水蓄冷系统原理图

合集下载

水蓄冷技术概述1

水蓄冷技术概述1

水蓄冷罐的串联形式
数据中心应用中,水蓄冷罐串联接入一般是用于空调系统的容灾备份, 蓄冷罐内的冷水持续流动以保证随时保有备用蓄冷量供应,蓄冷罐通 常采用承பைடு நூலகம்闭式罐形式。
水蓄冷罐的并联形式
在并联接入中,蓄冷罐既作为冷机的负荷端 (蓄冷模式),也作为末端负荷的供冷源(放 冷模式),根据不同状况切换,如下三页所示。
水蓄冷系统 大 4~6℃ 较低 较低 可利用现有系统冷源 技术要求低,运行费用较低 较高 可结合消防水池等现有建筑空间一 并使用,冬天可以作为蓄热系统使用
水蓄冷相比冰蓄冷在数据中心运用中的优势
水蓄冷系统可与原空调系统“无缝”连接,无需再额外配置蓄冷冷源或对 原系统用冷水机组进行调整; 水蓄冷系统的冷水温度与原系统的空调冷水温度相近,可考虑直接使用, 不需设额外的设备对冷水温度进行调整; 水蓄冷系统控制简单,运行安全可靠; 在出现紧急状况可及时投入使用,即可以考虑兼作容灾备份冷源使用。
实施水蓄冷的基本条件
水蓄冷和冰蓄冷的对比
项目 蓄冷槽容积 冷机冷冻水出水温度 冷机耗电 蓄冷系统初投资 蓄冷冷源 设计及运行 制冷性能系数COP 其他用途
冰蓄冷系统 小(仅为水蓄冷槽的10%~35%) 1~3℃ 较高 较高 需要能独立运行的制冰机组或双工况冷机 技术要求高,运行费用较高 低(比水蓄冷低10%~20%) 无
水蓄冷储水形式
迷宫式储水及其水路图
多水罐/水槽式储水
隔板法:类似自然分层式储水法, 在蓄水罐内部安装一个活动的柔性 膈膜或一个可移动的刚性隔板来实 现冷热水的分离,通常隔膜或隔板 为水平布置。这样的蓄水罐可以不 用散流器,但隔膜或隔板的初投资 和运行维护费用与散流器相比并不 占优势。
自然分层式储水法

水蓄冷资料

水蓄冷资料

水蓄冷资料1 水蓄冷的方法水蓄冷是利用水的显热实现冷量的储存。

因此,一个设计合理的蓄冷系统应通过维持尽可能大的蓄水温差并防止冷水与热水的混合来获得最大的蓄冷效率。

在水蓄冷技术中,关键问题是蓄冷罐的结构形式应能防止所蓄冷水与回流热水的混合。

为实现这一目的,目前常用的有以下几种方法:1.1 多蓄水罐方法将冷水的热水分别储存在不同的罐中,以保证送至负荷侧的冷水温度维持不变,多个蓄水罐有不同的连接方式,一种是空罐方式。

如图1a,它保持蓄水罐系统中总有一个罐在蓄冷或放冷循环开始时是空的。

随着蓄冷或放冷的进行,各罐依次倒空。

另一种连接方式是将多个罐串联连接或将一个蓄水罐分隔成几个相互连通的分格。

如图1b,图中示出蓄冷时的水流方向。

蓄冷时,冷水从第一个蓄水罐的底部入口进入罐中,顶部溢流的热水送至第二个罐的底部入口,依次类推,最终所有的罐中均为冷水;放冷时,水流动方向相反,冷水由第一个罐的底部流出。

