水蓄冷技术概述

合集下载

新技术专题 论文 水蓄冷技术 简述

新技术专题  论文  水蓄冷技术 简述

我眼中的节能新技术——水蓄冷技术的介绍摘要:介绍了中央空调水蓄冷的含义和节能耗能的原理。

指出了该技术存在的优缺点。

关键词:中央空调蓄冷技术;节能效果;优缺点分析。

Abstract : The meanings and principle of central air- conditioning water storage were introduced. The advantages and disadvantages of the technology were pointed out.Key words :central air-conditioning water storage technology;energy efficiency effect;analysis of advantages and disadvantages。

引言:日本是一个多地震且用地紧张的国家,许多建筑物的地下基础部分采用了双层板状结构,以此增加建筑的抗震能力,而对需空调用冷的建筑可充分利用这一地下空间,将其平面分成多个隔间作为水蓄冷装置,从而发展形成串连混合型水蓄冷空调系统。

在美国等一些国家多数采用垂直分层型水蓄冷装置,属于独立的结构设施,建于建筑物外的场所,也可根据具体条件与建筑物结构设计相结合设于其地下,或利用其管竖井,楼梯间等闲置空间。

空调水蓄冷技术的含义:(1)空调水蓄冷技术的含义空调水蓄冷顾名思义就是在晚上用电谷底时,中央空调主机运行,将冷冻水蓄存起来;待白天用电高峰时,不运行空调主机,用泵将蓄存起来的冷冻水抽出,在空调系统内循环。

(2)空调水蓄冷节能降耗的实际意义空调水蓄冷技术就是利用白天用电高峰时,往往电力供应比较紧张;而晚上用电谷底时,发电厂必须保证部分机组正常运行,这时的电力又是富余的,且不能储存,如果这些电不用掉,只能浪费。

通过水蓄冷项目,把可能浪费的电力资源利用起来,在白天用电高峰时尽量减少用电,形成节能效应;晚上环境温度比较低,冷却温度也相对较低,冷水机组运行效率较白天要高;同时电力部门为错开用电高峰和谷底,对谷底用电电价给予适当优惠,从而达到降低用电费用的效果。

水蓄冷实施条件和技术特点

水蓄冷实施条件和技术特点

水蓄冷实施条件和技术特点水蓄冷的实施条件水蓄冷是一种利用水的储热性质实现节能的技术,其实施需要满足以下条件:1.地下水资源充足:水蓄冷需要的是“冷水资源”,而地下水是理想的冷水来源,因为地下水的温度相对稳定,可以满足长期的供水需求。

因此,实施水蓄冷需要保证在该地区存在充足的地下水资源。

2.生产用水规模大:水蓄冷技术需要使用大量的水进行储热,因此需要有足够的生产用水规模来支持水蓄冷的运作。

如果规模过小,反而达不到节能的效果。

3.冷水负荷大:使用水蓄冷技术需要有较大的制冷需求,否则储存的冷水极易被闲置,无法发挥效果。

4.与冷却塔结合使用:水蓄冷技术需要与冷却塔技术相结合使用。

冷却塔可以将暖气体的热量传递到水中,使水温升高,从而实现储热的目的。

水蓄冷的技术特点水蓄冷技术是一种利用水的“储热性质”实现节能的技术,具有以下特点:1.适用范围广:水蓄冷技术可以适用于各种规模的建筑和工厂,在医院、超市、办公建筑、工厂等各个领域都可以使用。

