函数图像与坐标

合集下载

函数的概念及图像

函数的概念及图像

函数的概念及图象一、知识要点概述(一)函数有关概念1、常量:在某一变化过程中保持不变的量.2、变量:在某一变化过程中可取不同数值的量.3、函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、函数的表示方法5、画函数图象的步骤:①列表;②描点;③连线,通常称为描点法.6、函数自变量的取值范围(二)平面直角坐标中点的坐标特征3、平行于坐标轴的直线上的点(1)平行于x轴的直线上任意两点的纵坐标相同;(2)平行于y轴的直线上任意两点的横坐标相同.4、对称点的坐标:(1)点P(a,b)关于x轴的对称点坐标是P(a,-b)即横坐标相同,纵坐标互为相反1数.(-a,b)即横坐标互为相反数,纵坐标相(2)点P(a,b)关于y轴的对称点坐标是P2同.(-a,-b)即横、纵坐标都互为相反数.(3)点P(a,b)关于原点的对称点坐标是P35、各象限角平分线上的点(1)第一、三象限角平分线上的点的横、纵坐标相等.(2)第二、四象限角平分线上的点的横、纵坐标互为相反数.6、点与原点、坐标轴的距离(1)点P(a,b)与原点的距离是.(2)点P(a,b)与x轴的距离是|b|(即其纵坐标的绝对值).(3)点P(a,b)与y轴的距离是|a|(即其横坐标的绝对值)二、典型例题剖析例1、现有点M(1+a,2b-1)在第二象限,则点N(a-1,1-2b)在第________象限.分析:本题主要考查各象限内点的坐标符号特征.由于点M在第二象限,,所以N点在第三象限.解:三例2、若m为整数,点P(3m-9,3-3m)是第三象限的点,则P点的坐标是()A.(-3,-3)B.(-3,-2)C.(-2,-2)D.(-2,-3)分析:根据第三象限点的符号特征,建立不等式组求出字母m的取值范围,再确定m的值,从而可得P点坐标.解:选A.例3、点A(1,m)在函数y=2x图象上,则点A关于y轴的对称点的坐标是(________,________)分析:把A(1,m)代入函数式y=2x中,求m=2,则A(1,2),再根据对称点的符号规律求A点的对称点坐标.解:(-1,2)例4、已知P点关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)分析:(2,3)关于x轴对称,故求P(2,-3),∴点P(2,-3)关于原点对称由点P与P1的点坐标易求.解:选D.例5、已知两圆的圆心都在x轴上,A、B为两圆的交点,若点A的坐标为(1,-1),则点B的坐标为()A.(1,1)B.(-1,-1)C.(-1,1)D.无法求出分析:由于圆是轴对称图形,故两圆的两个交点A,B关于x轴对称.解:选A.例6、下列各组的两个函数是同一函数吗?为什么?(1)y=x和(2)y=πx2和S=πr2(其中x≥0,r≥0)(3)y=x+2和分析:判断两个函数是否为同一函数:①要判断两个函数的自变量取值范围是否相同;②要判断自变量与函数的对应规律是否完全相同.解:(1)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≠0的实数;(2)是同一函数,因为它们的自变量的取值范围相同,而且自变量与函数的对应规律完全相同;(3)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≥-2.例7、在函数中自变量x的取值范围是________.分析:求函数式中自变量的取值范围的一般思路是:①函数解析式中的分母不能为0;②偶次根式的被开方数应为非负数;③零指幂和负整指数幂的底数不能为0.此题中,自变量x应满足解:x≥-1且x≠2.例8、等腰△ABC周长为10cm,底边BC长为y cm,腰长AB为x cm.(1)求出y与x的函数关系式;(2)求x的取值范围;(3)求y的取值范围;(4)画出此函数的图象.分析:要求y与x的函数关系,关键是找出y与x之间的等量关系,确定x的取值范围应从边长为正数和三角形三边关系方面入手.画函数的图象应按列表、描点、连线的步骤进行,同时应注意自变量的取值范围对图象的影响.解:(1)∵△ABC的周长为10,∴2x+y=10,∴y=10-2x..(3)由解之得0<y<5.(4)函数的图象如图所示.点评:求实际问题中的函数关系式应标明自变量的取值范围,画有自变量取值范围的函数图象时应注意端点处是实心点还是空心圆圈.。