回流热水从最后一个罐的顶部送入。

由于在所有的罐中均为热水在上、冷水在下,利用水温不同产生的密度差就可防止冷热水混合。

多罐系统在运行时其个别蓄水罐可以从系统中分离出来进行检修维护,但系统的管路和控制较复杂,初投资和运行维护费作较高。

1.2 迷宫法采用隔板把水蓄水槽分成很多个单元格,水流按照设计的路线依次流过每个单元格。

图2所示为迷宫式畜水罐中水流的路线。

迷宫法能较好地防止冷热水混合。

但在蓄冷和放冷过程中有一个是热水从底部进口进入或冷水从顶部进口进入。

这样易因浮力造成混合;另外,水的流速过高会导致扰动及冷热水的混合;流速过低会在单元格中形成死区,降低蓄冷系统的容量。

1.3 自然分层法利用水在不同温度下密度不同而实现自然分层。

系统组成是在常规的制冷系统中加入蓄水罐,如图3a所示。

在蓄冷循环时,制冷设备送来的冷水由底部散流器进入蓄水罐,热水则从顶部排出,罐中水量保持不变。

在放冷循环中,水流动方向相反,冷水由底部送至负荷侧,回流热水从顶部散流器进入蓄水罐。

水蓄冷

水蓄冷
开有形状、大小相同, 间距相等的开口缝
3. 散流器的布置要求
(1) 散流器及其干支管应尽可能对称布置,以确保: ✓ 散流器单位长度的水流量相等,水流速均匀,不引起槽内水
平方向的扰动 ✓ 在各种负荷情况下,散流器接管上任意点的压力恒等
(2)散流器的开口方向应当尽可能减少进水对槽内水的扰动 ✓ 顶部散流器开口向上,避免有直接向下冲击斜温层的动量 ✓ 底部散流器开口向下,避免有直接向上冲击斜温层的动量 ✓ 散流器开口一般为90~120o
上下散流器使水缓慢地流入和流出水槽, 以尽量减少紊流和扰乱斜温层。
水蓄冷系统和特性曲线
释冷过程:当斜温层开始被下部散流器抽出,释冷过程接近结束,C、A水 温依次上升,温度升高的程度取决于斜温层的质量,与散流器设计和罐 内罐壁的传热有关。
蓄冷过程:当斜温层上升至上部散流器时,出水温度逐渐下降
蓄冷效率/完善度(figure of merit, FOM)定义为蓄冷槽实际释 冷量与蓄冷槽理论可用蓄冷量之比。
缺点:
槽表面积与容积之比偏高,蓄冷的热损失增加,蓄冷下降。 有热水从底部进入或冷水从顶部进入现象,因浮力造成混乱。 流速过高,产生旋涡,导致水流扰动和冷热水混合。 流速过低,形成死区,降低系统容量。
四、隔膜式蓄冷
采用活动的柔性隔膜或可移动的刚性隔板,来上下分 离冷热水,蓄冷效率较高。
第三节 水蓄冷罐设计
散流器开口长度:水流进入蓄冷槽时开口的有效长度。 H型和八边型散流器,当直管上开口等间距时,有效长度应为所
有开口的总长度。
q Re* v LQ Q
q Re* v
h
[
g
(
(q /
i
Fr)2
a) /
/3
a

水蓄冷简介

水蓄冷简介

1、水蓄冷空调原理水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。

即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。

2、实施目的通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策(见下表),在实际的“谷制峰用”中,节约大量的空调电费,降低贵公司的运行成本。

大工业用电峰谷电价表从2005年6月1日抄见电量起执行二、电力优惠政策针对广东省目前电力供求紧张的形势,为充分运用电价政策引导电力用户移峰填谷,缓解电力供求矛盾,根据国家有关电价政策,结合我省实际,施行了分时段的电价,常规空调其电价为:高峰段1.0189元/度,平段0.6526元/度,谷段0.3368元/度。

3、水蓄冷中央空调的优点采用蓄冷空调系统后,可以将原常规系统中设计运行8小时或10小时的制冷机组压缩容量35-45%,在电网后半夜低谷时间(低电价)开机,将冷量以冷冻水的方式蓄存起来,在电网高峰用电(高价电)时间内,制冷机组停机或者满足部分空调负荷,其余部分用蓄存的冷量来满足,从而达到"削峰填谷",均衡用电及降低电力设备容量的目的。

水蓄冷空调具有以下优点:A、节省新装用户的空调系统初投资(1)节省空调制冷系统投资制冷系统(包括冷却塔等辅机)的容量按日平均负荷选择即可,无需再按冷耗峰值配制。

用于宾馆、公寓,机电设施容量减少20-30%,用于办公楼、大厦及单班制企业,减少50-60%。

所节省的基建投资及电力增容费,足以补偿蓄冷设施之所需并有较大结余。

(湖北省中医医院采取3台1300KW冷水机组满足住院4.3万平米的面积,比原设计减少一台1300KW冷水机组(2)节省电力投资设备容量减少,所需输电和变电设备的容量也相应减少,电力报装费用及电力设备投资降低。

实现“小马拉大车”,在扩建面积不大的建筑中,可不增设主机,仅增设空调末段设备,即可保证新建建筑的空调功能和要求。

水蓄冷罐图片介绍资料PPT

水蓄冷罐图片介绍资料PPT

2-way Valve
1
温度梯度变化
§ 利用水的显热蓄冷并用来供冷的空调系统 § 利用廉价的夜间低谷电将蓄水槽上部的水用冷冻机循环,把冷冻后的
冷水储存在蓄水槽的下部。 § 白天利用储存的 蓄水槽下部4℃的冷水进行供冷。
蓄冷

























