不定积分-定积分复习题及答案-精品
积分微分知识点及习题和答案(仅供参考)

积分微分知识点及习题和答案(仅供参考)仅供参考积分和微分积分一般分为不定积分、定积分和微积分三种1、不定积分设F(x) 是函数f(x) 的一个原函数,我们把函数f(x) 的所有原函数F(x)+C (C 为任意常数)叫做函数f(x) 的不定积分. 记作∫f(x)dx其. 中∫叫做积分号, f(x) 叫做被积函数, x 叫做积量,f(x)dx 叫做被积式,C 叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x) 的不定积分,就是要求出f(x) 的所有的原函数,由原函数的性质可知,只要求出函数f(x) 的一个原函数,再加上任意的常数C,就得到函数f(x) 的不定积分.也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.2、定积分众所周知,微积分的两大部分是微分与积分.微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数.所以,微分与积分互为逆运算.实际上,积分还可以分为两部分.第一种,是单纯的积分,也就是已知导数求原函数,而若F(x) 的导数是f(x), 那么F(x)+C (C 是常数)的导数也是f(x), 也就是说,把f(x) 积分,不一定能得到F(x), 因为F(x)+C 的导数也是f(x),C 是无穷无尽的常数,所以f(x) 积分的结果有无数个, 是不确定的,我们一律用F(x)+C 代替,这就称为不定积分.而相对于不定积分,就是定积分.所谓定积分,其形式为∫f(x) dx 上(限 a 写在∫上面,下限 b 写在∫下面).之所以称其为定积分, 是因为它积分后得出的值是确定的,是一个数,而不是一个函数.定积分的正式名称是黎曼积分,详见黎曼积分.用自己的话来说,就是把直角坐标系上的函数的图象用平行于y 轴的直线把其分割成无数个矩形,然后把某个区间[a,b] 上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b] 的面积.实际上,定积分的上下限就是区间的两个端点a、b.我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数.它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢?定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系.把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论, 可以转化为计算积分.这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F'(x)=f(x) 那么∫f(x) dx(上限 a 下限b)=F(a)-F(b)牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差.正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理.3、微积分积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,积分作用不仅如此, 它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
不定积分+定积分及其应用习题附带答案

1.设是在上的一个原函数,且为奇函数,则是 ( )()F x ()f x (),-∞+∞()F x ()f x A .偶函数 B . 奇函数C . 非奇非偶函数 D .不能确定2.已知的一个原函数为,的一个原函数为,则的一个原函数()f x cos x ()g x 2x ()f g x ⎡⎤⎣⎦为 ( )A .B . 2x 2cos x C . D .2cos x cos x3.设为连续导函数,则下列命题正确的是 ( )()f x A . ()()1222f x dx f x c '=+⎰B .()()22f x dx f x c'=+⎰C . ()()()222f x dx f x ''=⎰D .()()2f x dx f x c'=+⎰4.设且()22cos sin f x x '= ,则=( )()00f =()f x A . B . 212x x -212x -C . D .1x -313x x-5.设是的一个原函数,则2xe-()f x ( )()02()limx f x x f x x∆→-∆-=∆A . B .22xe -28xe-C . D .22xe--24xe-6.设,则=( )()xf x e -=()ln f x dx x'⎰A .B . 1x-c +ln x c -+C .D . 1c x+ln x c +7.若是的一个原函数,则ln x x ()f x =()f x '8.设的一个原函数为()()tan 2f x k x =,则 2ln cos 23x k =9.若,则()2f x dx x c =+⎰=()231x f x dx -⎰10.