2016全国中学生数学能力竞赛八年级(初二)组初赛试题
首届全国中学生数理化学科能力竞赛 八年级数学学科解题技能初赛及决赛试题答案

首届全国中学生数理化学科能力展示活动初赛 八年级数学学科能力解题技能展示试题试卷说明:1、本试卷共计15题,满分为120分;2、考试时间为120分钟姓名一、选择题(每题5分,合计30分)1、如果“学”、“科”、“能”、“力”这四个汉字中每个汉字分别代表一个非零个位数,对于运算符号“∆”有:学科能力∆1=科学能力;学科能力∆2=能力科学,那么1234∆1∆2=( )。
A .4312B .3421C .4321D .3412 解析:答案D 。
“∆1”运算法则为从左向右数,前两位上的字符互换位置,后两位字符不变,“∆2”运算法则是从左向右数,后两位数字和前两位数字互换位置,后两位前后顺序不变,前两位交换位置。
2、已知点P 关于原点对称点1P 的坐标是(-2,3),则点P 关于y 的对称点2P 的坐标是( )。
A .(-3,-2)B .(2,-3)C .(-2,-3)D .(-2,3)解析:答案C 。
点1P 与点P 关于原点对称,点2P 与点P 关于y 轴对称,则点2P 与点1P 关于x 轴对称。
3、方程组36x y x yz +=⎧⎨+=⎩的非负整数解有( )个。
A .1B .2C .3D .无数解析:答案B 。
枚举法,满足题目要求的只有两组解:x=0,z=2,y=3;x=3,z=2,y=1。
4、由6条长度均为2 cm 的线段可构成边长为2 cm 的n 个等边三角形,则n 的最大值为( )。
A .4 B .3 C .2 D .1解析:答案A 。
摆成立体图形——正四面体。
5、已知三角形的三条边长分别8x 、x2、84,其中x 是正整数,这样的互不全等的三角形共有( )个。
A .5B .6C .7D .8解析:答案C 。
由三角形三边关系可得不等式组: x2+8x>84, x2-8x<84, 解得6<x<14,x=7,8,9,10,11,12,13。
6、已知=++++++++2008200813312211112222 ( ) A .1 B .20072008 C .20092008 D .20082009解析:答案D 。
2016年初二真题全国初中数学联赛决赛试题

激发兴趣 培养习惯 塑造品格学而思联赛团队2016全国初中数学联合竞赛试题(初二组)第一试一、选择题(本题满分42分,每小题7分)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =,a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A12 .B.C 1 .D2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ) .A 9种 .B 10种 .C 11种 .D 12种 3.如图,P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠= ( ).A 085 .B 090 .C 095 .D 01004.记11n S n =++则20162016S =( ) .A 20162017 .B 20172016 .C 20172018 .D 201820175.点D 、E 、F 分别在ABC ∆的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5,AB AC BE CF += 则AMMD= ( ) .A 72 .B 3 .C 52.D 2 6.设,,,a b c d 都是正整数,且5234,,319,a b c d a c ==-= 则2b ca d-= ( ) .A 15 .B 17 .C 18 .D 20二、填空题(本题满分28分,每小题7分)1.如图,已知四边形ABCD 的对角互补,且,15BAC DAC AB ∠=∠=,12.AD = 过顶点CA激发兴趣 培养习惯 塑造品格学而思联赛团队作CE AB ⊥于,E 则AEBE= .2.已知整数,,a b c 满足不等式22222112820,a b c ab b c +++<++则a b c +-= ____.3.若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 .4.将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试一、(本题满分20分)如图,ABCD 为平行四边形,E 为BC 的中点,DF AE ⊥于F ,H 为DF 的中点.证明:CH DF ⊥.D激发兴趣 培养习惯 塑造品格学而思联赛团队二、(本题满分25分)设互不相等的非零实数,,a b c 满足:222,a b c b c a+=+=+ 求22222a b c b c a ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值.三、(本题满分25分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.。
