三大显示技术——液晶、等离子、OLED要点

合集下载

几种显示技术的比较

几种显示技术的比较

几种常见显示技术的比较平板显示器件包括液晶显示器件(LCD)、等离子体显示器件(PDP)、发光二极管显示器件(LED),场发射显示器件(FED )、表面传导发射显示器件(SED )、无机电致发光器件(IOEL)、有机电致发光器件(OLED ) 等。

下面就其中的几种做简要的介绍。

1、液晶显示器件(LCD )液晶显示器件是液晶应用的主体,发展很快。

液晶显示器的优缺点:(1)结构和产品体积。

传统显示器由十使用CRT,必须通过电子枪发射电子束到屏幕,因而显像管的管颈不能做得很短,当屏幕增加时也必然增大整个显示器的体积。

液晶显示器通过显示屏上的电极控制液晶分子状态来达到显示目的,即使屏幕加大,它的体积也不会成正比的增加(只增加尺寸不增加厚度所以不少产品提供了壁挂功能,可以让使用者更节省空间),而且重量上比相同显示面积的传统CRT显示器要轻得多。

同时液晶显示器由十功耗只在十电极和驱动IC上,因而耗电量比传统CRT显示器也要小得多。

(2)辐射和电磁波干扰。

传统CRT显示器由十采用电子枪发射电子束,在打到屏幕上后会产生辐射,尽管现有产品在技术上有很大的提高,把辐射损害降到最小,但不可能根除。

在这一点上,液晶显示器具有先天的优势,它根本没有辐射可言。

至十电磁波的干扰,液晶显示器只有来自驱动电路的少量电磁波,只要将外壳严格密封即可排除电磁波外泄,而传统CRT显示器为了散热,不得不将外壳钻上散热孔,所以电磁波干扰就不可避免了。

所以液晶显示器也被称为冷显示器或环保显示器。

(3)平面直角和分辨率。

液晶显示器一开始就使用纯平面的玻璃板,其平面直角的显示效果比传统显示器看起来好得多。

不过在分辨率上,液晶显示器理论上可提供更高的分辨率,但实际显示效果却差得多。

而传统显示器在较好显卡的支持下达到完美的显示效果。

(4)显示品质。

传统显示器的显示屏幕采用荧光粉,通过电子束打击荧光粉显示,因而显示的明亮度比液晶的透光式显示(以口光灯为光源)更为明亮,在可视角度上也比液晶显示器要好得多。

PDP等离子、LCD液晶、LED技术比较

PDP等离子、LCD液晶、LED技术比较

PDP等离子、LCD液晶、LED技术比较PDP(Plasma Display Panel)等离子显示屏,是采用了近几年来高速发展的等离子平面屏幕技术的新一代显示设备。

工作原理等离子显示屏PDP是一种利用气体放电的显示装置,这种屏幕采用了等离子管作为发光元件。

大量的等离子管排列在一起构成屏幕。

每个等离子对应的每个小室内都充有氖氙气体。

在等离子管电极间加上高压后,封在两层玻璃之间的等离子管小室中的气体会产生紫外光,从而激励平板显示屏上的红绿蓝三基色荧光粉发出可见光。

每个离子管作为一个像素,由这些像素的明暗和颜色变化组合,产生各种灰度和色彩的图像,与显像管发光相似。

等离子体技术同其它显示方式相比存在明显的差别,在结构和组成方面领先一步。

其工作机理类似普通日光灯,电视彩色图像由各个独立的荧光粉像素发光综合而成,因此图像鲜艳、明亮、干净而清晰。

另外,等离子电视最突出的特点是可做到超薄,并轻易做到40英寸以上的完全平面大屏幕,而厚度不到100毫米。

PDP等离子显示屏的特点等离子显示技术证明比传统的显像管和LCD液晶显示屏具有更高的技术优势,表现在:一、与直视型显像管彩电相比:· PDP显示屏的体积更小、重量更轻,而且无X射线辐射。