()()2cos 2sin 2d θθθ=⎰11.若,则()()f x dx F x c =+⎰()xx ef e dx --=⎰12.若,则()ln cos f x x '=⎡⎤⎣⎦()f x =13.计算()23x xe dx +⎰14.计算()()sin ln cos ln x x dx x⎡⎤⎡⎤⎣⎦⎣⎦⎰15.计算ln(tan )sin cos x dxx x ⎰16.计算21arctan1x dx x +⎰17.计算11sin dx x+⎰18.计算19.计算20.计算21.计算22.计算23. 计算()221tan xex dx+⎰24.已知的一个原函数为,求()f x sin x x()3x f x dx '⎰1、解:可导奇函数的导函数必为偶函数.必为偶函数.选A()()f x F x '∴=2、解:(1),()()cos sin f x x x '==- ()()()22sin 2g x x x f g x x'==∴=-⎡⎤⎣⎦(2)()2cos 2cos (sin )xx x '=- 选B sin 2x =-∴3、解:()()12222f x dx f x d x''=⎰⎰()122f x c =+选A4、解:(1)()22cos 1cos f x x '=- ()1f x x'∴=- (2)()22x f x x c=-+且得()00f =0c =,选A ()22x f x x =-5、解:(1)原式=()()()022limx f x x f x x∆→-∆--⎡⎤⎣⎦-2∆()2f x '=-(2)()2xF x e-= ()()222x xf x e e --'∴==-(3) 原式= 选D222(2)4xx ee ----=6、解:(1)()()ln ln ln f x dx f x d xx''=⎰⎰()ln f x c=+(2)(),xf x e -= ()1lnln 1ln x xf x e ex-∴===(3)原式=选C 1c x+7、解:(1)()ln F x x x= ()()1ln f x F x x'∴==+(2) ()()11ln f x x x''=+=8、解:()2ln cos 23F x x =()()2sin 223cos 2xf x x -∴=-故 ()()4tan 21ln 3x F x x '=-=+43k =-9、解: 原式=()()331113f x d x ---⎰()3113x c =--+10、解:原式=2222cos sin 4sin cos d θθθθθ-⎰221144sin cos d d θθθθ=-⎰⎰11cot tan 44t cθθ=--+或1csc 2c θ⎛⎫=-+ ⎪⎝⎭11、解:原式=()()xxx f edeF e c----=-+⎰12、解:()ln cos f x dx xdx'=⎡⎤⎣⎦⎰⎰()1ln sin f x x c =+()1sin sin c x xf x e c e -==⋅13、解:原式=()22323x xx x e e dx ⎡⎤++⋅⎢⎥⎣⎦⎰()2923xxxe dx dx e dx=++⎰⎰⎰219232ln 91ln 3x x xx e e c ⋅⋅=++++14、解:原式=()()sin ln cos ln ln x x d x⋅⎰()()sin ln sin ln x d x =⎰=()21sin ln 2x c +⎡⎤⎣⎦15、解:原式=()2ln tan tan cosx dxx x⎰()ln tan tan tan x d xx=⎰()()ln tan ln tan x d x =⎰ ()21ln tan 2x c =+⎡⎤⎣⎦16、解:原式=221arctan11x dx x x ⎛⎫+ ⎪⎝⎭⎰21arctan111x d x x ⎛⎫=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎰11arctan arctand x x=-⎰211arctan 2cx ⎛⎫=-+ ⎪⎝⎭17、解:原式=21sin 1sin xdx x --⎰21sin cos cos x dx dx x x=-⎰⎰2cos tan cos d xx x =+⎰1tan cos x cx=-+18、解:2,1,2t x t dx tdt==-=原式=()2221211tdt dt tt t=++⎰⎰=2arctan t c+c+回代19、解:令2tan ,sec x t dx tdt==原式=32tan sec sec ttdtt⎰=2tan sec td t⎰()2sec 1sec t d t=-⎰31sec sec 3t t c =-+()()3122221113x x c +-++回代20、解:令2sin ,2cos x t dx tdt ==原式=2cos 2sin cos t dtt t ⎰1csc 2tdt =⎰()1ln csc cot 2t t c -+公式12c 回代21、解:(倒代换)令211,x dx dt t t-==原式==-11arcsin 333t c =-=-+13arcsin 3c x-+回代13arccos 3c x=+(注:(三角代换)令3sec ,x t =,3sec tan