风电叶片基础知识之复合材料篇一
风力发电机叶片复合材料性能分析【论文】

风力发电机叶片复合材料性能分析摘要:风力发电机叶片是风力机捕获、利用风能的重要部件,故为了优化风力发电机的性能,现阶段已经有越来越多的研究者重视起对风力发电机叶片的性能探索。
由此本文就对风力发电机叶片中复合材料性能进行分析,不仅阐述了风力发电机及其叶片的概念与重要作用,还通过利用真空灌注工艺以及如巴氏硬度计、万能试验机等设备开展了风机叶片的材料性能实验。
关键词:风力发电机叶片;复合材料;性能分析现代社会中可持续发展的环保理念不断普及,诸如太阳能、潮汐能、风能等可再生能源逐渐占据了更重要的地位。
由此现阶段的电力企业中也逐渐改变了过去仅依靠火力发电的模式,相关的风力发电机逐渐拥有了更为广泛的应用空间。
而作为风力发电机核心技术,风机叶片技术也同样受到了更多人的注重,由此本文就对风机叶片的构成、性能、结构等方面进行了深入探索。
1.风力发电机叶片作为风力发电机中的重要部件之一,风机叶片通常可占一架风机总成本的15%到20%,这主要是由于风机叶片的质量常会影响到风机性能及其相关效益,根据相关数据显示,风机叶片每增加6%的长度,风机对风能的利用率即可提升12%左右。
一般来说,风机叶片主要是由外壳、腹板、梁帽、挡雨环、人孔盖等结构组成,再经由相关结构的结合后,风机叶片常能够具备良好的力学性能和防水性,而且相关结构的连接也在一定程度上保障了风机叶片的质量。
并且随着现阶段复合材料在风机叶片制造中的广泛应用,风机叶片的性能、质量等也得到了良好提高。
而现阶段一个制造完成的风机叶片,其中复合材料可占整个叶片90%及以上的比重,故现代的风机叶片通常不仅具备有较轻的重量,其耐腐蚀、抗疲劳等性能也较为优越,相关特点往往来源于复合材料的特性。
同时,随着复合材料的多样化发展,如夹层结构复合材料、先进复合材料等材料的应用都在不同程度上提高了风机叶片的质量。
此外,现阶段在制造风力发电机叶片时,也常会根据所制造叶片部位的不同而使用不同种类的复合材料,如在叶片外壳的制造中常会选择玻璃纤维增强树脂作为原材料,而在叶尖、叶片主梁的制造中则会选用具备更高强度的碳纤维材料,只有叶片前缘、后缘和抗剪腹等处则常会以夹层结构复合材料为主要原材料 [1] 。
风机叶片材料

风机叶片材料、设计与工艺简介复合材料风机叶片是风力发电系统的关键动部件,直接阻碍着整个系统的性能,并要具有长期在户外自然环境条件下利用的耐候性和合理的价钱。
因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。
阻碍风机叶片相关性能的因素要紧有原材料、风机叶片设计及叶片的制造工艺三种。
一风机叶片的原料目前的风力发电机叶片大体上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E-玻璃纤维、S-玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。
关于同一种基体树脂来讲,采纳玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采纳碳纤维增强的复合材料制造的叶片的性能。
可是,碳纤维的价钱目前是玻璃纤维的10左右。
由于价钱的因素,目前的叶片制造采纳的增强材料要紧以玻璃纤维为主。
随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中慢慢显现性能方面的不足。
为了保证叶片能够平安的承担风温度等外界载荷,风机叶片能够采纳玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,那么利用碳纤维作为增强材料。
如此,不仅能够提高叶片的承载能力,由于碳纤维具有导电性,也能够有效地幸免雷击对叶片造成的损伤。
风电机组在工作进程中,风机叶片要经受壮大的风载荷、气体冲洗、砂石粒子冲击、紫外线照射等外界的作用。
为了提高复合材料叶片的承担载荷、耐侵蚀和耐冲洗等性能,必需对树脂基体系统进行精心设计和改良,采纳性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。
同时,为了提高复合材料叶片在恶劣工作环境中长期利用性能,能够采纳耐紫外线辐射的新型环氧树脂系统。
二风机叶片的设技以最小的叶片重量取得最大的叶片面积,使得叶片具有更高的捕风能力,叶片的优化设计显得十分重要,尤其是符合空气动力学要求的大型复合材料叶片的最正确外形设计和结构优化设计的重要性尤其突出,它是实现叶片的材料/工艺有效结合的软件支撑。
复合材料风电辅材及工艺