· 由于PDP各个发光单元的结构完全相同,因此不会出现显像管常风的图像的几何变形。

· PDP屏幕亮度非常均匀--没有亮区和暗区;而传统显像管的亮度--屏幕中心总是比四周亮度要高一些。

· PDP不会受磁场的影响,具有更好的环境适应能力。

· PDP屏幕不存在聚焦的问题,因此,显像管某些区域因聚焦不良或年月已久开始散焦的问题得以解决,不会产生显像管的色彩漂移现象。

· 表面平直使大屏幕边角处的失真和色纯度变化得到彻底改善。

高亮度、大视角、全彩色和高对比度,使PDP图像更加清晰,色彩更加鲜艳,效果更加理想,令传统电视叹为观止。

二、与LCD液晶显示屏相比:· PDP显示亮度高,屏幕亮度高达150LUX,因此可以在明亮的环境之下欣赏大来画面的视讯节目。

等离子和液晶哪个好

等离子和液晶哪个好

等离子和液晶哪个好等离子和液晶,作为两种主流的显示技术,经常在我们的生活中出现。

无论是在电视、电脑显示器、手机屏幕还是其他电子设备中,我们都可以看到它们的身影。

但是,在等离子和液晶之间,到底哪一种更好呢?本文将从多个方面对这两种显示技术进行比较,以帮助读者更好地了解它们的特点和优势。

首先,我们来了解等离子技术。

等离子显示技术是一种通过电离气体产生的一系列气体放电现象来实现图像显示的技术。

等离子显示器具有较高的亮度、广阔的视角和较高的对比度,使得图像显示更加清晰和鲜艳。

而液晶技术则是通过液晶层的光学特性来显示图像。

液晶显示器与等离子显示器相比,亮度较低,视角较窄,对比度也不如等离子显示器。

但是,液晶显示器具有更低的功耗和更薄的设计,使得其在便携性和节能性方面具有优势。

其次,我们来比较这两种显示技术在色彩还原方面的表现。

等离子显示器在色彩还原上具有更加丰富和真实的效果。

其色彩鲜艳、细节清晰,可以给人一种非常真实的视觉体验。

而液晶显示器则相对较为平均和中性,色彩还原相对较为偏白,不够鲜艳。

因此,若对色彩还原要求较高的用户,可以选择等离子显示器。

此外,在对比度方面,等离子显示器也具有优势。

它可以在深黑的背景下显示非常明亮的图像,显示效果较为立体和生动。

而液晶显示器的对比度则相对较低,黑色不够纯粹,容易产生反光现象。

因此,在对比度要求较高的场景下,等离子显示器更胜一筹。

接下来我们来比较这两种显示技术在长期使用和寿命方面的表现。

等离子显示器相对而言,存在着短寿命的问题。

随着使用时间的增加,等离子显示器的亮度和色彩会逐渐衰减,显示效果也会受到影响。

而液晶显示器相对而言,寿命较长,可以使用更长时间而不会出现明显的衰减。

这也是为什么液晶显示器在大多数家庭和商业场所中得到广泛应用的原因之一。

最后,我们来总结一下等离子和液晶两种显示技术的优势和适用场景。

等离子显示器在亮度、视角和对比度等方面具有优势,适合用于家庭娱乐、电影观看和游戏等需要高质量图像的场景。

电视显示技术解析

电视显示技术解析

