大学物理2期末复习

合集下载

大学物理II(期末考试)

大学物理II(期末考试)

⼤学物理II(期末考试)⼀、选择题(共 20 分每题 2 分)1、关于⾼斯定理的理解有下⾯⼏种说法,其中正确的是( D ) (A) 如果⾼斯⾯上场强处处为零,则该⾯内必⽆电荷; (B) 如果⾼斯⾯内⽆电荷,则⾼斯⾯上场强处处为零; (C) 如果⾼斯⾯上场强处处不为零,则⾼斯⾯内必有电荷; (D) 如果⾼斯⾯内有净电荷,则通过⾼斯⾯的电通量必不为零。

2、把轻的正⽅形线圈⽤细线挂在载流直导线AB 的附近,两者在同⼀平⾯内,直导线AB 固定,线圈可以活动。

当正⽅形线圈通以如图所⽰的电流时线圈将( C )(A) 发⽣转动,同时靠近导线AB ; (B) 发⽣转动,同时离开导线AB ; (C) 不转动,靠近导线AB; (D) 离开导线AB。

3、⼀个圆形线环,它的⼀半放在⼀分布在⽅形区域的匀强磁场中,另⼀半位于磁场之外,如图所⽰。

磁感强度的⽅向垂直指向纸内。

欲使圆线环中产⽣逆时针⽅向的感应电流,应使( C ) (A) 线环向右平移; (B)线环向上平移; (C) 线环向左平移;(D)磁场强度减弱。

4、在双缝⼲涉实验中,设双缝⽔平且到单⾊光源距离相等。

若将光源S向下稍微移动偏离轴线位置,其它条件不变,则屏上⼲涉条纹( B ) (A) 向下移动,间距不变; (B) 向上移动,间距不变; (C) 向下移动,间距增⼤;(D) 向上移动,间距增⼤.5、⼀束平⾏单⾊光垂直⼊射在光栅上,当k=3、6、9 等级次的主极⼤均不出现时,光栅常数(a 为透光部分宽度,b 为遮光部分宽度)应满⾜下⾯哪个条件 (B ) (A) a+b=3b ; (B) a+b=3a; (C) a+b=6b ;(D) a+b=6a。

6、光强为I 0的⾃然光垂直通过两个偏振⽚,它们的偏振化⽅向之间的夹⾓α=60°。

设偏振⽚没有吸收,则出射光强I 与⼊射光强I 0之⽐为( C )B(A)41; (B)43; (C)1; (D)3。

7、天狼星的温度约为11000℃.由维恩位移定律计算其辐射峰值的波长为( A )(K m b ??=-310898.2) (A) 257nm ;(B) 263nm ;(C) 32.669m ;(D) 31.878m 。

大学海洋科学专业《大学物理(二)》期末考试试题 附解析

大学海洋科学专业《大学物理(二)》期末考试试题 附解析

大学海洋科学专业《大学物理(二)》期末考试试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。

2、一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B的大小为___________;铁芯中的磁场强度H的大小为___________ 。

3、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。

如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。

4、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。

抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。

()5、将热量Q传给一定量的理想气体:(1)若气体的体积不变,则热量转化为_____________________________。

(2)若气体的温度不变,则热量转化为_____________________________。

(3)若气体的压强不变,则热量转化为_____________________________。

6、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。

7、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。

大学物理下册知识点总结(期末)

大学物理下册知识点总结(期末)

大学物理下册学院:姓名:班级:一、气体的状态参量:用来描述气体状态特征的物理量。

气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。

垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。

单位 Pa(2)体积V:从几何角度来描写状态。

分子无规则热运动所能达到的空间。

单位m 3(3)温度T:从热学的角度来描写状态。

表征气体分子热运动剧烈程度的物理量。

单位K。

二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV R TM'=;P nkT=8.31JR k mol=;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=四、理想气体压强公式:23ktp nε=212ktm vε=分子平均平动动能五、理想气体温度公式:21322ktm v kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。

2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。

5.一个分子的平均动能为:2ki kT ε=五. 理想气体的内能(所有分子热运动动能之和) 1.1m ol 理想气体2i E R T =5.一定量理想气体()2i m E RT Mνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。