复合材料风电叶片辅材及工艺By 2010年,可以说是我国海上风电开始有序发展的“元年”。
对于当前业界高度关注的海上风电特许权招标问题,国家能源局可再生能源司副司长史立山对记者表示,加快海上风电建设的条件已基本具备,海上风电将是今后风电发展的重点之一。
由此可见,未来风电项目对风电叶片的要求将会更高,更轻质的大型复合材料叶片将会受到市场的青睐。
复合材料的市场机遇风机叶片用主要材料体系包括各种增强材料、基体材料、夹层泡沫、胶粘剂和各种辅助材料等。
增强材料对于同一种基体树脂来讲,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能。
但是,碳纤维的价格目前是玻璃纤维的10倍左右。
由于价格的因素,目前的叶片制造采用的增强材料主要以玻璃纤维为主。
因此玻璃纤维仍是风机叶片制造未来主要的增强材料。
随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中逐渐出现性能方面的不足。
为了保证叶片能够安全的承担风温度等外界载荷,风机叶片可以采用玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。
这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成的损伤。
因此碳纤维在中国无法突破技术瓶颈的前提下,这种与玻璃纤维混搭增强也是一个重要市场。
其他增强材料方面,我国竹纤维增强风电叶片已经实现批量生产,因此天然纤维也将分得风电叶片市场的一杯羹。
基体材料目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。
为了提高复合材料叶片的承担载荷、耐腐蚀和耐冲刷等性能,必须对树脂基体系统进行精心设计和改进,采用性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。
多轴向经编复合材料在风电叶片制造中的应用

多轴向经编复合材料在风电叶片制造中的应用摘要:风力作为我们国家非常重要的能源之一,一直以来为我们的国家发展贡献了很多力量,尤其我们国家目前大力发展清洁能源,风力发电越发引起人们的重视,那么如何快速地推动风电叶片制造,成为了我们国家发展风力发电行业的重中之重,多轴向经编复合材料便给我们国家风力发电行业,尤其是风力发电叶片的制造提高了一个新的思路。
关键词:风能;风力发电;叶片制造研发;多轴向经编复合材料一、风力发电市场前景一直以来传统的火力发电的模式一直我国主要的发电方式。
并且我们国家地大物博,煤炭保有量,天然气保有量等都较多,可以支撑起我们国家的火力发电事业。
但是长期以来的火力发电,严重影响着我们国家的生态环境。
我们国家大片的树林被砍伐,一片片青山,成为平地,泥石流,雾霾,沙尘暴,臭氧层被破坏等等各种自然灾害,让我们了解到火机发电的弊端。
那就是对生态的破坏几乎是毁灭性的,严重影响了我国居民的身心健康。
在这样的大背景下,我国政府开始大力发现新型能源,同时也大力开发风力发电。
对于风力发电我们国家出台了各种扶持政策,对于表现较好的企业会给与扶持资金,这样的政策扶持和资金支持,将营造一个良好的风力发电的成长环境,所以就此而言,风力发电可谓是前景无限。
我国优越的地理环境也为风力发电提供了更多的可能,我们可以在不同的位置选择最适合的发电场所,满足人民用电的需求。
二、多轴向经编复合材料的优势2.1使用多轴向经编复合材料,可以减轻叶片重量目前我们国家的风力发电机的叶片普遍使用的都是金属材质,所以导致了叶片的重量很大,增加了叶片的运输难度,同时也不利于叶片的安装和使用,但是使用多轴向经编复合材料,可以很显著的减轻叶片的重量,更加有利于安装,同时也大大节约了人力成本,并且对于叶片的正常使用没有任何影响。
2.2使用多轴向经编复合材料,可以显著提高发电效率使用多轴向经编复合材料,有效的减轻了叶片的重量,这样可以让我们在进行叶片的设计过程中,将更多的精力应用到叶片的结构中,从而可以更加显著的捕捉风能,并且使用多轴向经编复合材料,减轻质量以后,风力的推动也可以使使叶片转动的圈数大大的增加,从而提高了电能的产出,节约了大量的风能。
复合材料在风力机叶片上的应用