dx t tdt =原式=3sec tan 19sec tan 3t t dt t c t t =+⎰)13arccos 3c x+回代22、解:2,1,xt e t ==+ ()222ln 1,1tx tdx dtt=+=+原式=222211211t t t dt dtt t ⋅+-=++⎰⎰=()2arctan t t c-+2c-+回代23、解: 原式=()221tan2tan xex x dx++⎰2tan 2tan x d x e xdx=+⎰⎰2x e 222tan tan 22tan x x x e x x e dx e xdx =-⋅⋅+⎰⎰22tan 2tan x x e x x e dx =-⋅⎰22tan x xe dx +⎰2tan x e x c=+24、解: ()sin x F x x= ()()2cos sin x x xf x F x x -'∴==原式()3x df x =⎰()()323x f x f x x dx=-⋅⎰2222cos sin cos sin 3x x x x x x x x dx x x --=⋅-⎰2cos sin 3sin 3sin x x x x xd x xdx=--+⎰⎰2cos sin 3sin 3sin 3sin x x x x x x xdx xdx =--++⎰⎰2cos 4sin 6cos x x x x x c=--+1.设初等函数在区间有定义,则在上一定 ( )()f x [],a b ()f x [],a b A .可导 B .可微C .可积D .不连续2.若连续,下列各式正确的是 ( )f A .()()ba d f x dx f x dx =⎰B .()()df x dx f x dx dx =⎰C . ()()bx d f t dt f x dx =⎰D .()()xad f t dt f x dx =⎰3. 下列关系式中正确的是 ( )A .B .21100x x e dx e dx =⎰⎰211x x e dx e dx≥⎰⎰C .D .以上都不对211x x e dx e dx ≤⎰⎰4.下列各式中,正确的是 ( )A .B .2101x e dx ≤≤⎰211x e dx e≤≤⎰C . D .以上都不对2120x e e dx e ≤≤⎰5.下列函数在区间上可用牛顿——莱布尼兹公式的是 ( )[]1,1-AB .C1x 6.设在上,[],a b ()()()0,'0,''0f x f x f x ><>记,,,则有 ( )()110S f x dx =⎰()()2S f b b a =⋅-()()32b aS f b f a -=+⎡⎤⎣⎦A . B .123S S S <<213S S S <<C . D .312S S S<<231S S S <<7.xx →=8.设连续,且,则 ()f x ()()xe xF x f t dt -=⎰()'F x =9.设连续,则 ()'f x 1'2x f dx ⎛⎫= ⎪⎝⎭⎰10.设则()()120121f x f x dx x=-+⎰ ()1f x dx =⎰11.设连续,且则 ()f x ()21301,(1)x f t dt x x -=+>⎰()8f =12.设,则y 的极小值为()01xy t dt =-⎰13.方程,确定,求cos 0yx t e dt tdt +=⎰⎰()y y x =0x dydx=14.设在连续,且满足,求 ()f x []0,1()()13243f x x x f x dx =-⎰()f x 15.讨论方程在区间内实根的个数4013101xx dt t --=+⎰()0,116.设在连续,且在单调减少,讨论在区间()f x [],a b (),a b ()()1xa F x f t dt x a=-⎰的单调性(),a b 17.求()22220limx t xx t e dt te dt→⎰⎰18.设其中为连续函数,求()()2xa x F x f t dt x a=-⎰f ()lim x a F x →19.设,且可导,,求()()01122xf t dt f x =-⎰()f x ()0f x ≠()f x20.若为连续的奇函数,判别的奇偶性()f x ()0xf t dt ⎰21.1321sin x x x dx-⎡⎤⎣⎦⎰22.已知,求221x t e dt -⎰()1xf x dx⎰23.1⎰24.设连续,证明()f x 并由此计算()()20sin 2sin f x dx f x dx ππ=⎰⎰0π⎰1、解:初等函数在定义区间内必连续,连续必可积。
定积分期末考试题及答案