2.节能效果显著:与传统的空调系统相比,使用水蓄冷技术可以实现最高60%的节能效果。

通过在夜间储存冷水,白天再将冷水供给空调系统使用,可以避免对电力系统的过度负荷。

3.维护成本低:使用水蓄冷技术需要投入的设备相对简单,且维护成本相对低廉。

水蓄冷系统的组成主要包括储冷水池、冷水管网、冷却塔、水泵等,维护成本比较低,且使用寿命长。

4.环保无污染:使用水蓄冷技术可以避免空调系统的臭氧破坏和对大气层的污染,因为水蓄冷技术中的压缩机、蒸发器等设备较少,几乎没有二氧化碳、硫化氢等有害气体的排放。

5.使用安全稳定:水蓄冷系统使用水作为储存介质,不存在燃气、电气等安全隐患。

而且水蓄冷技术由于采用水的冷媒进行制冷处理,不会因为冷热传递过程中的温度变化而存在误差,稳定性较高。

总之,水蓄冷技术可以实现节能、环保、使用安全稳定等多种优点,在今后的实际生活和生产中有着广阔的应用前景。

水蓄冷技术概述1

水蓄冷技术概述1

水蓄冷罐的串联形式
数据中心应用中,水蓄冷罐串联接入一般是用于空调系统的容灾备份, 蓄冷罐内的冷水持续流动以保证随时保有备用蓄冷量供应,蓄冷罐通 常采用承பைடு நூலகம்闭式罐形式。
水蓄冷罐的并联形式
在并联接入中,蓄冷罐既作为冷机的负荷端 (蓄冷模式),也作为末端负荷的供冷源(放 冷模式),根据不同状况切换,如下三页所示。
水蓄冷系统 大 4~6℃ 较低 较低 可利用现有系统冷源 技术要求低,运行费用较低 较高 可结合消防水池等现有建筑空间一 并使用,冬天可以作为蓄热系统使用
水蓄冷相比冰蓄冷在数据中心运用中的优势
水蓄冷系统可与原空调系统“无缝”连接,无需再额外配置蓄冷冷源或对 原系统用冷水机组进行调整; 水蓄冷系统的冷水温度与原系统的空调冷水温度相近,可考虑直接使用, 不需设额外的设备对冷水温度进行调整; 水蓄冷系统控制简单,运行安全可靠; 在出现紧急状况可及时投入使用,即可以考虑兼作容灾备份冷源使用。
实施水蓄冷的基本条件
水蓄冷和冰蓄冷的对比
项目 蓄冷槽容积 冷机冷冻水出水温度 冷机耗电 蓄冷系统初投资 蓄冷冷源 设计及运行 制冷性能系数COP 其他用途
冰蓄冷系统 小(仅为水蓄冷槽的10%~35%) 1~3℃ 较高 较高 需要能独立运行的制冰机组或双工况冷机 技术要求高,运行费用较高 低(比水蓄冷低10%~20%) 无
水蓄冷储水形式
迷宫式储水及其水路图
多水罐/水槽式储水
隔板法:类似自然分层式储水法, 在蓄水罐内部安装一个活动的柔性 膈膜或一个可移动的刚性隔板来实 现冷热水的分离,通常隔膜或隔板 为水平布置。这样的蓄水罐可以不 用散流器,但隔膜或隔板的初投资 和运行维护费用与散流器相比并不 占优势。
自然分层式储水法

水蓄冷技术

水蓄冷技术

水蓄冷技术一、所属行业:空调二、技术名称:水蓄冷技术三、适用范围:具有分时电价地区的医院、宾馆、商场、办公楼、住宅小区、工矿企业等空调系统和工艺用冷领域四、技术内容:1.技术原理水蓄冷中央空调系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源的空调系统2.关键技术蓄冷水箱的结构形式应能防止所蓄冷水和回流热水的混合,提高蓄冷水箱的蓄冷效率,增加蓄村冷水可用能量,因此如何降低冷温水界面间斜温层的厚度是技术的关键。

3.工艺流程五、主要技术指标:斜温层厚度控制在0.9米内,水箱完善度达95%以上六、技术应用现状:国内已经建成的水蓄冷空调项目超过50个,广西、北京、湖北等地的项目较多,其中由XX承建的ZZ的水蓄冷空调项目已被列为XX省研究级示范工程。