复合材料在风力机叶片上的应用摘要:目前,我国电力事业发展迅速,风力发电的快速发展也推动了相关技术水平的提高。
文章主要对复合材料在风力机叶片上的应用展开分析与研究。
关键词:复合材料;风力机;风力叶片;材料应用引言在风能利用过程中符合材料风力机片叶是主要部件之一,铺层结构相对较为复杂,叶片整体结构性能会在一定程度上受到纤维布所占铺层厚度影响,在设计不同方向纤维布铺设层厚度过程中应该保证其能够实现最优化处理。
在风力机的运行过程中,叶片受到周围流场的影响产生变形,这一变形又会使流场发生改变,这种流体与固体之间的相互作用会对风力机的正常运转产生极大的影响,因此分析风力机叶片的流固耦合问题十分重要。
1风电叶片的结构及常见缺欠风力叶片是复合材料制成的薄壳结构,一般由根部、外壳和加强梁等3部分组成,复合材料在整个风电叶片中的重量一般占到90%以上。
复合材料叶片最初采用的是廉价的玻璃纤维增强不饱和聚酯树脂体系,直到现在其仍是大部分叶片的制造材料。
随着叶片长度的不断增大,自身重量的不断增加,这种体系在某些场合已不能满足要求,于是碳纤维增强结构逐渐得到应用。
对于玻璃纤维复合材料叶片,一般采用开模工艺,尤其手糊黏接方式较多,其本身在加工过程中会产生气孔、干纤、褶皱、纤维断裂以及夹杂等缺欠,在与梁的合模过程中还会产生缺胶、脱黏等缺欠。
2叶片铺层结构模型目前,风力机叶片主要由增强玻璃纤维布材料复合而成,其目的是在保证叶片强度和刚度的前提下,减轻叶片的质量和载荷。
本文以某1.5MW叶片为例对叶片的结构模型和强度计算方法进行研究,1.5MW叶片的长度为38m,重量为7.9t,所用的复合材料及其规格参数和力学性能如表1所示,其中,Vf为纤维的体积分数,Ex为纤维主方向弹性模量,Ey为纤维次方向弹性模量,νxy为纤维面内泊松比,Gxy为纤维面内剪切弹性模量。
表1 材料力学性能Table1Mechanicalpropertiesofthebladematerial叶片各截面主要采用主梁梁帽、腹板、翼面,以及前、后缘增强的基本结构形式,其中主梁是主要构件,承受大部分的挥舞和摆振方向的载荷,并将其传递到叶片根部。
复合材料在风机叶片中的应用及能力认可现状

摘要本文简述了风机叶片用复合材料中不同纤维增强复合材料的优缺点,以及未来增强体和基体应用的发展趋势,同时总结了CNAS认可的风机叶片以及叶片中材料性能检测的认可现状。
认为碳纤维和玻璃纤维的混杂纤维、高性能纤维等增强体,以及聚氨酯树脂、热塑性树脂或可回收树脂等基体是未来风机叶片用复合材料的研究方向;同时通过总结分析风机叶片检测实验室在认可过程中的常见问题,为后续相关实验室认可提供了关注点。
风能是可再生的清洁能源,风力发电作为一种优质的发电方式,能够有效改善电力行业对石油、煤炭等不可再生能源的依赖,对于生态环境保护和适应时代发展具有重要的意义。
风力发电非常环保,且风能蕴量巨大,因此日益受到世界各国的重视。
根据国家能源局的统计数据显示,截止到2023年7月底我国风电装机容量约3.9亿kW,同比增长14.3%。
随着风机单机容量的不断扩大,风机叶片的长度也要求不断增加。
风力机叶片作为风能发电机中的核心部件,其良好的设计、可靠的质量和优越的性能是保证机组正常运行的重要因素。
叶片在工作中要承受多种外部环境的影响,因此要求叶片材质具有良好的强度、刚度和韧性以及抗风沙、抗冲击、耐腐蚀等性能。
目前,纤维增强复合材料在风力机叶片上得到了广泛的应用,其质量轻、强度高、耐久性好,已成为大型风力发电机叶片的首选材料。
1玻璃钢复合材料玻璃纤维增强热固性树脂复合材料,俗称玻璃钢,是一种以玻璃纤维或其制品为增强体,以热固性树脂为基体,并通过一定的成型工艺复合成的材料。
玻璃钢具有成本低、强度高、重量轻、耐腐蚀、易加工等特点,被广泛应用于风力发电机叶片的制造。
常见的玻璃纤维分为E型和S型,E型玻璃纤维也称无碱玻璃纤维,是一种硼硅酸盐玻璃,因其良好的电气绝缘性和机械性能,被大量用于生产玻璃钢。
S型玻璃纤维是一种特制的抗拉强度极高的硅酸铝-镁玻璃纤维,它的模量比E型玻璃纤维材料高出了18%;它的纤维拉伸强度为4600MPa,比E型玻璃纤维的3450MPa 增加了33%。
风电叶片材料(免费)