定积分期末考试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)在区间[a, b]上连续,则定积分∫<sub>a</sub><sup>b</sup>f(x)dx的值:A. 总是存在B. 可能不存在C. 总是不存在D. 无法确定答案:A2. 计算定积分∫<sub>0</sub><sup>1</sup>x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A3. 函数f(x)=x^3在区间[-1, 1]上的定积分值为:A. 0B. 2C. -2D. 1答案:A4. 若∫<sub>a</sub><sup>b</sup>f(x)dx =∫<sub>a</sub><sup>b</sup>g(x)dx,则f(x)和g(x)在区间[a, b]上的关系是:A. 相等B. 相等或相反C. 相等或相等的常数倍D. 无法确定答案:C5. 定积分∫<sub>0</sub><sup>π/2</s up>cos(x)dx的值是:A. 1B. 0C. π/2D. -1答案:B二、填空题(每题5分,共20分)1. 定积分∫<sub>0</sub><sup>1</sup>(2x+1)dx的值为______。
答案:3/22. 函数f(x)=x^2在区间[0, 2]上的定积分值是______。
答案:8/33. 计算定积分∫<sub>0</sub><sup>π</sup>sin(x)dx的值是______。
答案:24. 定积分∫<sub>-1</sub><sup>1</sup>|x|dx的值为______。
不定积分,定积分复习题及答案

姓名: 上海第二工业大学不定积分、定积分测验试卷学号: 班级: 成绩: 、选择题:(每小格3分,共30分) 竺仝为f(x)的一个原函数,且 a = 0,贝U x sinax sin ax 3 C ; (B ) 2 C ; ( C ) a x a x e x在(」:, ::)上不定积分是F(x) C , 1、设(A ) 2、若 (A ) F(xH x_0 ;-e^+oxcO (B ) F(x)二(C ) < xe, xAO . F(x) x [-e +2,x v0 (D ) 3、设 (A ) (B ) (C ) (D ) 匸^dx 应等于( ) a 竺坐C ; ax sin ax (D) — x 则 F(x)二( ■ xe c,_xI e c 2,x : 0 F (V 0 j —e , x < 01, x 0 f(x)二 0, x =0,F(x) f(t)dt ,则( -1,x ::0 F(x)在x = 0点不连续; F(x)在内连续,在x = 0点不可导; F(x)在(_::「:)内可导,且满足 F (x) = f (x); F(x)在(-::, =)内可导,但不一定满足 F (x)二f(x)。
4、极限啊 x tsin tdt 」 =( x 2 t 2dt(A)- 1; (D ) 2 b 5、设在区间[a,b]上 f (x) 0, f (x) :: 0, f (x) 0。
令 s 二 f (x)dx , s 2 二 ' a(B ) 0; (C ) 1 ; f(b)(b-a)& =2【f (a ) f (b)](b-a),则((A ) 3 ::: s 2::: S 3 ; (B ) s :::3 ::: S 3;(C )sj::: S 1::: S 2 ;(D) S 2:::、填空题:(每小格3分,共30分)1、计算Md X2、计算 xta n 2 xdxX3、设 x _1,求,1 -t)dt1 + x , x 04、设 f (x )、「x 01设f(x)的一个原函数是e-x ,则它的一个导函数是 ______________________2 1 2、 设]f (x)dx =1, f (2) =2,贝V [xf (2x)dx = _______________ 。
(完整版)不定积分习题与答案

不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
第五章 不定积分与定积分习题解答

Φ′( x) = xe − x ,令 Φ′( x) = 0 ,得驻点 x = 0
x < 0 时, Φ′( x) < 0 ; x > 0 时, Φ′( x) > 0
x = 0 取极小值, Φ (0) = 0 .
2. 求下列极限:
∫ (1) lim
x →0
x 0
cos t 2 dt x
;
∫ (2) lim
2 0
0
π
∫
π
0
sin n x dx = 2 ∫ 2 sin n x dx
0
π
4.计算下列定积分:
(1) ∫
解
4
1
1 dx ; 1+ x x = t ,则 x = t 2
2 2t 2 1 3 dx = ∫ dt = 2 ⎡ t − ln (1 + t ) ⎤ = 2 − 2 ln ⎣ ⎦ 1 1 1 1+ t 2 1+ x 3 dx 4
1 dx ; x 1 1 1 1 1 解 ∫ 2 sin dx = − ∫ sin d = cos + C x x x x x dx (8) ∫ x − x ; e +e (7)
∫x
1
2
sin
解
e x dx dx x = ∫ e x + e− x ∫ e2 x + 1 = arctan e + C dx (9) ∫ ; (2 − x) 1 − x
1
2
当 1 < x < 2 时, 0 < ln x < ln 2 < 1 ,
ln x > ( ln x )
2
∫
2
1
不定积分与定积分期末复习
