大学物理II_第十章

合集下载

大学物理Ⅱ第10章 稳恒磁场

大学物理Ⅱ第10章 稳恒磁场

r
B
17
2.运动电荷的磁场
q
B
0 4
q r0
r2
r
P B
六、毕奥-萨伐尔定律的应用
r
P
B
1. 载流直导线的磁场
求距离载流直导线为a处 一点P 的磁感应强度 B

dB
0
4
Idl sin r2
B
dB
0
4
Idl sin r2
I
Idl
a
r
B
P
根据几何关系
r a csc
l acot acot
萨法尔定律 二、 两定理:磁高斯定理和安培环路定理
三、 两种力:安培力(做功)、洛仑兹力(不做功)
四、 磁介质:磁介质中的环路定理
§10.1 电流 电动势
一、电流、电流密度
大量电荷的定向运动形成电流。 方向规定:正电荷运动方向
1.电流强度: I dq
dt
2.电流密度:
描述导体内各点的电流分布情况
a
da边: F1 I da B
F1 Bl1I sin
bc边: F1/ Ibc B
F2
F1/ Bl1I sin( )
b
F1 d
F2/
pm
c
F1/
ab边: cd边:
F2 I ab B F2/ I cd B
F2 Bl2I F2/ Bl2I
41
•线圈在均匀磁场受合力 F F1 F1/ F2 F2/ 0
B
13
I I
直电流磁感线
圆电流磁感线
I
螺线管 磁感线
(1)磁感应线都是环绕电流的闭合曲线,磁场是 涡旋场。
(2) 任意两条磁感应线在空间不相交。 (3)磁感应线方向与电流方向遵守右螺旋法则。

大学物理2深刻复习归纳

大学物理2深刻复习归纳

p-V图几何意义
(2) 内能变化
(3) 功和热量是过程量,内能是状态量。 2. 热力学第一定律
Q E W 对微小的变化过程 dQ dE dW
28 / 30
3. 摩尔热容 定体摩尔热容量 定压摩尔热容量
热容比
自由度i
29 / 30
3. 等值过程
过 程
特征
过程 能量转换 方程 方式
内能增量ΔE
25 / 30
7. 麦克斯韦速率分布函数 8. 下列各式的物理意义:
26 / 30
9. 三种特征速率 (1) 最概然速率 (2) 平均速率 (3) 方均根速率
10. 气体分子平均碰撞频率及平均自由程
27 / 30
第13章 热力学基础
1. 功、热量、内能
(1) 准静态过程的功 W V2 pdV V1
暗明 纹纹
明纹 暗纹
dk dk+1
15 / 30
● 条纹间距b (明纹或暗纹)
2n D (大小三角形) bL
b
LБайду номын сангаас
n1
n
D
/ 2n
16 / 30
四、单缝衍射 1.单缝衍射条件
很小
b
· P x
0 f
bsin 0
中央明纹
bsin k bsin (2k 1)
2
暗纹 明纹
(k 1, 2,3, )
驻波的形成:沿相反方向传播的两相干简谐波的相互 叠加形成驻波
波节 y
波腹
x o
11 / 30
相邻波腹(波节)的距离: 驻波的位相: 若相邻波节之间为一段,则同一段中各点的振动
位相相同,而相邻段振动的位相相反

大学物理第十章重点小结

大学物理第十章重点小结


) (1
2πr1

)




r1 r2



r1 r2 称为波程差(波走过的路程之差)
加强 2kπ 2π 2π r1 r2 (2k 1) π 减弱
第十章 波动
17
物理学
第五版
将合振幅加强、减弱的条件转化为干涉 的波程差条件,则有 干涉的波程差条件 当 r1 r2 k 时(半波长偶数倍) 合振幅最大
2 1
2
1
AC

]
u y A (3 10 m) cos(410s )t πm 8m 5m 9m
C B
2
1
oA
D
x
11
第十章 波动
物理学
第五版
点 D 的相位落后于点 A
AD y D (3 10 m)cos[4 s ]t 2 λ 9 2 1 (3 10 m) cos[( 4 π s )t π] 5
2 1
C D 2π
xC xD