七、典型用户:XX精密陶瓷有限公司(电子行业),用于空调制冷。

改造前,两台制冷量100万kcal/h冷水机组白天12小时适时供冷,改造后,增加一台容积960立方的蓄冷槽,投资额85万元,夜间电力低谷期8小时开动两台冷水机组对蓄冷罐充冷,白天12小时以蓄冷罐对外供冷,冷水机组不运行。

运行效果:1、企业空调节电:12%;2、日运行费用节省:5608kWh×0.75元/kWh - 4908×0.3元= 2734元/天;3、年运行费用节省: 42万元。

投资回收期二年。

XX药业,用于区域供冷。

改造前空调总建筑面积30000平米,设计日最大冷负荷3208kW,扩建后空调总建筑面积45000平米,设计日最大冷负荷5197kW,增设1800立方蓄冷水槽,不增加冷水机组。

运行效果:水蓄冷改扩建与常规空调扩建比较,年运行费用节约34万元,投资增加43万元,不到二年即可回收多余投资。

八、推广前景和节能潜力:中国政府部门实行了电力供应峰谷不同电价政策,采用需求侧管理(DSM)的水蓄冷技术来达到削峰填谷,是缓解电力建设和新增用电矛盾的有效的解决途径之一。

水蓄冷的工作原理

水蓄冷的工作原理

水蓄冷的工作原理水蓄冷,也称水体蓄冷或水储冷),是指通过将冷水存放于水箱等设施中,再利用水箱的大容积、面积和水的比热、密度等优点,以调节室内温度的一种节能环保技术。

水蓄冷技术可以有效降低冷却负荷,减小空调系统的功率,降低空调系统的能耗,实现节能减排的目的。

工作原理水蓄冷系统主要由储水罐、水泵、冷却器、空气处理机等组成。

其工作原理如下:1.利用低峰期的夜间或周末等时段,以低电价电能,使用制冷机组,将水温降至2℃~4℃,并将其存放于储水罐中。

2.白天高峰期,将储水罐中的冷水通过水泵输送至冷却器中,使空气处理机吸入冷水,并经过冷却器的水帘式蒸发器进行空气冷却。

同时,空气处理机通过送风系统将冷却后的空气送入室内,形成凉爽的室内环境。

3.最后,冷却过的水再回流至储水罐中,等候下一个冷水储存周期的来临。

水蓄冷技术的优势1.降低空调系统的功率,缓解电力不足的压力。

2.节约能源,缩短能源回收期,具有较高的经济效益。

3.降低室内湿度与温度,营造舒适的工作和生活环境。

4.对于高层建筑的空气处理,其效果更佳,且能够节省空间。

5.可以与其他节能设备相结合,如太阳能板、地源热泵等,增强综合效益。

水蓄冷技术的应用目前,水蓄冷技术已被广泛应用于办公楼、购物中心、超市、酒店、医院、厂房等多个领域,成为节约能源的一项重要措施。

在未来,水蓄冷技术也将成为建筑节能领域的发展方向之一,提高空调效率,降低空调能耗,同时实现可持续发展,节能减排。

结语水蓄冷技术是以水体为冷源,以调节室内温度的一种节能环保技术。

其工作原理简单易懂,应用广泛。

此外,水蓄冷技术还具有较高的经济效益和环境优势,未来更是随着节能技术的迅速发展而得到迅速普及和发展。

劳特斯水蓄冷120...

劳特斯水蓄冷120...
15
改造项目的商业模式
用户: 零投资 零风险 高回报
劳特斯新能源公司: 承担所有技术、投资、风险
16
节能效益承诺模式:建造蓄冷系统的费用由客户投 资,蓄冷节约的电费为客户所有,节能公司承担蓄 冷系统节能效益的风险。按照合用能源管理的理念 ,节能公司通过承诺节约量等方式为客户承担节能 投资风险,并通过申报世界银行/GEF中国节能促 进项目二期担保机构(中国经济技术投资担保有限 公司)实施担保,客户得以高枕无忧的实现低投入 、高回报。
劳特斯新能源公司的技术优势主要在于:1。具有国内最丰 富的自然分层水蓄冷设计经验,国内比较大的水蓄冷项目 几乎全部是由我公司技术人员完成;2。拥有多项与水蓄冷 有关的实用新型和发明专利。
11
劳特斯新能源公司简介
❖ 致力于环境工程和节能技术开发的高科技公司,主 要提供:
大温差水蓄冷空调系统及常规中央空调改造 各种合同能源(费用)管理(EMC)服务
2台
冷冻水温度5.5/11.5℃
冷却水量900m3/h
20
冷却水温度32/38℃