大学基础教育《大学物理(二)》期末考试试卷 含答案

大学基础教育《大学物理(二)》期末考试试卷 含答案

大学基础教育《大学物理(二)》期末考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、理想气体向真空作绝热膨胀。

()A.膨胀后,温度不变,压强减小。

B.膨胀后,温度降低,压强减小。

C.膨胀后,温度升高,压强减小。

D.膨胀后,温度不变,压强不变。

2、气体分子的最可几速率的物理意义是__________________。

3、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。

4、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。

(填“正比”或“反比”)。

5、两列简谐波发生干涉的条件是_______________,_______________,_______________。

6、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。

7、如图,在双缝干涉实验中,若把一厚度为e、折射率为n的薄云母片覆盖在缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O处的光程差为_________________。

8、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。

如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。

9、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。

大学物理2-2总复习

大学物理2-2总复习


[分析] B
0 I
2R
B
0 I (cos 1 cos 2 ) 4a
B
0 I
2R

0 I 2R
2、一无限长载流直导线,通有电流 I,弯成如图形状。设 各线段皆在纸面内,则P 点磁感应强度B 的大小为 3 0 I 8a I
[分析] B
4a
0

(cos 1 cos 2 )
0 I B (cos 1 cos 2 ) 4a
B
0 I
2R
1、无限长直导线在P 处弯成半径为R 的圆,当通以电流 I R 时,则在圆心O点的磁感应强度大小等于 I I I O A) 0 B) 0 C )0 1 0 1 2 R 4R 2 P 2 2 0 I 0 I 1 1 2 D) (1 ) E) (1 ) 2R 4R
合面上场强E处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零.
E d S 0故闭
S
答 (1) 正确.
(2) 错误,虽然有 E d S 0 ,
Sቤተ መጻሕፍቲ ባይዱ
-q +q S
但本题中闭合面上各点场强均不为零。
(3)错误,通过整个闭合面的电场强度通量为零,而通 过任一面元的电场强度通量不一定为零(本题中任一面元 上都不为零)。
上底 下底
2 0 ③电荷分布是球对称
E
S
Φ E d S E 4r 2
E
E
Q 4 r 2
图示闭合面包围了两个等量异号点电荷±q.下列说法是 否正确?如有错误请改正. (1) 高斯定理 E d S q / 0 成立. S (2) 因闭合面内包围净电荷∑q i=0,得到

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。

2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。

3、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。

现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。

4、两列简谐波发生干涉的条件是_______________,_______________,_______________。

5、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。

6、动方程当t=常数时的物理意义是_____________________。

7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。

8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。

9、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。

10、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()二、名词解释(共6小题,每题2分,共12分)1、能量子:2、受激辐射:3、黑体辐射:4、布郎运动:5、熵增加原理:6、瞬时加速度:三、选择题(共10小题,每题2分,共20分)1、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程()。

大学物理2期末考试复习题

大学物理2期末考试复习题

11章10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I ab ba d d m +-+=-=⎰⎰++μμμΦ(2)t Ib a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅=ϖϖ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图13章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) 3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.14章13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .第五章5-7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5-8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5-11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5-11图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 5-16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