第九届中学生数理化学科能力展示活动初赛试题A卷初二数学试卷答案

第九届全国中学生数理化学科能力展示活动八年级数学解题技能展示试题(A 卷)答案一、选择题(每题6分,共48分)1.A .解析由三视图可知几何体为倒置的圆锥,所以匀速注水时,水面上升的高度越来越慢.2.D .解析不妨设第一年8月份的销售额为b ,则9月份的销售额为b (1+a ),10月份的销售额为b (1+a )2,……依次类推,到第二年8月份是第一年8月份后的第12个月,故第二年8月份销售额是b (1+a )12.由增长率的概念知,这两年内的第二年某月的销售额比第一年相应月销售额的增长率为b (1+a )12-b b=(1+a )12-1.3.C .解析90230)15(=⨯+4.D.解析2232364a b c a b c ++=⎧⎨++=⎩解得b=53a -,c=-16a +.d x =(a+cd)x+bd=x 对任意x 成立,则01bd a cd =⎧⎨+=⎩,b=0,a=5,c=-1,d=4,选D 5.B .解析分别设出甲、乙、丙原有水的体积,根据题意列出方程组,作差即可得到甲、乙两杯内的原本水量相差多少毫升.设甲、乙、丙杯内原有水量分别为a 、b 、c 毫升,则⎩⎨⎧=+++=-+b c b a a c a 3180,240两式相减得b ﹣a =110.6.B 。
解析(译)在“谁想成为百万富翁”的游戏节目中,下表所示连续答对多少道问题的奖金(以元为单位,其中K =1000)。
试问在哪两道问题之间,奖金增加的百分率最小?答案:从2到3.7.C .解析当l =12时,为使n 最大,先考虑截下的线段最短,第1段和第2段长度为1、1,由于任意三段都不能构成三角形,∴第3段的长度为1+1=2,第4段和第5段长度为3、5,恰好分成了5段;当l =100时,依次截下的长度为1、1、2、3、5、8、13、21、34的线段,长度和为88,还余下长为12的线段,因此最后一条线段长度取为34+12=46,故n 的最大值是9.8.B .解析作MK ⊥AC ,FT ⊥AD 垂足分别为K ,T ,证明△AGF ≌△AEM ,△AFT ≌△AMK 得到AF=AM ,FT=MK=EK=DT ,在RT △ADC 中根据已知条件求出CD ,AD ,设MK=EK=x ,根据AE=AK+EK 列出方程求出x ,在RT △HEC 中求出HC ,进而求出DH ,再根据NTDN FT DH =,求出DN ,利用MN=AD ﹣AM ﹣DN 求出MN .二、填空题(每题8分,共32分)解析∵ab -(a +b )=(a -1)(b -1)-1。
2016年全国初中数学联赛试题及参考答案_第一试_

解 设 Rt△ABC 的 直 角 边 为a,b,斜 边 为c,
.
[答]167334.
设 两 个 三 位 数 分 别 为 和 y,由 题 设 知
1000x+y=3xy
①
由①式 得 y=3xy-1000x= (3y-1000)
x,故y 是x 的整数倍,不妨设y=tx(t为正整
数),代 入 ① 式 得 1000+t=3tx,所 以 x =
10030t+t.因 为 是 三 位 数,所 以 x=10030t+t≥
[答](D).
作 AH ⊥BD 于 点 H ,易 知 △AMH ∽
△CMD,所
以AH CD
=CAMM
,又
CD=1,所 以
AH =CAMM
①
设 AM=x,则 CM=槡5-x.
在 Rt△ABM 中,可得
AH =ABB·MAM
=
槡5x 槡5+x2
.
所以,由①式得 槡5x = x , 槡5+x2 槡5-x
奇数的立 方 差,则 称 这 个 正 整 数 为 “和 谐 数 ”。 如:2=13 - (-1)3,26=33 -13,2 和 26 均 为 “和谐数”.那 么,不 超 过 2016 的 正 整 数 中,所 有 的 “和 谐 数 ”之 和 为 ( ).