不定积分与定积分期末复习Company number:【0089WT-8898YT-W8CCB-BUUT-202108】不定积分与定积分数学分析第四版上册一、重中之重:(1)原函数—>加上C(2)最后的结果一定要将变量带回去(3)去根号时,注意变量的取值范围(是否要分类讨论) 例:⎰-12x x dx、dx x ⎰-|1|(连续点x=1处,原函数须相等)详情见P181(4)记得验算几遍二、基本思路三、常见的不定积分四、方法总结1、三角换元=>去根号2、分部积分法的递推3、分母变为一项或多因式,从而进行列项成多个项来求 例:⎰+dx xsin 11=>上下同时乘以x sin 1- 4、巧妙运用1cos sin 22=+x x 例:dx xx ⎰cos sin 1=>带入分子后,拆分即可 5、巧妙运用x x 22tan 1sec +=)(tan sec 2x d xdx ==> 例1:⎰⎰⎰++-==)(tan tan 111tan sec tan sec tan 242424x d x x dx x x x dx x还有 dx x ⎰+-tan 1tanx 1和⎰++dx x x x 1tan tan tan 2(上下同时乘以x 2sec )例注1:方法可能不是最简单的,但提供了一种常用的思路注2:其他的题目可以尽量往secx 和tanx 方面去化简 例:⎰+xdx 2sin 2=>上下同时乘以x 2sec 五、解题技巧1、换元法 (1)dx x x n n ⎰+-112解:淡定~~~,然后令n x t =,带入即可 (2)dx x xIn xIn ⎰42 解:)(1Inx d dx x =,再让4242In Inx In Inx x In x In ++=即可 (3)dx xx ⎰+341=>令461x t +=(使分子,分母均为有理数) 2、分部积分法解:(1)⎰⎰⎰-==)(sec tan tan sec )(tan sec sec 3x xd x x x xd x (2)⎰⎰⎰⎰-=-=xdx xdx xdx x xd sec sec sec )cos 1()(sec tan 332(3)再将左边的式子相同的部分移到右边计算即可(2)⎰++21)1(x x In —>分部积分过程中,一般可以抵消掉不可计算的部分3、万能公式 (1)⎰+dx x sin 11和⎰+dx xcos 11 解答:可以用万能公式,也可以将分母变为一项(从而便于列项出来) (3)⎰++dx x x x )cos 1(sin sin 1 ⎰-x dx cos 354、欧拉变换(1)出现如xx -+11,21x x ++之类的 例:⎰+x x dx2=>令x x t +=2带入即可(2)依然可以配方后,用三角代换详情请参见P198 5、典型例题 解:)]1()1[(21122x x -++=>,再上下同时处以2x ,分母进行配方,将分子的原函数”看出来”即可 注意:⎰+dx x311=>可以分母直接因式分解,再列项即可 思路1:配凑拆分—>降次思路2:三角换元—>t=tanx解1:分子)]1()1[(21122x x -++=>,再同时上下处以2x 即可解2:带入可得tdt ⎰2cos(1)当n 为奇数时,提出一个-sinx —>令-sinxdx=d(cosx),再根据 x x 22cos 1sin -=即可(2)当n 为偶数时,令)2cos 1(21sin 2x x -=,带入展开,再列项分开来求(1)运用分部积分法进行递推(显然只需两次递推)(2)详情见P188(1)思路:配凑降次—>分开来算已知)22()22(2++=+x x d dx x 和⎰⎰+++=++)1)1(()1()22(dx 222x x d x x6、其他难题(1) 见P201最上面的两道题定积分一、 定义辨析1、定积分和不定积分的区别(1)f 的不定积分是一个函数族{F(x)+C},而定积分是一个确切的数,与面积有关(2)不定积分做变量代换时,结果要进行还原,而定积分不需要,直接得出结果2、三、基本公式1、平面图形的面积(1)一般方程:dx y dx x f A a b a b ⎰⎰==)((2)参数方程:⎰⎰==ab a b dt t x t y t x d t y A |)(')(||))(()('|(3)极坐标方程:⎰=a b d r A θθ)(212 注:求多条曲线所围成的面积,先作图,再求交点,再进行复合运算2、由平行截面面积求体积(1)截面面积函数A(x)是[a,b]上的一个连续函数,则立体体积⎰=a b dx x f V 2)]([π 详情见P248(2)旋转体的体积可知:2)]([)(x f x A π=所以体积公式为 ⎰=dx x f V 2)]([π例:由圆)0()(222R r r R y x <<<=-+绕x 轴旋转一周所得环状立体的体积。
不定积分-定积分复习题及答案