1800m3/h,30m, 1450rpm
9台
900m3/h,30m,1450rpm 2台
1200m3/h,18m, 1450rpm
9台
600m3/h,18m,1450rpm 2台
2050m3/h,50m, 1450rpm
20
6.与冰蓄冷系统比较——缺点
❖ 实际案例中,由于冰蓄冷的蓄冷设备一般在多个 蓄冷槽内实现,设备之间需留有检修通道及开盖 距离,而且冰槽内有乙二醇及预留结冰时膨胀空 间,冰蓄冷的蓄水(冰)有效空间一般只是实际 占用空间的一小部分;大温差水蓄冷系统在一个 蓄冷槽内完成全部蓄冷和放冷过程,占用空间绝 大部分是有效的蓄冷空间。具体已投运的项目表 明,大温差水蓄冷的实际占用空间只略大于冰蓄 冷的实际占用空间。

水蓄冷资料

水蓄冷资料

水蓄冷资料1 水蓄冷的方法水蓄冷是利用水的显热实现冷量的储存。

因此,一个设计合理的蓄冷系统应通过维持尽可能大的蓄水温差并防止冷水与热水的混合来获得最大的蓄冷效率。

在水蓄冷技术中,关键问题是蓄冷罐的结构形式应能防止所蓄冷水与回流热水的混合。

为实现这一目的,目前常用的有以下几种方法:1.1 多蓄水罐方法将冷水的热水分别储存在不同的罐中,以保证送至负荷侧的冷水温度维持不变,多个蓄水罐有不同的连接方式,一种是空罐方式。

如图1a,它保持蓄水罐系统中总有一个罐在蓄冷或放冷循环开始时是空的。

随着蓄冷或放冷的进行,各罐依次倒空。

另一种连接方式是将多个罐串联连接或将一个蓄水罐分隔成几个相互连通的分格。

如图1b,图中示出蓄冷时的水流方向。

蓄冷时,冷水从第一个蓄水罐的底部入口进入罐中,顶部溢流的热水送至第二个罐的底部入口,依次类推,最终所有的罐中均为冷水;放冷时,水流动方向相反,冷水由第一个罐的底部流出。