电视显示技术解析电视显示技术是指将图像信号转化为可见图像并输出到显示屏幕上的技术手段。

随着科技的发展,电视显示技术也在不断创新和进步。

本文将对当前主流的电视显示技术进行解析,包括液晶显示技术、有机发光二极管(OLED)显示技术和量子点显示技术。

一、液晶显示技术液晶显示技术是目前最常见和广泛应用的电视显示技术之一。

其基本原理是通过液晶分子的变化来控制光的透过与阻挡,从而实现图像显示。

液晶显示器具有低功耗、高分辨率和较高的亮度等特点。

液晶显示器的主要构成包括液晶面板、光导板、色彩滤光器和背光源等。

液晶分子在电场的作用下会改变排列状态,从而控制光的透过与阻挡。

光导板用于分光,将后台光源分成红、绿、蓝三原色光,再经过液晶面板每个像素的控制,最终达到显示彩色图像的效果。

二、有机发光二极管(OLED)显示技术有机发光二极管(OLED)是一种新兴的电视显示技术,其特点是薄、轻、柔性、响应速度快和对比度高。

OLED采用有机材料发光,无需背光源,因此可以实现自发光并具有极高的对比度。

OLED显示器的构成主要包括有机发光层、电极和基板。

有机发光层由发光材料和电子载流子层组成,电极用于施加电场并控制载流子的注入。

当电流通过有机发光层时,发光材料会发出光,从而实现图像显示。

OLED技术的优势在于其柔性显示能力,使得可制造叠层显示器和可弯曲显示器成为可能。

同时,OLED显示器在显示质量上更加出色,能够呈现更加真实、细腻和生动的图像。

三、量子点显示技术量子点显示技术是一种新型的显示技术,其核心是利用半导体材料的量子效应来发光。

量子点是一种微小的半导体颗粒,其大小在纳米级别,具有窄的能带宽度,能够发射出特定频率的光。

量子点显示器的结构包括量子点层、荧光粉层和背光源。

当背光源照射在量子点层上时,量子点会发光,并被荧光粉层转化为可见光。

量子点的尺寸和组成可以调节,从而实现对显示光谱的控制,进而展现更丰富的颜色。

量子点显示技术具有高色彩饱和度、高亮度和高对比度等优势。

大屏幕3大主流技术对比分析

大屏幕3大主流技术对比分析

大屏幕3大主流技术对比分析大屏幕是当前电视市场的主流产品之一,其中较为常见的大屏幕有液晶、OLED和QLED三种技术。

下面将对这三种大屏幕技术进行比较分析。

1.液晶技术:液晶技术是目前市场上最广泛应用的大屏幕显示技术之一、液晶电视的优点在于成本相对较低,因为液晶显示屏的制造过程相对简单,生产工艺成熟。

液晶电视屏幕亮度高、视角广,能够提供高清观影体验。

此外,液晶电视的可靠性较高,使用寿命较长。

然而,液晶电视也存在一些缺点。

首先,由于液晶技术的原理,液晶屏幕的对比度较低,黑色呈现效果不佳,这会影响观影体验。

其次,液晶电视的电视机身较厚,不能实现无边框设计。

最后,液晶屏幕的发光方式是透光型,会产生背光漏光现象,影响图像的准确性。

2.OLED技术:OLED技术利用有机发光材料来制造电视屏幕,通过电流来激发这种材料的发光,因此OLED电视屏幕具有自发光、高对比度、高刷新率等特点。