22 2π 4.4π 10
9m
u
λ 10 m
C 8m B 5m
10m
D
oA
x
13
第十章 波动
物理学
第五版

平面简谐波的能量
在波动传播的介质中,任一体 积元的动能、势能、总机械能均随 x, t 作周期性变化,且变化是同相位的. 体积元在平衡位置时,动能、势能 和总机械能均最大. 体积元的位移最大时,三者均为零.
3

y (2 A cos


x) cos t (2 A cos

大学物理第二版第十章

大学物理第二版第十章

F Fmax Fmax B q0 v
F 0
定义:磁感应强度的大小
与电荷 q0运动方向及受力方向 满足右手法则的方向规定为B的方 向(与该点小磁针N极指向一致 ) 一般情况
Fmax
900
B v
F qv B
洛伦兹力公式
dF
B q0 v
0 q0 vB sin Fmax
0 I
分析:
(1)
b Bp arctan b 2y
b b arctan 2y 2y
0 I
dB dBx dB
y
P

O
y b
BP
r
0 Ib
2 yb

0 I
2y
(无限长载流直导线) b
x
(2)
y b
BP
b arctan 2y 2
无限大板
0 I sin B dB dl 2 4 l r l
2
I
以 夹角α(如图所示)为中间变量, 以上问题便可迎刃而解:


2

r a sec
dl a sec d
2
2
Idl r a 2
1
1
r2
l a tan
代入积分式得:
r1
P
10.2.2 运动电荷的磁场 0 0 Idl r 根据 dB 2
4 r
I
P 来分析。
Idl
r
dQ n Sdl q nSqv dt dt 0 0 ( nSqv )dl r dB 4 r2
S
电流元内总电荷数
dN nSdl

大学物理自感和互感

大学物理自感和互感

Ψ自 LI
L
d自 dt
d ( LI ) dI dL L I dt dt dt
若回路几何形状、 尺寸不变,周围介 质的磁导率不变 自感系数描述线圈 电磁惯性的大小
dL 0 dt
dI L L dt
负号表示自感电动势 总是要阻碍线圈回路 本身电流的变化。
3
单位:亨利,1H=1Wb/A 辅助单位:
B
I
2 πr
R1 Q
R
如图在两圆筒间取一长 为 l 的面 PQRS, 并将其分 成许多小面元.
I
I r
P
R2
l
S
dr
则 dΦ B dS Bldr
Φ dΦ
R2 R1
I
2πr
l dr
10 - 4 自感和互感
第十章 电磁感应
Il R dr R 2 r
2 1
Il R2 ln( ) 2 R1
R1 Q
R
Φ l R L ln( ) I 2 R
2 1
I
I r
P
R2
l
S
dr
单位长度的自感为:
L R2 Lo ln( ) l 2 R1
10 - 4 自感和互感 自感的利用
第十章 电磁感应
在通路时,自感对电流的变化起抑制作用, 可稳定电路中的电流(扼流圈\镇流器等). 在断路时,自感电动势可产生一个瞬时高 压,对有些场合(如日光灯的启动和感应圈 的升压)有用。 构成RC\RCL谐振电路,滤波器等
答: 如图,双线绕制,可确保自感系数为零
0 L

I
0
10 - 4 自感和互感 二、互感(mutual induction)

《大学物理》 第二版 课后习题答案 第十章

《大学物理》 第二版 课后习题答案 第十章

习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。

设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。

解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。

解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。

《大学物理》第十章气体动理论习题参考答案

《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。

3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。

7、1:1;2:1;10:3。

8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。

已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。

质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。

大学物理(II)下册:05-波动(驻波)

大学物理(II)下册:05-波动(驻波)