大学物理A2期末总复习题及答案

大学物理A2期末总复习题及答案

大学物理A2期末总复习题及答案一、大学物理期末选择题复习1.一个质点在做圆周运动时,则有()(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B2.如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A) g sin θ(B) g cos θ(C) g tan θ(D) g cot θ答案D3.对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是()(A) 只有(1)是正确的(B) (1) (2)是正确的(C) (1) (3)是正确的 (D) (2) (3)是正确的答案C4.一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:()(A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍答案B5.一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿x 轴的分量是: ( )(A) 0(B) ()()2/32220/4/z y x Ixdl ++-πμ(C) ()()2/12220/4/z y x Ixdl ++-πμ(D)()()2220/4/z y x Ixdl ++-πμ答案B6.图为四个带电粒子在O点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片. 磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是( )(A) Oa (B) Ob(C) Oc (D) Od答案C7.下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零答案B8.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C9. 用水平力N F 把一个物体压着靠在粗糙的竖直墙面上保持静止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)今使线圈平面保持竖直,则线圈所受的磁力矩为多少.
(2)假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.
解:1.(1)Pm=IS=Ia2
方向垂直线圈平面.
线圈平面保持竖直,即Pm与B垂直.有
Mm=Pm×B
Mm=PmBsin(/2)=Ia2B
=9.4×10-4mN
(2)平衡即磁力矩与重力矩等值反向
在平面②的上方向左,在平面②的下方向右.
(1)两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J
(2)两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0
练习九安培力
三、计算题
1.一边长a=10cm的正方形铜导线线圈(铜导线横截面积S=2.00mm2,铜的密度=8.90g/cm3),放在均匀外磁场中.B竖直向上,且B=9.40103T,线圈中电流为I=10A .线圈在重力场中求:
解:1.取窄条面元dS=bdr,
面元上磁场的大小为
B=0I/(2r),面元法线与磁场方向相反.有
1=
2=
1/2=1
2.半径为R的薄圆盘均匀带电,总电量为Q.令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.
解;2.在圆盘上取细圆环电荷元dQ=2rdr,
解得1=4=(Q1+Q2)/(2S)=2.66108C/m2
2=3=(Q1Q2)/(2S)=0.89108C/m2
两板间的场强E=2/0=(Q1Q2)/(20S)
V=UA-UB
=Ed=(Q1Q2)d/(20S)=1000V
四、证明题
1.如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.
[=Q/(R2) ],等效电流元为
dI=dQ/T=2rdr/(2/)=rdr
(1)求磁场,电流元在中心轴线上激发磁场的方向沿轴线,且与同向,大小为
dB=0dIr2/[2(x2+r2)3/2]=0r3dr/[2(x2+r2)3/2]
=
=
=
(2)求磁距.电流元的磁矩
dPm=dIS=rdrr2=r2dr
=R4/4=QR2/4
U2=
=Q/(40rr)Q/[40r(R+d)]+Q/[40(R+d)]
=480V
ቤተ መጻሕፍቲ ባይዱ当r=25cm<R1时
U3= =Q/(40r)=360V
(3)在介质的内外表面存在极化电荷,
Pe=0E=0(r1)E=Pe·n
r=R处,介质表面法线指向球心
=Pe·n =Pecos=0(r1)E
q=S=0(r1) [Q/(40rR2)]4R2
练习十洛仑兹力
三、计算题
1.如图14.6所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i(即单位宽度上通有的电流强度)
(1)试求板外空间任一点磁感强度的大小和方向.
(2)有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向向外运动.若不计粒子重力.求:
(A)带电粒子最初至少在距板什么位置处才不与大平板碰撞.
解:1.(1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有
4r2D=q0i
当r=5cm<R1,q0i=0得D1=0,E1=0
当r=15cm(R1<r<R1+d)q0i=Q=1.0×108C
得D2=Q/(4r2)=3.54×108C/m2
E2=Q/(40rr2)=7.99×103N/C