(A)6858 (B)6860 (C)9260 (D)9262. [答](B). 注意到 (2k+1)3 - (2k-1)3 =2(12k2 + 1),由 2(12k2 +1)≤2016 得|k|<10. 取k=0,1,2,3,4,5,6,7,8,9,即 得 所 有 的 不 超 过 2016 的 “和 谐 数 ”,它 们 的 和 为 [13-(-1)3]+(33-13)+ (53-63)+ … +(193-173)=193+1=6860. 4.已 知 ⊙O 的 半 径 OD 垂 直 于 弦 AB,交 AB 于点C,连接 AO 并延长交 ⊙O 于 点E,若 AB=8,CD=2,则△BCE 的面积为( ). (A)12 (B)15 (C)16 (D)18 [答](A). 设 OC=x,则 OA= OD=x+2,在 Rt△OAC 中,由勾 股 定 理 得 OC2 + AC2=OA2,即 x2 +42 = (x+2)2,解 得 x=3.又 OC 为 △ABE 的 中 位 线, 所以 BE=2OC=6. 所以直角 △BCE 的 面 积 为 12CB·BE= 12. 5.如 图,在 四 边 形 ABCD 中,∠BAC=
全国数学知识应用竞赛八年级初赛试(校拟)题卷附答案

全国数学知识应用竞赛八年级初赛试(校拟)题卷(注:(1)可使用计算器;)1.刘师傅是某精密仪器厂的一名检测员.某天,他用螺旋测微器测量了一个工件的长度,共测量10次,记下的测量结果如下(单位:cm ):1.991,1.995,1.996,1.993,1.999,1.995,1.997,1.994,1.995,1.930. 请问同学们这件工件的可靠长度应是 .(注:螺旋测微器是一种测量准确可达到0.001cm 的精密仪器.)2.新世纪中学八年级共有四个班,每班各选5名同学组成一个代表队,这四支代表队(分别用A ,B ,C ,D 表示)进行数学知识应用竞赛,前三名将参加“学用杯”全国数学知识应用竞赛.甲,乙,丙三位同学预测的结果分别为: 甲:C 得亚军;D 得季军; 乙:D 得殿军,A 得亚军; 丙:C 得冠军,B 得亚军.已知每人的预测都是半句正确,半句错误,则冠,亚,季,殿军分别为 . 3.八年级三班同学参加学校趣味数学竞赛,试题共有50道.评分标准是:答对一道给3分,不答给1分,答错倒扣1分.班长小明在计算全班总分时,第一次计算结果是5734分;第二次计算结果是5735分.这两次中有一次是正确的,那么正确的结果是 分. 4.前进中学校园内有一块如图1所示的三角形空地,学校准备在它上面铺上草皮,已知15A ∠=,90C ∠=,20AB=米,请你计算一下学校要购买米2的草皮才能正好铺满空地.5.某高楼装潢需要50米长的铝材,现有3米,6米,9米,12米,15米,19米,21米,30米几种型号的可供选择.如果你是采购员,若使购买的铝材总长恰好为50米,则应采用的购买方案是 .6.如图2,在正方形上连接等腰直角三角形,不断反复同一个过程,假设第一个正方形的边长为单位1.第一个正方形与第一个等腰三角形的面积和记作1S ;第二个正方形与第二个等腰直角三角形的面积和记作2S ;;那么第n 个正方形与第n 个等腰直角三角形的面积和n S 用含n 的代数式表示为.图17.为响应政府的号召:为每位职工办理应该享受的福利待遇.“天鹰”公司规定一个退休职工每年可获得一份退休金,金额与他工作的年数的算术平方根成正比例(比例系数为k ,)如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年()b a ≠,它的退休金比原来的多q 元,那么他每年的退休金是(以a ,b ,p ,q 表示)元.8.建设节约型社会就是使每一位公民养成节约意识,形成人人节约的良好习惯.节约与否不仅是个生活习惯、生活小节问题,更是个思想道德境界的问题.我们拥有的一切物质财富,无一不是劳动的结晶,每一滴水,每一度电,每一张纸,都凝结着劳动者的心血与汗水,所以,我们应该节约.假如你送给好朋友们的一个棱长为1的正方体礼物,需要用一条张正方形彩纸包装,若不把纸撕开,那么所需纸的最小边长为 .二、选择题(每小题5分,共30分)9.如图3,将一块边长为4cm 的正方形纸片ABCD ,叠放在一块足够大的直角三角板上(并使直角顶点落在A 点,)设三角板的两直角边分别与CD 交于点F ,与CB 延长线交于点E ,那么四边形AECF 的面积为( ) A.212cmB.214cmC.216cmD.218cm10.座钟的摆摆动一个来回所需的时间称为一个周期,其计算公式为2T =其中T 表示周期(单位:秒),l 表示摆长(单位:米),9.8g =米/秒2.假如一台座钟的摆长为0.5米,它每摆动一个来回发一次滴答声,那么在一分钟内,该座钟大约发出滴答声的次数为 ( ) A.60 B.48 C.46 D.42 11.“十一”黄金周期间,各商场纷纷开展促销活动,如图4是“福满多”超市中甲、乙两种化妆品的价格标签,一位理货员理货时发现标签上有的地方不清楚了:甲化妆品的原价和现价看不清楚,乙化妆品的打折数和现价看不清楚了,但是收银员知道刚卖过2件甲化妆品和3件乙化妆品的款数为108元,3件甲化妆品和2件乙化妆品的款数为120元,据此理货员可以算出甲化妆品的原价和乙化妆品的打折数分别为 ( ) A.36元 8折B.24元 8折C.36元 7折 D.26元 7折图212.将正方形纸片由下向上对折,再由左向右对折,称为完成一次操作(见图5).