分析: 关键求出(1)
y
1 2x
O
L
A
四. 简正模式 (能够形成驻波的振动频率)
边界情况不同,简正模式也不同:
1.) 两端固定弦驻波
l
1
2
l
22
2
l
33
2
条件: l
nn 2
n
nu 2l
n
1, 2,
“量子化”
本征频率(简正频率)
n = 1 基频 n = 2,3,… 二次,三次…谐频
2) 一端封闭的笛中的驻波 3) 两端开放的笛中的驻波
一般情形
波的干涉
圆形水波的反射与干涉
一. 波的干涉
1. 干涉现象 波叠加时在空间出现稳定的 振动加强和减弱的分布
振幅
2. 相干条件
(1) 频率相同 (2) 振动方向相同 (3) 相位差恒定
3. 波场的强度分布
设振动方向屏面
S1 y10 = A10cos( t+ 10) S2 y20 = A20cos( t+ 20)
---“驻”字的第一层含义。
二. 驻波方程
y1
A cos[ (t
x u
)
y2
A cos[ (t
x) u
1 ] 右行波
2 ] 左行波
合成波 — 非行波 若1 = 2= 0
y y1 y2 2A coskx cos t
驻波方程
A (x) —调制的振幅 振动因子
三. 驻波特征 y 2A coskx cos t
p
r1
S1
S2
· r2
• 到p点引起振动
y1 = A1cos( t+ 10-kr1) y2 = A2cos( t+ 20-kr2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 静电场电荷守恒定律电荷守恒定律是物理学的基本定律之一. 它指出, 对于一个孤立系统, 不论发生什么变化, 其中所有电荷的代数和永远保持不变. 电荷守恒定律表明, 如果某一区域中的电荷增加或减少了, 那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷, 那么必定有等量的异号电荷同时产生或消失. 库仑定律库仑定律(Coulomb's law), 法国物理学家查尔斯·库仑于1785年发现, 因而命名的一条物理学定律. 库仑定律是电学发展史上的第一个定量规律. 因此, 电学的研究从定性进入定量阶段, 是电学史中的一块重要的里程碑. 库仑定律阐明, 在真空中两个静止点电荷之间的相互作用力与距离平方成反比, 与电量乘积成正比, 作用力的方向在它们的连线上, 同号电荷相斥, 异号电荷相吸.0221041r rq q F πε= 21212010854187817.8---⋅⋅⨯=m N C ε, 真空电容率(真空介电常数)电场强度电场强度是用来表示电场的强弱和方向的物理量. 实验表明, 在电场中某一点, 试探点电荷(正电荷)在该点所受电场力与其所带电荷的比值是一个与试探点电荷无关的量. 于是以试探点电荷(正电荷)在该点所受电场力的方向为电场方向, 以前述比值为大小的矢量定义为该点的电场强度, 常用E 表示. 按照定义, 电场中某一点的电场强度的方向可用试探点电荷(正电荷)在该点所受电场力的电场方向来确定;电场强弱可由试探电荷所受的力与试探点电荷带电量的比值确定.0q F E =;02041r r q E πε=点电荷系在某点产生的电场的电场强度等于各点电荷单独在该点产生的电场强度的矢量和∑∑==02041iii i r r q E E πε 带电体在一点产生的电场强度等于所有电荷元产生的电场强度的矢量积分⎰⎰==0204r r dq E d E πε 高斯定理真空中的静电场中, 穿过任一闭合曲面的电通量, 在数值上等于该闭合曲面内所包围的电量的代数和乘以ε0的倒数.∑⎰=⋅insi Sq S d E 01ε⎰⎰=⋅VSdV S d E ρε01给予空间的某个区域内, 任意位置的电场. 原则上, 应用高斯定律, 可以很容易地计算出电荷的分布. 只要积分电场于任意区域的表面, 再乘以真空电容率, 就可以得到区域内的电荷数量.但是, 更常遇到的是逆反问题. 给予电荷的分布, 求算在某位置的电场. 这问题比较难解析. 虽然知道穿过某一个闭合曲面的电通量, 这资料仍旧不足以解析问题. 在闭合曲面任意位置的电场可能会是非常的复杂.假若, 问题本身显示出某种对称性, 促使在闭合曲面位置的电场大小变得均匀. 那么, 就可以借着这均匀性来计算电场. 像圆柱对称、平面对称、球对称等等, 这些空间的对称性, 都能帮助高斯定律来解析问题. 