(A ) F ( x ) = ⎨ ;(B ) F ( x ) = ⎨ ⎩ -e - x + c , x < 0 ⎩ -e - x + c + 2, x < 03、设 f ( x ) = ⎨0, x = 0 , F ( x ) = ⎰ f (t )dt ,则()⎪ -1, x < 0 ⎰ t sin tdt⎰ t2dt2上海第二工业大学不定积分、定积分测验试卷姓名:学号:班级:成绩:一、选择题:(每小格 3 分,共 30 分)1、设 sin x f (ax ) 为 f ( x ) 的一个原函数,且 a ≠ 0 ,则 ⎰x adx 应等于( )(A ) sin ax sin ax sin ax sin ax+ C ; (B ) + C ; (C ) + C ; (D ) + Ca 3 x a 2 x ax x2、若 e x 在 (-∞, +∞) 上不定积分是 F ( x ) + C ,则 F ( x ) = ()⎧e x + c , x ≥ 0 ⎧e x + c , x ≥ 01 2⎧e x , x ≥ 0 ⎧e x , x ≥ 0(C ) F ( x ) = ⎨ ;(D ) F ( x ) = ⎨⎩ -e - x + 2, x < 0 ⎩ -e - x , x < 0⎧1, x > 0 ⎪ x;⎩(A ) F ( x ) 在 x = 0 点不连续;(B ) F ( x ) 在 (-∞, +∞) 内连续,在 x = 0 点不可导;(C ) F ( x ) 在 (-∞, +∞) 内可导,且满足 F '( x ) = f ( x ) ;(D ) F ( x ) 在 (-∞, +∞) 内可导,但不一定满足 F '( x ) = f ( x ) 。
4、极限 lim x →0x 0x=( )(A )-1;(B )0; (C )1;(D )25、设在区间[a , b ] 上 f ( x ) > 0, f '( x ) < 0, f ''( x ) > 0 。
复习资料(不定积分定积分)
复习资料(不定积分定积分)第四章不定积分⼀、知识⼩结 1.原函数定义1 如果对任⼀I x ∈,都有)()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。
原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上⼀定有原函数,即存在区间I 上的可导函数)(x F ,使得对任⼀I x ∈,有)()(x f x F ='。
注1:设)(x F 是)(x f 的原函数,则C x F +)(也为)(x f 的原函数,其中C 为任意常数。
注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则C x G x F =-)()((C 为常数)(1) 若f(x)的导函数是sinx,则f(x)有⼀个原函数为 ( )。
A..1Sinx +B..1Sinx -C.Cosx +1D..1Cosx - 2.什么是不定积分?)(x f 的全体原函数。
(2) ?=dx e x( )。
A.2c e x +B.2c e x +C.c e x+ D.ce x 1+3.两者的联系与区别?联系:它们的导数相同,都是 f (x ). 区别:不定积分是函数族;原函数是不定积分中的⼀个函数。
4.由原函数与不定积分的概念可得:1)=)()(x f dx x f dxd2) dx x f dx x f d ?=)()(3)5)+=C x dx5.积分公式1) ?+=C kx kdx (k 为常数);2) ?++=+C x dx x 11µµµ(1-≠µ)3) ?+=C x x dx ||ln ;4) ?++C x x dx arctan 125)+-C x xdx arcsin 12;6)?+=C x xdx sin cos7)?+-=C x xdx cos sin ;8)??+==C x xdx x dx tan sec cos 229)+-==C x xdx x dx cot csc sin 22;10)?+=C x xdx x sec tan sec11)?+-=C x xdx x csc cot csc ;12)?+=C e dx e xx13)?+=C aa dx a xxln ; 14)C x xdx +-=?|cos |ln tan , 15)C x xdx +=?|sin |ln cot , 16)C x x xdx ++=?|tan sec |ln sec , 17)C x x xdx +-=?|cot csc |ln csc , 18)C a x a dx x a +=+?arctan 1122,19)C a x a x a dx a x ++-=-?||ln 21122,20)C a x dx x a +=-?arcsin 122,21)C a x x a x dx +++=+?)ln(222||ln 2222 6.不定积分的性质性质1.+=+dx x g dx x f dx x g x f )()()]()([性质2.?=dx x f k dx x kf )()(,(k 为常数,0≠k )⼆、要点解析1. 直接积分法通过简单变形, 利⽤基本积分公式和运算法则求不定积分的⽅法 . (1)求dx x mn 。
2023-2024经济数学(2)复习题答案详解
增.
填空题
1.
1
1 4x
2
dx
(
) d arctan2x .
解:d arctan2x 2 dx ,所以, 1 dx 1 d arctan2x .
1 4x2
1 4x2
2
2.
x
f
ln x f ln x
dx
解:
x
f
ln x f ln x
dx
f
ln x f ln x
d
ln
x
.
f
1
ln
x
df
(ln
x)
2
解:f xy,x y x2 y 2 xy (x y)2 xy .令 xy s ,x y t ,则 f s,t t 2 s ,
故, f x,y y 2 x .