按上述规则完成五次操作以后,剪去所得小正方形的左下角.那么,当展开这张正方形纸片后,所有小孔的个数为 ( ) A.48 B.128 C.256 D.304 13.“诺亚”集团计划下一年生产一种新型高清晰数字平板电视,下面是各部门提供的数据信息:人事部:明年生产工人不多于8000人,每人每年按2400工时计算; 技术部:生产一台平板电视,平均要用10个工时,每台平板电视需要10个某种主要部件; 供应部:今年年终库存某种主要部件4000000个,明年能采购到的这种主要部件为16000000个;市场部:预测明年销售量至少1800000台.请根据上述信息判断,明年该公司的生产量x 可能是 ( ) A.1800000x 2000000≤≤ B.1920000x 2000000≤≤ C.18000001900000x ≤≤ D.18000001920000x ≤≤14.如图6所示为长方形台球桌ABCD ,一个球从AB 边上某处P 点被击出,分别撞击球桌的边BC ,CD ,DA 各1次后,又回到出发点P 处,球每次撞击桌边时,撞击前后的路线与桌边所成的角相等(例如图中αβ∠=∠).若3AB =,4BC =,则此球所经过路线的总长度(不计球的大小)为()A.不确定 B.12 C.11D.10甲 乙图4 图5 P A RQ图6三、解答题(每小题分,共分)15.远大商贸有限公司,现有业务员100名,平均每人每年可创业绩收入a 元.为适应市场发展的需要,又在某市开设一家分公司,需派部分业务精英去开拓市场.公司研究发现,人员调整后,留在总部的业务员的业绩年收入可增长20%,而派到分公司的业务员,平均每人的业绩年收入可达3.5a 元.为了维护公司的长远利益,要保证人员调整后,总部的全年总收入不少于调整前,而分公司的总收入也不少于调整前总公司年收入的一半,请你帮公司领导决策,需要往分公司派多少名业务精英.16.如图7,边长为a 的正方形ABCD 的四边贴着直线l 向右无滑动“滚动”,当正方形“滚动”一周时,该正方形的中心O 经过的路程是多少?顶点A 经过的路程又是多少?四、开放题(每小题分,共分)17.曹冲称象的故事中,聪明的曹冲知道大象的体重不能直接去称,就把称大象的重量转化为称石头的重量:他先把大象赶到船上,得到船吃水的深度;再把大象赶下船,往船上装一块块的石头,达到相同的吃水深度,于是,称出石头的重量即可得到大象的重量. 曹冲的思维方法就是转化的思想方法,该思想方法在数学中有着广泛而重要的应用,特别是在解决一些实际问题时,应用就更为广泛了. 请你根据自己所学的数学知识,联系生活实际,编写一道用转化的思想方法解决实际问题的题目,并说明理由.18.为庆祝抗日战争胜利六十周年,请你借助平移,旋转或轴对称等知识设计一个图案,以表达你热爱和平,反对侵略的美好愿望(要求:画出图案,并简要说明图案的含义).参考答案A 图7 l一、填空题(每小题5分,共40分)1.1.995米 2.C,A,D,B3.57344.505.19米铝材2根,12米铝材1根;或19米铝材2根6.152n +7.222()aq bp bp aq -=-8.二、选择题(每小题5分,共30分)9.C 10.D 11.C 12.C 13.D 14.D三、解答题(每小题20分,共40分)15.设需派往分公司x 名业务精英,依题意可得(100)(120%)1003.5100.x a a a x a -+⎧⎪⎨1⨯⎪⎩2,≥≥ ················································································································· (10分)解之得1005073x ≤≤. ········································································ (15分) 由于x 为正整数,则x 可取15或16人.故可派往分公司的业务精英为15人或16人. ······································· (20分)16.解:(1)如图1,正方形ABCD “滚动”一周时,中心O 所经过的路程为:1244L ⎛⎫=⨯π⨯ ⎪ ⎪2⎝⎭中 ················································································ (8分)a =. ······································································································ (10分) (2)如图2,正方形ABCD “滚动”一周时,顶点A 所经过的路程为:A()D B ()A C ()B D ()C A ()D ()C ()B ()A ()D C B图2l图1l1224L a 1=⨯)+2⨯⨯π4顶 ·································································· (18分)1122244a a a =⨯π+⨯⨯π. ················································· (20分) 四、开放题(每小题20分,共40分) 17.答案不惟一.