回流热水从最后一个罐的顶部送入。

由于在所有的罐中均为热水在上、冷水在下,利用水温不同产生的密度差就可防止冷热水混合。

多罐系统在运行时其个别蓄水罐可以从系统中分离出来进行检修维护,但系统的管路和控制较复杂,初投资和运行维护费作较高。

1.2 迷宫法采用隔板把水蓄水槽分成很多个单元格,水流按照设计的路线依次流过每个单元格。

图2所示为迷宫式畜水罐中水流的路线。

迷宫法能较好地防止冷热水混合。

但在蓄冷和放冷过程中有一个是热水从底部进口进入或冷水从顶部进口进入。

这样易因浮力造成混合;另外,水的流速过高会导致扰动及冷热水的混合;流速过低会在单元格中形成死区,降低蓄冷系统的容量。

1.3 自然分层法利用水在不同温度下密度不同而实现自然分层。

系统组成是在常规的制冷系统中加入蓄水罐,如图3a所示。

在蓄冷循环时,制冷设备送来的冷水由底部散流器进入蓄水罐,热水则从顶部排出,罐中水量保持不变。

在放冷循环中,水流动方向相反,冷水由底部送至负荷侧,回流热水从顶部散流器进入蓄水罐。

空调水蓄冷技术及工程应用

空调水蓄冷技术及工程应用

空调水蓄冷技术及工程应用一、空调蓄能技术及其经济效益概述空调蓄能技术是一种最有效地获取分时电价差效益、节省电制冷或电制热运行电费的技术。

在国外已经是一项成熟的技术,目前国内正在大面积推广应用。

二、水蓄冷中心空调系统蓄冷中心空调系统是将冷量以显热或潜热的形式储存在某种介质中,并在需要时能够从储存冷量的介质中开释出冷量的空调系统。

水蓄冷是空调蓄冷的重要方式之一,利用水的显热储存冷量。

水蓄冷中心空调系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源的空调系统。

三、实施水蓄冷时的基本条件1、有可执行峰谷电价的供电政策或有对蓄能优惠的电价政策。

2、以冷冻水为冷源的电制冷空调系统,低电价时段有空余的制冷机组作蓄冷用。

3、建筑物中具有可利用的消防水池或可建蓄水池的空间(绿地、露天停车地下,空闲地或可作水池的地下室等)。

四、温度分层型水蓄冷原理冷量储存的类型有温度分层型、多水池型、隔膜型或迷宫与多水池折流型等。

实践证实,相对其它类型,温度分层型(垂直流向型)最简单有效。

温度分层型水蓄冷是利用水在不同温度时密度不同这一物理特性,依靠密度差使温水和冷水之间保持分隔,避免冷水和温水混合造成冷量损失。

水在4℃左右时的密度最大,随着水温的升高密度逐渐减小,利用水的这一物理特性,使温度低的水储存于池的下部,温度高的水位于储存于池的上部。

设计良好的温度分层型水蓄冷池在上部温水区与下部冷水区之间形成一个热质交换层。

一个稳定而厚度小的热质交换层是进步蓄冷效率的关键。

为了在蓄水池内垂直方向的横断面上,使水流以重力流或活塞流平稳地在整个断面上均匀地活动并平稳地导进池内(或由池内引出),在上部温水区与下部冷水区之间形成并保持一个有效的、厚度尽可能小的热质交换层,关键是在蓄水池内的上下部设置相同散水器,以确保水流在进进蓄水池时满足佛雷得(Frande)系数,使得水流均匀分配且扰动最小地进进蓄冷池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不需设额外的设备对冷水温度进行调整;
水蓄冷系统控制简单,运行安全可靠;
在出现紧急状况可及时投入使用,即可以考虑兼作容灾备份冷源使用。
水蓄冷储水形式
多水罐/水槽式储水 迷宫式储水及其水路图
隔板法:类似自然分层式储水法,
在蓄水罐内部安装一个活动的柔性 膈膜或一个可移动的刚性隔板来实 现冷热水的分离,通常隔膜或隔板 为水平布置。这样的蓄水罐可以不 用散流器,但隔膜或隔板的初投资 和运行维护费用与散流器相比并不 占优势。
美观作用外,还
可以一定程度上 掩盖蓄冷罐的功 能性、减轻周边 人员的抵触感
水蓄冷罐的串联形式
数据中心应用中,水蓄冷罐串联接入一般是用于空调系统的容灾备份,
蓄冷罐内的冷水持续流动以保证随时保有备用蓄冷量供应,蓄冷罐通
常采用承压闭式罐形式。
水蓄冷罐的并联形式
在并联接入中,蓄冷罐既作为冷机的负荷端
板式换热器的使用
由上一页的计算公式可推算得知,当蓄冷罐一定时,蓄冷量与放冷回水温度与蓄冷
进水温度间的温差成正比关系,而采用板式换热器需要一、二次侧保证一定的温差用
于换热,假设换热器需要温差1℃,那在蓄冷罐温差普遍只有6~7℃的现状下,蓄冷量 将减少约14%;
使用板式换热器的初衷其实是为了保证水质,但开式蓄冷罐的水质也有其他办法可