OLED电视的最大优点是显示效果出色,色彩鲜艳、对比度高、黑色表现力极佳,能够提供出色的观影体验。

此外,OLED电视的响应速度比液晶电视更快,可以实现更加流畅的画面表现。

然而,OLED技术也存在一些问题。

首先,OLED电视的价格相对较高。

其次,由于有机发光材料的使用,OLED电视的寿命相对较短,容易出现像素老化、亮度不均等问题。

另外,OLED屏幕存在烧屏现象,长时间显示静态图像时容易造成像素停留。

3.QLED技术:QLED技术是量子点发光二极管技术的简称,通过量子点技术来提高液晶电视的色彩表现、对比度和亮度。

QLED电视具有显示色彩鲜艳、对比度高、亮度较高的优点。

与液晶电视相比,QLED电视在对比度和黑色表现上有明显的优势,而且不会出现背光漏光问题。

此外,QLED电视拥有较高的亮度水平,适合在明亮环境下观看。

然而,QLED技术也有一些缺点。

首先,QLED电视的价格相对较高,价格与OLED电视相当甚至更高。

其次,QLED电视的视角有限,不同角度观看时色彩和亮度会有所变化。

CRT、LCD、PDP、OLED三种显示器件的工作原理及特点分析

CRT、LCD、PDP、OLED三种显示器件的工作原理及特点分析

CRT、LCD、PDP、OLED三种显示器件的工作原理及特点分析摘要显示器应该是将一定的电子文件通过特定的传输设备显示到屏幕上再反射到人眼的一种显示工具。

是完成电光转换并将各像素综合成为图像的作用最终把接受到的电视信号在荧光屏上重现出来。

它的应用也非常广泛,大到卫星监测、小至看视频,可以说在现代社会里,它的身影无处不在,其结构一般为圆型底座加机身,随着彩显技术的不断发展,现在出现了一些其他形状的显示器,而且越来越明细,而且它们经历了从黑白到彩色,从球面到柱面再到平面直角,直至纯平的发展。

在这段加速度前进的历程中,显示器的视觉效果在不断得到提高,色彩、分辨率、画质、带宽和刷新率等各项指标均有大幅度的提升。

目前广泛应用的电视显示器主要分以下几种:CRT(阴极射线管)显示器、LCD(液晶)显示器、PDP(等离子)显示器、OLED(发光二极管面光源)显示器等新型的平板显示器。

本设计主要分析了CRT、LCD、PDP、OLED显示原理和特点,优缺点,和介绍了主要的生产厂家以及未来的发展趋势。

关键词:CRT LCD PDP OLED 显示原理目录绪论CRT是一种使用阴极射线管的显示器,曾是应用最广泛的显示器之一,CRT纯平显示器具有可视角度大、无坏点、色彩还原度高、色度均匀、可调节的多分辨率模式、响应时间极短等LCD显示器难以超越的优点,而且现在的CRT显示器价格要比LCD显示器便宜不少。

LCD 液晶显示器是,LCD 的构造是在两片平行的玻璃当中放置液态的晶体,两片玻璃中间有许多垂直和水平的细小电线,透过通电与否来控制杆状水晶分子改变方向,将光线折射出来产生画面。