函数及其图象函数的图像平面直角坐标系

函数及其图象函数的图像平面直角坐标系
对称中心
有些函数图像可能关于原点对称,这种对称性称为奇函数的特性。
函数图像的顶点坐标
极值点
当函数在某点的一阶导数为零,二阶导数为负时,该点为函数的极小值点,极小 值点坐标为(x,f(x))。
拐点
当函数在某点的一阶导数为零,二阶导数为正时,该点为函数的拐点,拐点的坐 标为(x,(f(x)))。
04
记作y=f(x),其中f是函数的符号,x是自变量,y是因变量。
函数的表示方法
解析法
用数学形式(解析式)表示函数关系的方法 。
图象法
用图象表示函数关系的方法。
表格法
用表格表示函数关系的方法。
函数的分类
常量函数
因变量的值只与自变量的值无关的函数。
线性函数
因变量的值与自变量的值成正比或反比的函数。
幂函数
因变量的值是自变量的幂的函数。
指数函数
因变量的值是自变量的指数的函数。
对数函数
因变量的值是自变量的对数的函数。
三角函数
因变量的值是自变量正弦、余弦、正切等三角函数的函 数。
02
平面直角坐标系
坐标系的建立
通过定义原点和正方向,以及单位长度,在平面上建立坐标系。 固定x轴和y轴的方向,确定横轴和纵轴的长度单位。
常见函数的图像
正比例函数
总结词:直线
详细描述:正比例函数图像为一条直线,其解析式为$y=kx$,其中$k$为常数。 当$k>0$时,直线经过一、三象限,$y$随$x$的增大而增大;当$k<0$时,直线 经过二、四象限,$y$随$x$的增大而减小。
反比例函数
总结词:双曲线
详细描述:反比例函数图像为双曲线,其解析式为$y= \frac{k}{x}$,其中$k$为常数。双曲线与坐标轴不相交 ,且分布在第一、第三象限。当$k>0$时,双曲线的两 支分别位于第一、第三象限,$y$随$x$的增大而减小 ;当$k<0$时,双曲线的两支分别位于第二、第四象限 ,$y$随$x$的增大而增大。

平面直角坐标系及函数图像

平面直角坐标系及函数图像
曲面方程
曲面是三维空间中由无数个平面或曲线所围成的几何体。在 三维坐标系中,曲面的方程可以用一个三元方程来表示。例 如,球面方程为(x-a)^2+(y-b)^2+(z-c)^2=R^2,其中 (a,b,c)为球心坐标,R为球半径。
感谢您的观看
THANKS
空间点坐标
在三维坐标系中,任意一点P的位置可以用三个实数x、y、z来表示,称为点P的坐标,记 作P(x,y,z)。
空间点坐标表示方法
柱坐标
柱坐标是一种用极径、极角和垂直高度三个量来表示空间点位置的方法。在柱 坐标系中,点的位置用(r,θ,z)表示,其中r为点到Z轴的距离,θ为点与X轴正方 向的夹角,z为点到XY平面的距离。
05
拓展内容:三维坐标系简介
三维坐标系定义及性质
三维坐标系定义
三维坐标系是在平面直角坐标系的基础上,引入第三个坐标轴而形成的坐标系。通常,三 个坐标轴分别用X、Y、Z表示,它们互相垂直并相交于原点O。
右手定则
在三维坐标系中,通常采用右手定则来确定坐标轴的方向。即伸出右手,大拇指指向X轴 正方向,食指指向Y轴正方向,中指指向Z轴正方向。
利用性质判断
周期函数具有一些特殊的性质,如周期性、 对称性、可加性等,这些性质可以帮助我们 判断一个函数是否具有周期性。
04
典型问题解析与讨论
求交点坐标问题
01
02
03
解析法
联立两个函数的解析式, 解方程组求得交点的横纵 坐标。
图象法
在平面直角坐标系中分别 作出两个函数的图象,两 图象交点的坐标即为所求 。
坐标的表示方法
在平面直角坐标系中,一个点的坐标可以用数对来表示。例如,(a, b)表示一个点的横坐标为a,纵坐 标为b。当a>0且b>0时,该点位于第一象限;当a<0且b>0时,该点位于第二象限;当a<0且b<0时 ,该点位于第三象限;当a>0且b<0时,该点位于第四象限。

点的坐标与函数图像的关系——复习函数知识(二)

点的坐标与函数图像的关系——复习函数知识(二)

。.
。+


。+


。+


。.