供冷 不同时间蓄水槽内蓄冷和放冷过程变化图示
水蓄冷空调系统图示
Water Storage Tank
14 ℃
2-way Valve
Cooling Tower
4℃
(I) Radial diffuser (ii) linear diffuser (iii) distributed nozzle diffuser
3-way Valve
Pump
Chiller 2-way Valve
7
常压型水蓄冷罐的图片
通用服务管理局 加利福尼亚州 蓄冷量: 12,000RTH 蓄冷体积: 4,000立方米
8
常压型水蓄冷罐的图片
9
常压型水蓄冷罐的内部结构图片
10
常压型水蓄冷罐的内部结构图片
11
足球场地下钢筋混凝土水池建造
美国南加洲大学水蓄冷区域供冷工程 蓄冷量: 30,000RTH 蓄冷体积: 11,000立方米
3
22:00 23:00 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00
5
水蓄冷罐内温度传感器的布置

蓄冷技术ppt课件

蓄冷技术ppt课件
11
水蓄冷优点
• 投资小,运行可靠,制冷效果好,技术要求低,维护费用少,还可实现大 温差送水和应急冷源,相对于冰蓄冷系统投资大,调试复杂,推广难度较 大的情况来说,水蓄冷具有经济简单的特点。
• 可以使用常规的冷水机组,也可以使用吸收式制冷机组。常规的主机、泵 、空调箱、配管等均能使用,设备的选择性和可用性范围广。
4
水蓄能(水蓄冷+水蓄热)
• 水蓄能空调技术原理 • 所谓蓄能空调,就是将电网负荷低谷期(如夜晚
)的电力用于制冷或者制热,通过利用蓄能介质 将冷(热)量储蓄起来,在电网负荷高峰期(如 白天),再将冷热量释放出来用于建筑物的空调 末端,以承担高峰期空调所需的全部或者部分负 荷。通过采用这种蓄能技术能够实现削峰填谷, 是缓解电力建设和新增用电矛盾的有效途径之一 。
16
蓄冰装置的分类
• 1、 按是否使用载冷剂可分为制冷剂直接蒸发式 和载冷剂循环式。
• 2、 按结冰方式不同分为静态制冰和动态制冰 • 3、 按融冰方式不同分为内融冰、外融冰、内外
同时融冰。 • 4、 按制冷剂流程不同分为密闭式和开放式。 • 5、 按蓄冰形式不同分为不完全冰结式、完全冰
结式、制冰滑落式、封装容器式(包括冰球式) 、冰泥式。
筑负荷较小的工程; • 逐时负荷的峰谷悬殊,使用常规系统会导致装机容量过大
,且大部分时间处于部分负荷下运行的工程; • 电力容量或电力供应受到限制的空调工程; • 要求部分时段备用制冷量的空调工程; • 要求提供低温冷水,或要求采用低温送风的空调工程; • 区域性集中供冷、热的采暖供冷工程。
14
冰蓄冷
9
水蓄冷方法
• 隔板法:在蓄水罐内部安装一个活动的柔 性膈膜或一个可移动的刚性隔板,来实现 冷热水的分离,通常隔膜或隔板为水平布 置。这样的蓄水罐可以不用散流器,但隔 膜或隔板的初投资和运行维护费用与散流 器相比并不占优势。