例如:要测量河两岸相对两点A ,B 的距离(如图3所示),可先在AB 的垂线AF 上取两点C ,D ,使AC CD =,再过D 作AD 的垂线DE ,使B ,C ,E 三点在一条直线上,这时DE 的长就是AB 的长.解:由题意可知:AB AD ⊥,DE AD ⊥.所以90BAC EDC ∠=∠=. 因为在BAC △和EDC △中, BAC EDC ∠=∠, AC CD =(已知),ACB DCE ∠=∠(对顶角),所以(ASA)BAC EDC △≌△.故DE AB =.即DE 的长就是AB 的长. ··········································································· (18分) 此题中,我们运用了转化的思想方法,把不能直接测量的AB 的长转化为可直接测量的DE 的长. ····································································································· (20分) 说明:本题可仿照上例给分. 18.答案不惟一说明:1.正确运用平移,旋转或轴对称等知识等设计出图案; ················ (10分) 2.正确表达题目要求的含义; ····································································· (18分) 3.创意新颖,含义深刻. ············································································· (20分)图3。
首届全国中学生数理化学科能力竞赛八年级数学学科能力解题技能初赛试题详解

首届全国中学生数理化学科能力竞赛八年级数学学科能力解题技能初赛试题详解济宁市任城区济东中学一、选择题(每题5分,合计30分)1、如果“学”、“科”、“能”、“力”这四个汉字中每个汉字分别代表一个非零个位数,对于运算符号“∆”有:学科能力∆1=科学能力;学科能力∆2=能力科学,那么1234∆1∆2=( D ).A .4312B .3421C .4321D .3412解:1234∆1∆2=2134△2=34122、已知点P 关于原点对称点1P 的坐标是(-2,3),则点P 关于y 的对称点2P 的坐标是( C ).A .(-3,-2)B .(2,-3)C .(-2,-3)D .(-2,3)3、方程组36x y x yz +=⎧⎨+=⎩的非负整数解有( B )个.A .1B .2C .3D .无数解:二式相减得:y-yz=-3, y(z-1)=3因为y 、z 为非负整数,所以y=1,z-1=3,或y=3,z-1=1从而x=2,y=1,z=4;x=0,y=3,z=2.4、由6条长度均为2 cm 的线段可构成边长为2 cm 的n 个等边三角形,则n 的最大值为( C ).A .4B .3C .2D .15、已知三角形的三条边长分别8x 、x 2、84,其中x 是正整数,这样的互不全等的三角形共有( C )个.A .5B .6C .7D .8解下列三组不等组:(1)8x +x 2﹥84,8x ﹥84, x 2﹥84;(2)x 2+84﹥8x ,84﹥8x , x 2﹥8x ;(3) 8x +84﹥x 2、8x ﹥x 2,84﹥x 2得x=7,8,9,10,11,12,136、已知=++++++++2008200813312211112222 ( D ) A .1 B .20072008 C .20092008 D .20082009解:一般地 a 2 +a=a(a+1)=+a a 21111+-a a所以:原式=(2111-)+(3121-)+…+(2009120081-)=1-20091=20082009二、填空题(每题5分,合计30分)7、北京奥运期间,体育场馆要对观众进行安全检查.设某体育馆在安检开始时已有若干名观众在馆外等候安检,安检开始后,到达体育馆的观众人数按固定速度增加.又设各安检人员的安检效率相同.若用3名工作人员进行安检,需要25分钟才能将等候在馆外的观众检测完,使后来者能随到随检;若用6名工作人员进行安检,时间则缩短为10分钟.现要求不超过5分钟完成上述过程,则至少要安排 11 名工作人员进行安检.解:设体育馆在安检开始时已有m 名观众在馆外等候安检,安检开始后,到达体育馆的观众人数按固定速度n 人/分钟增加. 各安检人员的安检效率为c 人/分钟.(1) 用3名工作人员进行安检,需要25分钟才能将等候在馆外的观众检测完,使后来者能随到随检;得:3×25c=m+25n (1)(2) 若用6名工作人员进行安检,时间则缩短为10分钟.得:6×10c=m+10n (2)由(1)、(2)得:m= 50c, n=c.现要求不超过5分钟完成上述过程,设至少要安排 x 名工作人员进行安检.则: 5xc=m+5n=50c+5c=55c所以:x=118、已知,a b 均为质数,且满足213a a b +=,则2b a b += 17 .解:显然a ≤3当a=2时,4+ b 2=13,b=3;当a=3时,9+ b 3=13, b 3=4,不合题意。
北京市初二数学竞赛学生版

【题 9】△ABC 中,∠BAC=45°,∠ABC=60°,高线 AD 与 BE 相交于 H,若 AB=1,求四边形 CDHE 的面 积_________.
