适性方法。

该方法的核心在于建立几何模块、运动(约束)模块与机械模块三者之间的映射关系,优点在于简单、可视化。

基于所提出的模块分层映射方法,通过实例初步验证了该方法对刚、柔两类并联机构构型综合的有效性,为系统构筑可视化的刚柔并联机构统一构型综合的算法及软件提供了理论支撑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• In vitro rheology
– can be performed in a laboratory. Technique is mature – Not realistic for soft tissue (perfusion, …)
14
Soft Tissue Characterization
11
Soft Tissue Characterization
• Biomechanical behavior of biological tissue is very complex • Most biological tissue is composed of several components :
(source, Ayudamos)
Procedure Duration (min)
Surgery Training on a pig at EITS
41-60
61-80
81-100
Total number of patients Resident Training
Goal for simulation : Training versus Rehearsal
• Training: Modelling a standard patient for teaching classical or rare situations • Rehearsal: Modelling a specific patient to plan and rehearse a delicate intervention, and evaluate consequences beforehand
• Deformation Function
22
X ∈Ω a φ(X ) ∈ℜ
3
• Displacement Function
Rest Position
Φ
U (X ) = φ ( X ) − X
Deformed Position

X U(X)
23
Basics of Continuum Mechanics • The local deformation is captured by the deformation gradient : ∂φ1 ∂φ1 ∂φ1
∂φ F= ∂X
Rest Position

Deformed Position
∂X 1 ∂φ ∂φ Fij = i = 2 ∂X j ∂X 1 ∂φ 3 ∂X 1
∂X 2 ∂φ2 ∂X 2 ∂φ3 ∂X 2
∂X 3 ∂φ2 ∂X 3 ∂φ3 ∂X 3
13
Soft Tissue Characterization
• Different possible methods
– In vitro rheology – In vivo rheology – Elastometry – Solving Inverse problems
Soft Tissue Characterization
Structural Mechanics Hyperelasticity Elasticity
Linear Elasticity
(Anisotropic, heterogeneous)
Plasticity
Material Modeling: Basics of Continuum Mechanics
Increasing need for training surgeons and residents
• Medical malpractice has become socially and economically unacceptable
Increasing need for objective evaluation of surgeons (see Cordis Nitanol endovascular carotid stent)
Liver Reconstruction
Deformation from a reference model reconstructed from the « Visible Human Project »
9
10
Different Technical Issues
• • • • • • • Mesh Reconstruction from Images Soft Tissue Modeling Tissue Cutting Collision Detection Contact Modeling Surface Rendering Haptic Feedback
17
Soft Tissue Characterization
• To characterize a tissue, its stressstrain relationship is studied
Radius r Height h
Strain
18
Stress σ =
F πr2
Force F
Radius r*
Average Duration of an hysterectomy with laparoscopy
180 160 120 100 Example of a mechanical simulator
(source, US Surgical Corporation)
140 • Cadavers
80 • Patients 60 40 20 0 1-10 11-20 21-40
12
Estimating material parameters
• Complex for biological tissue :
– Heterogeneous and anisotropic materials – Tissue behavior changes between in-vivo and in-vitro – Effect of preconditioning – Potential large variability across population – Ethics clearance for performing experimental studies
8
Different Technical Issues
• • • • • • • Mesh Reconstruction from Images Soft Tissue Modeling Tissue Cutting Collision Detection Contact Modeling Surface Rendering Haptic Feedback
1
Surgery Simulation
Olivier Clatz
Hervé Delingette
Asclepios Research project INRIA Sophia Antipolis, NhomakorabeaFrance
2
Motivations of surgery simulation
• Increasing complexity of therapy and especially surgery
– Fluids : water or blood – Fibrous materials : muscle fiber, neuronal fibers, … – Membranes : interstitial tissue, Glisson capsule – Parenchyma : liver or brain
σ
Unloading
ε Hysteresis
ε
Linear Domain
Slope =Young Modulus
ε
Visco-elasticity
Non-Linearity
Anisotropy
21
Continuum Mechanics
Continuum Mechanics
Fluid Mechanics
16
Source Echosens, Paris
Soft Tissue Characterization
• Inverse Problems
• well-suited for surgery simulation (computational approach) • requires geometry & BC before and after deformation
Soft Tissue Characterization
• Elastometry (MR, Ultrasound)
• mesure property inside any organ non invasively • validation ? Only for linear elastic materials
X
φ(X)
F(X) is the local affine transformation that maps the neighborhood of X into the neighborhood of φ(X)
Basics of Continuum Mechanics
• Distance between point may not be preserved
Rest Position
24

Deformed Position
X+dX X
φ(X+dX) φ(X)
• Distance between deformed points
(ds )
2
= φ ( X + dX ) − φ ( X ) ≈ dX T ∇φ T ∇φ dX
相关文档
最新文档