比CRT要好的多,但是价钱较其贵。

现在LCD已经替代CRT成为主流,价格也已经下降了很多,并已充分的普及。

PDP等离子显示板,是一种利用气体放电的显示技术,其工作原理与日光灯很相似。

它采用等离子管作为发光元件,屏幕上每一个等离子管对应一个像素,屏幕以玻璃作为基板,基板间隔一定距离,四周经气密性封接形成一个个放电空间。

大屏幕3大主流技术对比分析

大屏幕3大主流技术对比分析

大屏幕3大主流技术对比分析大屏幕技术是近年来电子产品领域中的重要发展方向之一、大屏幕可以提供更广阔的视野和更好的观看体验,被广泛应用于电视、电脑、手机等设备中。

目前市场上主流的大屏幕技术有三种,分别是液晶显示技术(LCD)、有机发光二极管技术(OLED)和微型显示器技术(Micro LED)。

本文将对这三种技术进行详细比较和分析。

首先,液晶显示技术(LCD)是最早应用于大屏幕的技术之一、LCD通过控制液晶分子的定向来实现光的调节和显示。

优点是成本相对较低,显示效果稳定且无烧屏问题,能够实现较高的亮度和对比度。

缺点是屏幕厚度较大,可视角度有限,且画质受到背光源的限制。

此外,由于液晶是通过调节定向来控制光的透射和反射,所以响应速度相对较慢,可能出现残影现象。

其次,有机发光二极管技术(OLED)是目前大屏幕技术中最受关注的技术之一、OLED采用有机材料发光原理,通过对发光材料的电流控制来实现显示效果。

优点是屏幕厚度较薄,对比度较高,色彩饱和度好,响应速度快,可视角度广。

此外,OLED还具有自发光特性,无需背光源,显示效果更加逼真。

缺点是在长时间使用过程中容易出现烧屏问题,对显像元件的寿命要求较高,且生产成本较高。

最后,微型显示器技术(Micro LED)是近年来新兴的大屏幕技术。

Micro LED采用了小尺寸的LED芯片来实现显示效果。

优点是显示效果较好,可实现高亮度、高对比度和高色准,对电源和驱动控制技术要求相对较低。

此外,Micro LED还具有模块化特点,可以根据需求进行拼接和组合,具有更高的扩展性和灵活性。

缺点是生产过程较为困难,成本较高,且由于LED芯片尺寸小,对亮度均匀性和散热控制要求较高。

综上所述,液晶显示技术(LCD)、有机发光二极管技术(OLED)和微型显示器技术(Micro LED)分别具有各自的优缺点和适用场景。

液晶显示技术成本较低、显示效果稳定,适用于一般电视、电脑等大屏幕设备。

CRTLCDPDPOLED三种显示器件的工作原理及特点分析

CRTLCDPDPOLED三种显示器件的工作原理及特点分析

CRTLCDPDPOLED三种显示器件的工作原理及特点分析
CRT(阴极射线管)显示器的工作原理是利用电子枪发射出高速电子束,经过电子束聚焦系统和电子束偏转系统,最后打在荧光屏上产生亮点。

CRT显示器的特点是色彩鲜艳、对比度高,但体积庞大,耗电量较高,存
在电磁辐射风险。

LCD(液晶显示器)的工作原理是利用液晶分子在电场作用下的扭曲
或不扭曲来控制光的透射,通过背光源的照射来显示图像。

LCD显示器的
特点是体积较小、耗电量低、色彩饱满,但对于动态图像响应速度较慢,
视角较窄。

PDP(等离子显示器)的工作原理是使用由异质玻璃面板、荧光粉和
等离子气体构成的细沟发射型显示单元来产生荧光,并通过荧光来制造图像。

PDP显示器的特点是色彩鲜艳、对比度高、对动态图像响应速度快,
但重量较大、存在电磁辐射风险。

OLED(有机发光二极管)显示器的工作原理是通过薄膜有机物质的电
致发光来制造图像,电流通过有机发光二极管会使有机发光材料产生光,
从而显示图像。

OLED显示器的特点是颜色饱和度高、对比度高、响应速
度快、视角广,同时具有弯曲、折叠等灵活性,但存在耗电量较高和有机
物质寿命短等问题。

综上所述,CRT显示器色彩鲜艳、对比度高,但体积大、耗电量高;LCD显示器体积小、耗电量低,但响应速度慢、视角窄;PDP显示器色彩
鲜艳、对比度高,但重量大、存在电磁辐射风险;OLED显示器颜色饱和
度高、对比度高、响应速度快、视角广,但耗电量高、有机物质寿命短。

不同显示器具有不同的特点,可以根据需要选择适合的显示器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三大显示技术——液晶、等离子、OLED第一章液晶显示——独霸一方1、简介液晶显示器件(LCD)是利用液态晶体的光学各向异性特性,在电场作用下对外照光进行调制而实现显示的。