方向沿y轴正向
2.设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反.求:
(1)载流平面之间的磁感强度;
(2)两面之外空间的磁感强度.
解;2.两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为B1=0J/2
在平面①的上方向右,在平面①的下方向左;
电流②在空间产生的磁场为B2=0J/2
dB=0NIsin2d/(R)
=0NI/(4R)
练习七毕奥—萨伐尔定律(续)磁场的高斯定理
三、计算题
1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图11.6所示,两个回路与长直载流导线在同一平面内,且矩形回路的一边与长直载流导线平行.求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.
练习二静电场中的电介质
三、计算题
1.如图6.6所示,面积均为S=0.1m2的两金属平板A,B平行对称放置,间距为d=1mm,今给A,B两板分别带电Q1=3.54×10-9C,Q2=1.77×10-9C.忽略边缘效应,
求:(1)两板共四个表面的面电荷密度1,2,3,4;
(2)两板间的电势差V=UA-UB.
静电场中的导体答案
解:2.B球接地,有UB=U=0,UA=UBA
UA=(Q+QB)/(40R3)
UBA=[QB/(40)](1/R21/R1)
得QB=QR1R2/(R1R2+R2R3R1R3)
UA=[Q/(40R3)][1+R1R2/(R1R2+R2R3R1R3)]
=Q(R2R1)/[40(R1R2+R2R3R1R3)]
练习八安培环路定律
三、计算题
1.如图12.5所示,一根半径为R的无限长载流直导体,其中电流I沿轴向流过,并均匀分布在横截面上.现在导体上有一半径为R的圆柱形空腔,其轴与直导体的轴平行,两轴相距为d.试求空腔中任意一点的磁感强度.
解:1.此电流可认为是由半径为R的无限长圆柱电流I1和一个同电流密度的反方向的半径为R的无限长圆柱电流I2组成.
I1=JR2I2=JR2J=I/[(R2R2)]
它们在空腔内产生的磁感强度分别为
B1=0r1J/2B2=0r2J/2
方向如图.有
Bx=B2sin2B1sin1=(0J/2)(r2sin2r1sin1)=0
By=B2cos2+B1cos1
=(0J/2)(r2cos2+r1cos1)=(0J/2)d
所以B=By=0dI/[2(R2-R2)]
Mm=PmBsin(/2-)=Ia2Bcos
MG= MG1+MG2+MG3
=mg(a/2)sin+mgasin+mg(a/2)sin
=2(Sa)gasin=2Sa2gsin
Ia2Bcos=2Sa2gsin
tan=IB/(2Sg)=0.2694
=15
2.如图13.5所示,半径为R的半圆线圈ACD通有电流I2,置于电流为I1的无限长直线电流的磁场中,直线电流I1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I1的磁力.
mv2/2=mgy,
得v=(2gy)1/2.
练习十一磁场中的介质
三、计算题
1.一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为,电场强度为E,方向如图15.6所示,平板的相对磁导率为r1,平板两侧充满相对磁导率为r2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.
解:1.设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有
R=mv/qB=2mv/(0iq)
(3)经一个周期时间,粒子回到初始位置.即
t=T=2R/v=4m/(0iq)
2.一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.
解:2.洛伦兹力Qv×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有
练习一静电场中的导体
三、计算题
1.已知某静电场在xy平面内的电势函数为U=Cx/(x2+y2)3/2,其中C为常数.求(1)x轴上任意一点,(2)y轴上任意一点电场强度的大小和方向.
解:.Ex=U/x
=C[1/(x2+y2)3/2+x(3/2)2x/(x2+y2)5/2]
= (2x2y2)C/(x2+y2)5/2
=(r1)Q/r=0.8×108C
r=R+d处,介质表面法线向外
=Pe·n =Pecos0=0(r1)E
q=S=0(r1)[Q/(40r(R+d)2]4(R+d)2
=(r1)Q/r=0.8×108C
2.两个相距很远可看作孤立的导体球,半径均为10cm,分别充电至200V和400V,然后用一根细导线连接两球,使之达到等电势.计算变为等势体的过程中,静电力所作的功.
dI=Idx/(2a)
dB=0dI/(2r)
=0Idx/(4ar)
dBx=dBcos=[0Idx/(4ar)](a/r)
=0Idx/(4r2)=0Idx/[4(x2+a2)]
dBy=dBsin=0Ixdx/[4a(x2+a2)]
=[0I/(4)](1/a)arctan(x/a) =0I/(8a)
=[0I/(8a)]ln(x2+a2) =0
Ey=U/y
=Cx(3/2)2y/(x2+y2)5/2=3Cxy/(x2+y2)5/2
x轴上点(y=0)Ex=2Cx2/x5=2C/x3Ey=0
E=2Ci/x3
y轴上点(x=0)Ex=Cy2/y5=C/y3Ey=0
E=Ci/y3
2.如图5.6,一导体球壳A(内外半径分别为R2,R3),同心地罩在一接地导体球B(半径为R1)上,今给A球带负电Q,求B球所带电荷QB及的A球的电势UA.
当r=25cm(r>R1+d)q0i=Q=1.0×108C
相关文档
最新文档