风电叶片材料(一):不饱和树脂1.不饱和聚酯树脂的定义人类最早发现的树脂是从树上分泌物中提炼出来的脂状物,如松香等,这是“脂”前有“树”的原因。
直到1906年第一次用人工合成了酚醛树脂,才开辟了人工合成树脂的新纪元。
1942年美国橡胶公司首先投产不饱和聚酯树脂,后来把未经加工的任何高聚物都称作树脂。
但是早就与“树”无关了。
树脂又分为热塑性树脂和热固性树脂两大类。
对于加热熔化冷却变固,而且可以反复进行的可熔的树脂叫做热塑性树脂,如聚氯乙烯树脂(PVC)、聚乙烯树脂(PE)等;对于加热固化以后不再可逆,成为既不溶解,又不熔化的固体,叫做热固性树脂,如酚醛树脂、环氧树脂、不饱和聚酯树脂等。
“聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。
这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯,这种不饱和聚酯溶解于有聚合能力的单体中(一般为苯乙烯)而成为一种粘稠液体时,称为不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。
因此,不饱和聚酯树脂可以定义为由饱和的或不饱和的二元酸与饱和的或不饱和的二元醇缩聚而成的线型高分子化合物溶解于单体(通常用苯乙烯)中而成的粘稠的液体。
2.不饱和聚酯树脂的特性不饱和聚酯树脂是一种热固性树脂,当其在热或引发剂的作用下,可固化成为一种不溶不融的高分子网状聚合物。
但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”(英文名Fiber Reinforced Plastics 简称FRP)。
“玻璃钢”的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。
以不饱和树脂为基材的玻璃钢(UPR-FRP)具有以下特性:1)耐腐蚀性能良好UPR-FRP是一种良好的耐腐蚀性材料,能耐一般浓度的酸、碱、盐类,大部分有机溶剂、海水、大气、油类,对微生物的抵抗力也很强,正广泛应用于石油、化工、农药、医药、染料、电镀、电解、冶炼、轻工等国民经济诸领域,发挥着其他材料无法替代的作用。
风机叶片复合材料

风机叶片复合材料连云港的中复连众复合材料集团有限公司,是一家集复合材料产品开发、设计、生产、服务于一体,以风力发电机叶片、玻璃钢管道、贮罐和高压气瓶、高压管道为主打产品的高新技术企业。
机缘巧合之下,我有幸简单参观到这个公司生产的风机叶片。
我第一次见到这些放置在长拖车上的长达40米的叶片时,我感到非常惊讶,刚好老师在课上播放了风机叶片安装过程的视频,更加激起了我的好奇心,很想知道它们是怎么生产出来的。
下面是我查阅的一些资料。
目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E-玻璃纤维、S-玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。
1玻璃纤维复合材料叶片玻璃纤维增强聚脂树脂和玻璃纤维增强环氧树脂是目前制造风机叶片的主要材料,E-玻纤则是主要的增强材料,研究表明,采用射电频率等离子体沉积去涂覆E-玻纤,可降低纤维间的微振磨损,其耐拉伸疲劳强度就可以达到碳纤维的水平。
但是,E2玻纤密度较大,随着叶片长度的增加,叶片的质量也越来越重,叶片越重,对发电机和塔座要求就越高,同时也影响到发电机组的性能和效率,因此,需要寻找更好材料以适应大型叶片发展的要求。
2碳纤维复合材料叶片研究表明,碳纤维(CF)复合材料叶片的刚度是玻璃纤维复合材料叶片的2~3倍,大型叶片采用碳纤维作为增强材料更能充分发挥其轻质高强的优点。
但由于其价格昂贵,限制了它在风力发电上的大规模应用。
因此,全球各大复合材料公司正在从原材料、工艺技术、质量控制等各方面进行深入研究,以求降低成本。
现在碳纤维轴已广泛应用于转动叶片根部,因为制动时比相应的钢轴要轻得多,但在发展更大功率风力发电装置和更长转子叶片时,采用性能更好的碳纤维复合材料势在必行。
3碳纤维/轻木/玻纤混杂复合材料叶片当叶片长度增加时,质量的增加要高于能量的取得,因此碳纤维或碳/玻混杂纤维的使用对抑制质量的增大是必要的。
在制造大型叶片时,采用玻纤、轻木和PVC相结合的方法可以在保证刚度和强度的同时减轻叶片的质量。