液晶显示是一种被动的显示,它不能发光,只能使用周围环境的光。

它显示图案或字符只需很小能量。

正因为低功耗和小型化使LCD成为较佳的显示方式。

液晶显示所用的液晶材料是一种兼有液态和固体双重性质的有机物,它的棒状结构在液晶盒内一般平行排列,但在电场作用下能改变其排列方向。

2、基本知识液晶的定义液晶是液态晶体的简称。

液晶是指在某一温度范围内,从外观看属于具有流动性的液体,但同时又是具有光学双折射的的晶态。

液晶分为两大类:溶致液晶和热致液晶。

前者要溶解在水中或有机溶剂中才显示出液晶状态,而后者则要在一定的温度范围内呈现出液晶状态。

作为显示技术应用的液晶都是热致液晶。

显示用的液晶都是一些有机化合物,液晶分子的形状呈棒状很像“雪茄烟”。

宽约十分之几纳米,长约数纳米,长度约为宽度的4~8倍,液晶分子有较强的电偶极矩和容易极化的化学团,由于液晶分子间作用力比固体弱,液晶分子容易呈现各种状态,微小的外部能量一—电场、磁场、热能等就能实现各分子状态间的转变,从面引起它的光、电、磁的物理性质发生变化,液晶材料用于显示器件就是利用它的光学性质变化,一般情况下单一液晶材料,即单质液晶满足不了实用显示器件的性能要求,显示器件实际使用的液晶材料都是多种单质液晶的混合体。

液晶的分类热致液晶可分为近晶相、向列相和胆甾相三种类型,如图所示。

近晶相(Smectic Liquid Crystals)液晶分于呈二维有序性,分子排列成层,层内分子长轴相互平行,排列整齐,重心位于同一平面内,其方向可以垂直层面,或与层面成倾斜排列,层的厚度等于分子的长度,各层之间的距离可以变动,分子只能在层内前后、左右滑动,但不能在上下层之间移动。

近晶相液晶的粘度与表面张力都比较大,对外界电、磁、温度等的变化不敏感。

向列相(Nematic Liquid Crystals)液晶分子只有一维有序,分子长轴互相平行,但不排列成层,它能上下、左右、前后滑动,只在分子长轴方向上保持相互平行或近于平行,分子间短程相互作用微弱,向列相液晶分子的排列和运动比较自由,对外界电、磁场、温度、应力都比较敏感,目前是显示器件的主要材料。

胆甾相(Cholesteric Liquid Crystals)液晶是由胆甾醇衍生出来的液晶,分子排列成层,层内分子相互平行,分子长轴平行于层平面,不同层的分子的分子长轴方向稍有变化,相邻两层分子,其长轴彼此有一轻微的扭角(约为15角分),多层扭转成螺旋形,旋转3600的层间距离称螺距,螺距大致与可见光波长相当,胆甾相实际上是向列相的一种畸变状态,一定强度的电场、磁场也可使胆甾相液晶转变为向列相液晶。

胆甾相易受外力的影响,特别对温度敏感,温度能引起螺距改变,而它的反射光波长与螺距有关,因此,胆甾相液晶随冷热而改变颜色。

热致液晶仅在一定的温度范围内才呈现液晶特性,此时为浑浊不透明状态,其稠度随不同的化合物而有所不同,从糊状到自由流动的液体都有,即粘度不同,如图7-15所示,低于温度T1,就变成固体(晶体),称T1为液晶的熔点,高于温度T2就变成清澈诱明各向同性的液态,称T2为液晶的清亮点。

LCD能工作的极限温度范围基本上由T1和T2确定。

下图为热致液晶的形成液晶的光电特性如果不考虑由干热而引起液晶分子有序排列的起伏,则利用传统的晶体光学理论完全可以描述光在液晶中的传播,在外电场的作用下,液晶的分子排列极易发生变化,液晶显示器件就是利用液晶的这一特性设计的。