若想知道怎样利用这些对称性来计算电场, 请参阅高斯曲面(Gaussian surface). 静电场环路定理在静电场中, 电场强度沿任一闭合路径的线积分(即电场强度的环流)恒为零0=⋅⎰Ll d E电势能在静电学里, 电势能(Electric potential energy)是处于电场的电荷分布所具有的势能, 与电荷分布在系统内部的组态有关. 电势能的单位是焦耳. 电势能与电势不同. 电势定义为处于电场的电荷所具有的电势能每单位电荷. 电势的单位是伏特.电势能的数值不具有绝对意义, 只具有相对意义. 所以, 必须先设定一个电势能为零的参考系统. 当物理系统内的每一个点电荷都互相分开很远(分开距离为无穷远), 都相对静止不动时, 这物理系统通常可以设定为电势能等于零的参考系统. 假设一个物理系统里的每一个点电荷, 从无穷远缓慢地被迁移到其所在位置, 总共所做的机械功为, 则这物理系统的电势能U 为.W U =⎰⋅='0'0aa l d E q W在这过程里, 所涉及的机械功W, 不论是正值或负值, 都是由这物理系统之外的机制赋予, 并且, 缓慢地被迁移的每一个点电荷, 都不会获得任何动能. 如此计算电势能, 并没有考虑到移动的路径, 这是因为电场是保守场, 电势能只跟初始位置与终止位置有关, 与路径无关. 电势在静电学里, 电势(electric potential)定义为处于电场中某个位置的单位电荷所具有的电势能. 电势又称为电位, 是标量. 其数值不具有绝对意义, 只具有相对意义, 因此为了便于分析问题, 必须设定一个参考位置, 称为零势能点. 通常, 一个明智的选择是将无穷远处的电势设定为零. 那么, 电势可以定义如下:假设检验电荷从无穷远位置, 经过任意路径, 克服电场力, 缓慢地移动到某位置, 则在这位置的电势, 等于因迁移所做的机械功与检验电荷量的比值.⎰⋅=='0'0a aa l d E q W u在国际单位制里, 电势的度量单位是伏特(V olt), 是为了纪念意大利物理学家亚历山德罗·伏打(Alessandro V olta)而命名.点电荷系产生的电场中, 某点的电势是各点电荷单独存在时, 在该点产生的电势的代数和∑==ni i a u u 1⎰∞⋅=aa l d E u电势与电场强度的积分和微分关系式⎰⋅='0'aa l d E udl duE l -=;⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=k z u j y u i xu E导体的静电平衡静电平衡是指导体中的自由电荷(通常为带负电荷电的电子)所受到的力达到平衡而不再做定向运动的状态. 处在静电平衡下的导体, 为一个等势体, 其表面为等势面. 导体内部的电场强度处处为零, 导体表面上任意一点场强的方向与表面垂直, 大小与该处的电荷面密度成正比.n E surface 0εσ=电容在电路学里, 给定电势差, 电容器储存电荷的能力, 称为电容(capacitance), 标记为C. 采用国际单位制, 电容的单位是法拉(farad), 标记为F.平行板电容器是一种简单的电容器, 是由互相平行、以空间或介电质隔离的两片薄板导体构成. 假设这两片导板分别载有负电荷与正电荷, 所载有的电荷量分别为-Q 、+Q, 两片导板之间的电势差为V , 则这电容器的电容为VQ C =1法拉等于1库仑每伏特, 即电容为1法拉的电容器, 在正常操作范围内, 每增加1伏特的电势差可以多储存1库仑的电荷.课后习题:10. 1 (1)(2)(3)(4)(5); 10. 2 (1)(2)(4)(5)(7); 建议作业题:10. 4;10. 8(此题为10. 4的延伸);10. 13(类似加深难度的有10. 21);10. 17(可作为填空);10. 18(类似加深难度的有10. 24);10. 33(此题为10. 13的延伸);10. 35(此题为10. 21的延伸);10. 41;10. 4210.1 选择题(1)真空中两平行带电平板相距为d , 面积为S , 且有d 2<<S , 带电量分别为q +和q -, 两板间的作用大小为[D](A)2204q F d πε= (B)20q F S ε= (C)202q F S ε= (D)202q F S ε=解析:平板电容器由两个彼此靠得很近的平行极板(设为A 和B )所组成,两极板的面积均为S ,设两极板分别带有q +,q -的电荷,于是每块极板的电荷密度为Sq=σ。