填空题
15.若 z 2x2 3xy y2 ,则 2 z
.
xy
解: z 4x 3y , 2 z 3.
x
xf
xdx
5
0
xdf
x
xf
5 (x)
0
5
0
f
xdx
5
f
(5)
3
7
.
填空题
5.
1
x
1 x2
2dx
1
.
偶倍奇零
1
解: x
1 x2 2dx
1 x2 2x 1 x2 1 x2 dx
1
2x
1 x2
1 dx
1
1
1
1
1dx 2 . 1
6.
x2
1 dx 2x 2
xd
ln
x
ln
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分-定积分复习题及答案-精品不定积分、定积分 测验试卷姓名: 学号: 班级: 成绩:一、选择题:(每小格3分,共30分)1、设sin x x 为()f x 的一个原函数,且0a ≠,则()f ax dx a ⎰应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x+2、若xe 在(,)-∞+∞上不定积分是()F x C +,则()F x =( )(A )12,0(),0x x e c x F x e c x -⎧+≥=⎨-+<⎩;(B ),0()2,0x x e c x F x e c x -⎧+≥=⎨-++<⎩;(C ),0()2,0x x e x F x e x -⎧≥=⎨-+<⎩;(D ),0(),0x x e x F x e x -⎧≥=⎨-<⎩3、设01,0()0,0,()()1,0x x f x x F x f t dt x >⎧⎪===⎨⎪-<⎩⎰,则( )(A )()F x 在0x =点不连续;(B )()F x 在(,)-∞+∞内连续,在0x =点不可导; (C )()F x 在(,)-∞+∞内可导,且满足()()F x f x '=; (D )()F x 在(,)-∞+∞内可导,但不一定满足()()F x f x '=。
4、极限02sin limxx x t tdtt dt→⎰⎰=( )(A )-1; (B )0; (C )1; (D )2 5、设在区间[,]a b 上()0,()0,()0f x f x f x '''><>。
令1()b as f x dx =⎰,2()()s f b b a =-31[()()]()2s f a f b b a =+-,则( )(A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s <<二、填空题:(每小格3分,共30分)1、设()f x 的一个原函数是2x e -,则它的一个导函数是___________。
2、设2()1,(2)2f x dx f ==⎰,则1(2)_____________xf x dx '=⎰。
3、已知()xxf e xe -'=,且(1)0f =,则()_________________f x =。
4、函数1()(2(0)xF x dt x =>⎰的单调减少区间为________________。
5、由曲线2y x =与y =___________。
三、计算题 (第1,2,3,4题各6分,第5,6,7题各8分,共48分)1、计算22(1)(1)x dx x x ++⎰2、计算2tan x xdx ⎰3、设1x ≥,求1(1)xt dt --⎰4、设21,0(),0x x x f x e x -⎧+≤=⎨>⎩,求31(2)f x dx -⎰5、120ln(1)(2)x dxx +-⎰ 6、计算1+∞⎰7、已知曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线12,l l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4)。
设函数()f x 具有三队连续导数,计算定积分320()()x x f x dx '''+⎰。
四、解答题(本题10分)设()f x 连续,10()()x f xt dt ϕ=⎰,且0()lim x f x A x→=(A 为常数),求()x ϕ',并讨论()x ϕ'在0x =处的连续性。
五、应用题(本题6分)设曲线方程为(0)xy e x -=≥,把曲线,xy e x -=轴、y 轴和直线x ξ=(0)ξ>所围平面图形绕x 轴旋转一周,得一旋转体。
(1)旋转体体积()V ξ;(2)求满足1()lim ()2V a V ξξ→+∞=的a 值。
六、证明题(6分)设()f x 在[,]a b 上连续且单调增加,证明:不等式()()2bbaaa b xf x dx f x dx +≥⎰⎰。
不定积分、定积分 测验卷 答案一.选择题:(每小格3分,共30分)1、(A )3sin ax C a x+;2、(C ),0()2,0x x e x F x e x -⎧≥=⎨-+<⎩;3、(B )()F x 在(,)-∞+∞内连续,在0x =点不可导;4、(C )1;5、(B )213s s s <<。
二、填空题:(每小格3分,共30分)1、一个导函数是2()4xf x e -'=。
2、13(2)4xf x dx '=⎰。