x
一点,则 OP 的最小值是( )
A.1
B. 2
C. 3
D.2
O
B M
Ax
【题 4】已知 a 555555 ,则 a 除以 84 所得余数是( )
2016个5
A.0
B.21
C.42
D.63
【题 5】一张三角形纸片的长为 1 的边仅与一个边长为 1 的正 12 边形纸片的一条边重合,平放在桌面上, 则所得到的凸多边形的边数一定不是( )
A.11
B.12
C.13
D.14
【题 6】已知 24 t2 8 t2 2 ,求 24 t2 8 t2 的值为_______.
【题 7】正数 a,b,c 使得等式 a2 a 1 b2 b 1 c2 c 1 a a 1 bb 1 c c 1 成立,试确定
1956a2 1986b2 2016c2 的值为________.
A C1 C2
B2 B1
B A1 A2 C
【题 13】一个自然数 n 若能表示为若干个正整数的和,且这些正整数的倒数和也恰等于 1,则称 n 为“金 猴数”,比如 2 4 8 8 22 且 1 1 1 1 1 ,22 就是一个“金猴数” 2488
(1)证明:11 与 28 是两个“金猴数”; (2)证明:如果 n 是“金猴数”,则 2n 2 、 2n 9 也是“金猴数”; (3)请你判定:2016 也是“金猴数”.
2016初二联赛试题与参考答案

。 ab 【答案】32. 1 1 2 4 8 16 。 2 4 8 1 x 1 x 1 x 1 x 1 x 1 x16 ∴ a 16, b 16, a b 32 。 8.若实数 a, b 满足 2a 2 | b | 1 ,则 a 2 2 | b | 的取值范围为 【答案】 2 a 2 2 | b |
∴ n 14 或 7 或 2 或 5。
第二试(C)
一、(本题满分 20 分) 三只蚂蚁同时从点 A 出发,沿三角形道路 A B C A 爬行,已知第一只蚂蚁在
AB, BC , CA 上爬行速度分别为 12 厘米/秒,10 厘米/秒,15 厘米/秒;第二只蚂蚁在此三
段道路上的速度分别为 15 厘米/秒,15 厘米/秒,10 厘米/秒;第三只蚂蚁在此三段上的 速度分别为 10 厘米/秒,20 厘米/秒,12 厘米/秒。若三只蚂蚁同时回到 A 点,求 ABC 的 值。 解:记 AB c, BC a, CA b , 则
由 2 x 2 y a ,可知 a 必为偶数, 又 1
22 为整数,所以 a 0, 4, 24, 20 。 a2
故选 C。 ( )
2.定义运算 a b A.720 C.240 【答案】B。 代入求值的结果。
a ( a 1)( a 2) ( a b 2)( a 2 1
2016 年全国初中数学联合竞赛试题参考答案及评分标准
第 4 页 共 5 页
1 ∵ BE 平分 ABC , ∴ ABE EBC ABC 29.5 。 2
又 BD BD, 故 ABD GBD 。……………………………………(10)
BAC 180 ABC ACB 180 59 30.5 90.5 ,