忽略极板的边缘效应,把两极板间的电场看成是均匀电场,由高斯定理可得两板间场强为Sq E εεσ==。

由εS qdEd Edl U BA===⎰。

再根据U Q C =得到d S C ε=。

平板电容器的电容与极板的面积S 成正比,与极板间的距离d 成反比,电容是否带电无关,只与电容器本身的结构形状有关。

电场强度SqE 0ε=,某电荷产生的电场不会对它自己施以静电力,所以计算一块极板对另一块极板的电力时,电场不是E 。

Eq F =(2)如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点q’,若将q’移至B 点,则[C](A)穿过S 面的电通量改变,P 点的电场强度改变 (B)穿过S 面的电通量改变,P 点的电场强度不变 (C)穿过S 面的电通量不变,P 点的电场强度改变 (D)穿过S 面的电通量不变,P 点的电场强度不变(3)下列说法正确的是[B](A)电场强度不变的空间,电势必为零 (B)电势不变的空间,电场强度必为零 (C)电场强度为零的地方电势必定为零 (D)电势为零的地方电场强度必定为零 (E)电势越大的地方电场强度必定越大 (F)电势越小的地方电场强度必定越小(4)如图所示,在带电体A 旁有一不带电的导体壳B ,C 为导体壳空腔内的一点,则下列说法正确的是[B](A)带电体A 在C 点产生的电场强度为零(B)带电体A 与导体壳B 在外表面的感应电荷在C 点所产生的合电场强度为零 (C)带电体A 与导体壳B 在内表面的感应电荷在C 点所产生的合电场强度为零 (D)导体壳B 在内外表面的感应电荷在C 点所产生的合电场强度为零(5) (6)10.2 填空题(1)电量和符号都相同的三个点电荷q 放在等边三角形的顶点上,为了不让它们由于斥力的作用而散开,可在三角形的中心放一符号相反的点电荷q ',则的电量应为q 330221041r r q q F πε=(2)边长为a 的正六边形的六个顶点都放有电荷,如图所示。

则正六边形中心O 处的电场强度大小为202a q πε(3)(4)一半径为R 的均匀带电圆环,带电量为q (q < 0),另有两个均带正电荷Q 的点电荷位于环的轴线上,分别在环的两侧,它们到环心的距离都等于环的半径R 。

则当此电荷系统处于平衡时,Q :q =2()232241xRqxE +=πε,0qF E =;()()220232224141R Q RRQqRπεπε=+,即得结果。

(5)如图,无限大平板导体放在电场强度0E 的均匀电场中,导体两侧板面A 、B 均与电场线垂直,则A 、B 板面上的电荷面密度分别为A σ= ,B σ= 。

00E ε-,00E ε+(7)两个电容器的电容之比C 1:C 2=1:2,把它们串联起来接电源充电,它们的电场能量只比W 1:W 2= ,如果并联起来接电源充电,则它们的电场能量只比W 1:W 2= 。

2:1;1:210.4一长为l 的均匀带电直导线,其电荷线密度为λ。

试求导线延长线上距离近端为a 处一点的电场强度。

()2041x a l dq dE -+=πε()2041x a l dx-+=λπε()()a l a lx a l dxE l+=-+=⎰λπελπε00204141()ia l a lE +=λπε04110.8一长为l 的带电细导体棒,沿x 轴放置,棒的一端在原点。

相关文档
最新文档