3、21()(ln )2f x x =。
4、单调减少区间为1(0,)4。
5、13。
三、计算题 (第1,2,3,4题各6分,第5,6,7题各8分,共48分)1、解:222(1)12()ln 2arctan (1)1x dx dx x x c x x x x +=+=++++⎰⎰ 2、解:222tan (sec 1)tan tan tan 2x x xdx x x dx xd x xdx x x xdx =-=-=--⎰⎰⎰⎰⎰2tan ln cos 2x x x x c =+-+3、解:被积函数1,10()1,0t t f t t t +-≤<⎧=⎨-≤<+∞⎩,当10x -≤<时,原式211(1)(1)2xt dt x -=+=+⎰; 当0x ≥时,原式02101(1)(1)1(1)2x t dt t dt x -=++-=--⎰⎰。
4、解:23101211171(2)()(1)3x tt f x dx f t dt t dt e dt e-=----====++=-⎰⎰⎰⎰。
5、解:111102000ln(1)111ln(1)()ln(1)(2)22(1)(2)x dx x d x dx x x x x x +=+=+----+-⎰⎰⎰101111ln 2()ln 23213dx x x =-+=-+⎰。
6、解:因为1lim ()x f x +→=∞,所以1x =为瑕点,因此该广义积分为混合型的。
212112dx I I +∞+∞=+=+⎰⎰⎰212211021122arctan (1)2x t tdtI xt t π-========+⎰⎰2122122arctan 2()(1)24tdt I x t t ππ+∞+∞+∞=====-+⎰⎰;所以121I I π+∞=+=⎰。
7、解:按题意,直接可知(0)0,(3)0,(3)0f f f ''===(拐点的必要条件)。
从图中还可求出()y f x =在点(0,0)与(3,2)处的切线分别为2,28y x y x ==-+。
于是(0)2,(3)2f f ''==-。
所以333222300()()()()()()()(21)x x f x dx x x df x x x f x f x x dx'''''''''+=+=+-+⎰⎰⎰ 3333000(21)()(21)()2()7(3)(0)2()x df x x f x f x dx f f f x '''''=-+=-++=-++⎰⎰7(2)22(20)20=-⋅-++⋅-=。
四、解答题(本题10分)解:因为0()lim x f x A x→=,故0lim ()0x f x →=,而已知()f x 连续,0lim ()(0)0x f x f →==;由于10()()x f xt dt ϕ=⎰,令u xt =,当:01t →时,有:0u x →,du xdt =;当0x ≠时,有10()1()()()x x f u du x f xt dt f u du xxϕ===⎰⎰⎰;当0x =时,有10(0)(0)0f dt ϕ==⎰;所以0(),0()0,0x f u du x x xx ϕ⎧⎪≠=⎨⎪=⎩⎰。
当0x ≠时,有02()()()xxf x f u dux xϕ-'=⎰;当0x =时,02()()(0)()()limlimlimlim22x x x x x f u du x x f x Ax xx x ϕϕϕ→→→→-====-⎰; 所以02()(),0(),02x xf x f u dux x x A x ϕ⎧-⎪≠⎪'=⎨⎪=⎪⎩⎰。
又因为002200()()()()lim ()limlim()22xxx x x xf x f u duf u du f x A A x A xx x ϕ→→→-'==-=-=⎰⎰, 所以0lim ()(0)2x Ax ϕϕ→''==,即()x ϕ'在0x =处连续。
五、应用题(本题6分)解:(1)2220()()(1)2x V y dx e dx e ξξξπξππ--===-⎰⎰;(2)2()(1)2a V a e π-=-,于是211()lim ()lim (1)2224V a V e ξξξππξ-→+∞→+∞==⋅-=;故211(1)lim ()ln 22242a e V a ξππξ-→+∞-==⇒=。
六、证明题(6分)证:设()()()[,]2x xa aa x F x tf t dt f t dt x ab +=-∈⎰⎰因为()f x 在[,]a b 上连续,所以111()()()()()()[()()]22222x x xa a a a x x a F x xf x f t dt f x f x f t dt f x f t dt ++'=--=-=-⎰⎰⎰因为()f x 在[,]a b 单调增加,0,()()()()0t x f t f x f x f t ≤≤≤⇒-≥,所以()0F x '≥; 所以()F x 在[,]a b 单调增加;又()0,F a =所以()()0F b F a ≥=, 即()()02bb aa ab xf x dx f x dx +-≥⎰⎰,所以有()()2b ba a ab xf x dx f x dx +≥⎰⎰。