水蓄冷

水蓄冷

三、迷宫式蓄冷
优点:由多个小槽组 成,且有隔板隔离, 能较好地防止冷热 水混合,对不同温 度的冷热水分离效 果较好。
缺点:
槽表面积与容积之比偏高,蓄冷的热损失增加,蓄冷下降。 有热水从底部进入或冷水从顶部进入现象,因浮力造成混乱。 流速过高,产生旋涡,导致水流扰动和冷热水混合。 流速过低,形成死区,降低系统容量。
2. 散流器的结构形式,应采用对称自平衡的布置方式
(1) 水平缝口式散流器
(2)圆盘辐射型散流器 )
自分配管进入盘中的水通过盘间隙, 自分配管进入盘中的水通过盘间隙,呈水平径向辐射状进入蓄 水槽,使水在蓄水槽内均匀分配。此类散流器的Re值偏高 值偏高, 水槽,使水在蓄水槽内均匀分配。此类散流器的 值偏高, 可通过增加散流器数量来降低Re值 可通过增加散流器数量来降低 值。
q = Re* v Q Q = L= q Re* v
(q / Fr ) 2 / 3 h= [ g ( ρ i − ρ a ) / ρ a ]1/ 3
P14
Q,not q
第四节
水蓄冷空调系统的构成
一、简单水蓄冷空调系统 二、换热器间接供冷式水蓄冷空调系统 三、压力控制直接供冷式水蓄冷空调系统
一、简单水蓄冷空调系统
4、蓄冷罐防水保温
槽底、槽壁绝热。 保温:减少冷损失,防止槽表面结露,防止温度 变化产生的压力使槽损坏。
防水:保温材料防水,防地下水渗入保温层。
三、水蓄冷罐散流器设计
散流器对蓄冷罐的蓄冷效率有显著影响,好的散流器 可实现较佳的分层效果和稳定的斜温层。 散流器的作用:使水流以密度流形式缓慢进入,减少 对储存水的冲击,促使斜温层的形成,减少可能的混 合作用对斜温层的破坏。 斜温层与散流器的关系:

水蓄冷空调系统简介

水蓄冷空调系统简介

目录1、水蓄冷空调系统简介1.1 水蓄冷空调系统原理1.2 实施目的1.3 水蓄冷空调系统特点1.4 系统设计原则1.5 蓄冷模式选择1.6 中旅温泉珠海有限公司实施水蓄冷系统空调好处2、水蓄冷空调设计方案2.1 基本情况2.2 建设蓄冷系统可行性2.3制冷站主要设备配置2.4 水蓄冷中央空调系统主要增加设备2.5 蓄冷水池2.6 设计计算依据2.7 水蓄冷系统经济性分析3、电费节约计算方法4、合作模式5、蓄冷水池4.1 蓄冷设备4.2 水池保温6、水蓄冷控制系统5.1 控制目的5.2 控制功能1、水蓄冷空调系统简介1.1水蓄冷空调原理水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。

即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。

1.2 实施目的通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策,在实际的“谷制峰用”中,节约大量的空调电费,降低工厂的生产成本;也为节能环保做出了一定的贡献。

1.3 水蓄冷空调系统特点水蓄冷空调代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点:a.减少冷水机组容量,总用电负荷少,减少变压器配电容量与配电设施费。

b.利用峰谷荷电价差,大大减少空调年运行费。

c.使用灵活,节假日部分办公楼使用的空调可由蓄冷水槽直接提供,节能效果明显。

d.可以为较小的负荷(如只使用个别办公室)蓄冷水槽放冷定量供冷,而无需开主机。

e.具有应急功能,提高空调系统的可靠性。

f.上班前启动时间短,只需10—15分钟即可达到所需温度,常规系统约需1小时。

1.4系统设计原则经济水蓄冷系统设计须综合考虑影响初期投资及运行成本的各种因素,详尽研究系统的电费、峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


3
2用1备
6
钢制蓄冷罐
V=3000m3,含布水系统、保温。

1
7
二次泵
Q=325m3/h, H=30mH2O,N=45kW

3
2用1备
蓄冷系统原理图
由 Autodesk 教育版产品制作
序号
设备名称
规格型号
单位
数量
备注
1
制冷主机
800RT

2
2
冷冻水泵(兼蓄冷泵)
Q=350m3/h, H=22mH2O,N=37kW

3
2用1备
3
冷却水泵
Q=600m3/h, H=20mH2O,N=45kW

3
2用1备
4
冷却塔
Q=600m3/h,N=22kW

2
5
放冷水泵
Q=300m3/h, H=30mH2O,N=37kW
由 Autodesk 教育版产品制作
系统工况转换表
空调制冷(供、放冷)系统工况转换表
工况
运 行 模 式
DV1
DV2
DV3
DV4
DV5
工况1
冷水机组单独供冷模式





工况2
冷水机组蓄冷模式





工况3
冷水机组与水罐联合供冷模式





工况4
水罐单独供冷模式





工况5


工况6
斜温层利用

调节
调节


图例
符 号
说 明
符 号
说 明
蝶阀
Y 型汽/水过滤器
止回阀
平衡阀
由 Autodesk 教育版产品制作
由 Autodesk 教育版产品制作
电动碟阀
橡胶软接管
M
电动调节碟阀
浮球阀
压力表
P
压力传感器
温度计
流量开关
水泵
T
温度传感器
电磁阀
F
流量传感器
截止阀
介质流向
电动球阀
流量计
设备表
相关文档
最新文档