.+
。+


,+



数学大世界 . ◇ ++++ ++.+++ 0。1 0 。 。 。。。。。

吉林
郭 奕 津
学 习 函数 知 识 时 , 同学 们 注 意 一 个 十 分 简 单 的 关 请 系: 一个点如果 在某 函数 的图象上 , 那么 这个点 的坐标 满足 函数 的解 析 式 , 把 点 的 坐 标 代 入 解 析 式 中 , 析 即 解 式左 右两 边 相 等 . 之 , 个 点 不 在 函数 的 图象 上 , 一 反 一 这
0 的 图象 上 . )
C — — B

d )+b d— ) ( c 的值 . 分 析 由 点 P, 在 函数 Y= Q
fo j
+5的 图 象 上 , 点 P P 的 坐 标 满 则 ,
足 y= + 5这 一 关 系. 贝 。+ Ⅱ 5=br—b 一 ; , I = 5
Yo÷ : :0. 2 o l 丁 — 05 492 9 0 1 ‘

如用待定系数法求函数的解 析式时 , 是把点的坐 就 标代入解析式 中, 出函数解析式 中的系数. 求 因此, 当题中的条件中若含有“ 某某点在函数 图象上” 这样的条件 , 往往要考虑把这点的坐标代入解析式中.
分析

‘ 尸 , 2 … o 纵 坐 标 依 次 为 1 3 5 . 尸 , ‘ 的 ,,,
这 样 的 2 1 奇数 , 0 0个


点 P 的 纵 坐 标 为 4 1. 2 09

函数的图象(精品课件)

函数的图象(精品课件)
解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

二次函数y=ax^2+k的图像与性质

二次函数y=ax^2+k的图像与性质
-8
向 下 平移 |k|个单位得到。
上加下减
(1)函数y=4x2+5的图象可由y=4x2的图象 向上 平移 5 个单位得到;y=4x2-11的图象 下 可由 y=4x2的图象向 平移 11个单位得到。 (2)将函数y=-3x2+4的图象向 下 平移 4 个单位可得 y=-3x2的图象;将y=2x2-7的图象向 上平移 7 个 单位得到y=2x2的图象。将y=x2-7的图象 向上 平移 9 个单位可得到 y=x2+2的图象。 (3)将抛物线y=4x2向上平移3个单位,所得的 抛物线的函数式是 y=4x2+3 。 将抛物线y=-5x2+1向下平移5个单位,所得的 抛物线的函数式是 y=-5x2-4 。
例1、分别说下列抛物线的开口方向,对称 轴、顶点坐标、最大值或最小值各是什么 及增减性如何?。 (1)y=-x2-3 (2)y=1.5x2+7
(3)y=2x2-1
(4) y= −2x2+3
例2 : 按下列要求求出二次函数的解析式:
(1)形状与y=-2x2+3的图象形状相同,但开口
方向不同,顶点坐标是(0,1)的抛物线解析式。
10
y
8
y=x2+1
y=x2 y=x2-2
5
4
y
2
y=-x2+3
5
6
4
-10
-5
O
-2
x
10
2
y=-x2 y=-x2-2
-4
-10 -5
O
-2
x
10
-6
-8
当a>0时,抛物线y=ax2+k的开口 向上 ,对称轴 是 y轴 ,顶点坐标是(0,k),在对称轴的左侧,y随x的 增大而 减小,在对称轴的右侧,y随x的增大而 增大, 当x= 0 时,取得最 小 值,这个值等于 k ; 当a<0时,抛物线y=ax2+k的开口 向下,对称轴 是y轴 ,顶点坐标是(0,k),在对称轴的左侧,y随x的 增大而 增大,在对称轴的右侧,y随x的增大而 减小, 当x= 0 时,取得最 大 值,这个值等于 k 。