4~6℃ 较低 较低 可利用现有系统冷源 技术要求低,运行费用较低 较高 可结合消防水池等现有建筑空间一 并使用,冬天可以作为蓄热系统使用
水蓄冷相比冰蓄冷在数据中心运用中的优势
水蓄冷系统可与原空调系统“无缝”连接,无需再额外配置蓄冷冷源或对
原系统用冷水机组进行调整;
水蓄冷系统的冷水温度与原系统的空调冷水温度相近,可考虑直接使用,
自然分层式储水法
自然分层式储水的优势与技术关键
一般来说,自然分层法储水既无迷宫法容易产生用水死区导致蓄冷量减少的问题,也无隔板
法机械活动机构的故障隐患,是最简单、有效和经济的储水方法,如果设计合理,蓄冷效率
可以达到85%-95%。 自然分层式储水的技术关键在于散流器/布水器,将水平稳地引入罐中,依靠密度差而不是
水蓄冷技术概述
郭豪 2014_11_29
技术原理
利用夜间谷段电力的低电价,利用数据中心的冷水机组、冷水循环水泵、
冷却循环水泵等设备的备用机组进行工作,将储水罐中的水制冷到5℃以下,
并在白天电价较高的峰段电力期间将蓄藏的低温冷冻水释放出来供空调系统 制冷使用,对电网来说达到削峰填谷的目的,对数据中心来说达到降低电费 的目的。
散流器/布水器的形式
蓄冷罐的设计要素
蓄冷罐的容积V的计算公式为:
V=3600*Q/Δt*ρ*Cp*FOM*av
其中除ρ蓄冷水密度(1000kg/m3)、Cp冷水比热容(4.18kJ/kg*℃)为定值外,
其余均为直接影响蓄冷罐最终容积的变量,如Q蓄冷量(RT)、Δt放冷回水
温度与蓄冷进水温度间的温差、FOM蓄冷罐保温效率、av蓄冷罐容积效率。
量来讲大得多,只要保证初始补水水质合格,以后的水质更容易保持; 即使担心开式蓄冷水罐的水质保持问题,还可以采用氮气密封系统,这种 系统广泛应用于石化行业,用于隔离罐内物质免受大气氧气作用,而且普 遍都是持压罐体,所以应用在我们这种微正压的蓄冷水罐是可行的。
氮封系统原理图
通过在蓄冷罐外 立面采用结构装 饰件,除了起到
实施水蓄冷的基本条件
水蓄冷和冰蓄冷的对比
项目 冰蓄冷系统 水蓄冷系统
蓄冷槽容积
冷机冷冻水出水温度 冷机耗电 蓄冷系统初投资 蓄冷冷源 设计及运行 制冷性能系数COP 其他用途
小(仅为水蓄冷槽的10%~35%)
1~3℃ 较高 较高 需要能独立运行的制冰机组或双工况冷机 技术要求高,运行费用较高 低(比水蓄冷低10%~20%) 无
(蓄冷模式),也作为末端负荷的供冷源(放
冷模式),根据不同状况切换,如下三页所示。
常规空调系统
运行原理简图
水蓄冷系统夜间 蓄冷运行原理图
水蓄冷系统白天 放冷题在蓄冷系统配置板式换热器; 至于如果采用地下水池式冷槽必须使用板式换热器的,或者北方使用了免费冷源的 机房已经使用了板式换热器的,则无需讨论。
开式蓄冷罐的水质保障措施
开式蓄冷水罐虽然与大气接触,但只通过一透气口,与罐外空气接触面很
小,冷冻水中的含氧量变化很小,加上水罐水体量相对于原空调系统的水
惯性力产生一个沿罐底或罐顶水平分布的重力流,形成一个使冷热水混合作用尽量小、厚度
尽量薄的斜温层,要求通过散流器的进出口水流流速合理,以免造成斜温层的扰动破坏。 最适合自然分层的蓄水罐的形状为直立的平底圆柱体。与立方体或长方体蓄水罐相比,圆柱 体在同样的容量下,蓄冷罐的面积容量比最低,热损失就越小,单位冷量的基建投资就越低。
相关文档
最新文档