函数图像及其变换

函数图像及其变换

1. f(x)=|x-1|的图象为如下图所示中的 ( )
【解析】 【答案】 B
2. (湖北卷)函数 y e |ln x| | x 1 |的图象大致是
D
( D

(D )
3.为了得到函数 y=2 -1 的图象,只需 把函数 y=2x 的图象上所有的点( ) A.向右平移 3 个单位长度,再向下平移 1 个单位长度 B.向左平移 3 个单位长度,再向下平移 1 个单位长度 C .向右平移 3 个单位长度,再向上平移 1 个单位长度 D.向左平移 3 个单位长度,再向上平移 1 个单位长度
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
图象变换法:常用变换方法有4种,即平移变换、 翻折变换、伸缩变换和对称变换
y f (2a x)
a 对称的解析式为
④函数 y f ( x) 的图象关于点 (a, 0) 对称的解析式为
y f (2a x)
1 ⑤函数 y f ( x) 和 y f ( x) 的图象关于直线 y=x 对称 .
【例1】 作出下列函数的大致图象
(1) y ( x 1) 1 (2) y log 2 ( x ) 1 (3) y 2
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像与坐标专练
例1:一次函数y=ax+b 的图象L 1关于直线y=-x 轴对称的图象L 2的函数解析式是_____ 练习:如图,已知点P(2m-1,6m-5)在第一象限角平分线OC 上,一直角顶点P 在OC 上,角两边与x 轴y 轴分别交于A 点B 点。

(1)求点P 的坐标
(2)当∠APB 绕着P 点旋转时,OA+OB 的长是否发生变化?若变化,求出其变化范围;若不变,求其值
的坐标坐标是____A1则点1=AB 3=
OA ,
A1落在点A 对折,点OB 沿OABC 将矩形如图图在直角坐标系中2,,已知:例
的解析式.AM ′处处,求直B 轴上的点x 恰好落在B 折叠叠,AM 沿ABM 若将△上的一点,OB 是M ,B 和点A 轴分别交于点y 轴、x 与练习:直线83
4+-=x y
的值
a 的面积面积相等ABC 与△ABP △使),2
1(a,P 有一点90=BAC 是等腰直角三角形,∠ABC 且△点在第一象限,C 两点,B 、A 轴分别交于y 轴x 1的的图的x 3
3-=y 函数3,在第二象限:例︒
+
的值值
a 面积积相等,求实ABP 与△ABC )若△3(的面积面
ABC )求△2(;
m )画出直线1(,a)(1P 90=BAC 是等腰直角三角形,∠ABC 且△点在第一象限,C 两点,B 、A 轴分别交于y 轴x 1的的图的x 3
3-
=y 函数为坐标系中一动点,,点练习:︒+
随堂练习:
1.如图,点A 的坐标为(-1,0),点B 在直线y=x(改为y=2x-4时又如何)上运动,当线段AB 最短时,点B 的坐标是?
(1图)(2图) 2.直线AB : y=1/2 x+1 分别与x 轴、y 轴交于点A 、点B ;直线CD :y=x+b 分别与x 轴、y 轴交于点C 、点D .直线AB 与CD 相交于点P .已知S △A B D =4,则点P 的坐标是?
3.如图,正方形ABCD 的边长为4,点P 为正
方形边上一动点,若点P 从点A 出发沿A→D→C→B→A 匀速运动一周.设点P 走过的路程为x ,△ADP 的面积
为y ,则下列图象
能大致反映y 与x 的函数关系的是( )
A. B.
C. D.
4.点A 坐标(5,0),直线y=x+b(b>=0)与y 轴交于点B ,连接AB ,角a=75度,则b 的值为_______
(4图) (5图)
5.已知OB 是一次函数y=2x 的图像,点A (0,2),在直线OB 上找一点C ,使得三角形ACO 为等腰三角形,求点C 的坐标。

相关文档
最新文档