(1)电场中液晶分子的取向液晶分子长轴排列平均取向的单位矢量n称为指向矢量,设ε∥和ε⊥分别为当电场与指向矢平行和垂直时测得的液晶介电常数。

定义介电各向异性Δε:Δε=ε∥-ε⊥,将Δε›0的液晶称为P型液晶,它具有正的介电各向异性,Δε‹0的液晶称为N型液晶,它具有负的介电各向异性。

在外电场作用下,P型液晶分子长轴方向平行于外电场方向,N型液晶分子长轴方向垂直于外电场方向。

目前的液晶显示器件主要使用P型液晶。

(2)线偏振光在向列液晶中的传播沿着P型向列液晶长轴方向振动的光波有一个最大的折射率n∥,而对于垂直这个方向振动的光波有一个最小的折射率n⊥,按照晶体光学理论,这种液晶为单轴的,分子的长轴方向就是光轴,寻常光折射率no=n⊥,非寻常光折射率ne=n∥,其折射率的各向异性Δn为:Δn=n∥-n⊥=ne-no下图为线偏振光在向列液晶中的传播如图所示,在0≤z≤zo 的区域内,液晶沿着指向矢n的方向排列,偏振光振动方向与n成θ角,入射光在x、y方向上电矢量强度可用下式表示:两光场位相差记为δ:则合成光场矢端方程为:当θ=0(或π/2时),Ey=0(或Ex=0),即偏振光的振动方向和状态没有改变,仍以线偏振光和原方向前进。

当θ=π/4时随着光线沿着z方向前进,偏振光相继成为椭圆、圆和线偏振光,同时改变了线偏振方向,最后,这束光将以位相差δ所决定的偏振状态,进入空气中。

如图7-17所示,把液晶盒的两个内表面做沿面排列处理并使盒表面上的向列相液晶分子方向互相垂直,液晶分子在两片玻璃之间呈900扭曲,即构成扭曲向列液晶,光波波长λ≤P(螺距)。

当线偏振光垂直入射时,若偏振方向与上表面分子取向相同,则线偏振光偏振方向将随着分子轴旋转,并以平行于出口处分子轴的偏振方向射出;若入射偏振光的偏振方向与上表面分子取向垂直,则以垂直于出口处分子轴的偏振方向射出,当以其他方向的线偏振光入射时,则根据平行分量和垂直分量的位相差δ的值,以椭圆、圆或直线等某种偏振光形式射出。

下图为线偏振光在扭曲向列液晶中的传播(两图一样)3、特点液晶显示器主要有以下特点:1)低压、微功耗。

极低的工作电压(2V~3V)即可工作,而工作电流仅几个微安即每个显示字符只有几个微安。

一个小小的钮扣电池也可以用1~2年,这是其他任何显示器件无法比拟的。

在工作电压和功耗上液晶显示正好与大规模的集成电路的发展相适应。

如电子手表、计算器、便携仪表、手提电脑和GPS电子地图等的实现都成为可能。

2)低压驱动。

一般扭曲向列型(TN)器件阀值电压仅1.5~2V,可以直接与大规模集成电路直接相配。

3)平板型结构。

液晶显示器件的基本结构是由两片玻璃基板制成的薄形盒。

这种结构最利于用作显示窗口,而且它可以在有限的面积上容纳最大量的显示内容,显示内容的利用率最高。

此外,这种结构不仅可以做得很小,还可以做得很大。

这种结构还便于大批量、自动化生产。

4)被动型显示。

①示器件本身不能发光,它靠调制外界光达到显示目的。

被动型显示更适合于人眼视觉,不易感到疲劳。

这个优点在大信息量,高密度快速变换。

②被动型显示不怕光冲刷。

所谓光冲刷,就是指当环境光较亮时,被显示的内容信息被光冲淡,从而显示不清晰,而被动型显示,由于它是靠反射外部光达到显示目的,所以外部光越强,反射的光也越强,显示的内容也就越清晰。

③液晶显示不仅可以在室外也可以在室内显示,对于在室内黑暗中显示可以配备背光源就可以克服不能看的缺点。

5)显示信息量大。

与CRT相比,液晶显示器件没有荫罩限制,像素点可以作得更小,更精细;与等离子显示相比,液晶显示器件像素点处不需要等离子显示那样,像素点间要留有一定的隔离区。

因此液晶显示在同样大小的显示窗面积内,可以容纳更多的像素和更多的信息,这对于制作高清晰度电视,笔记本式电脑都非常有利。

6)易于彩色化。

液晶本身无颜色,钽是有许多方法可以实现彩色化,如滤色法和干涉法。

于滤色法技术比较成熟,使液晶的彩色化更准确更艳丽更没在色失真的彩色化效果。

7)寿命长。

液晶材料是有机高分子合成材料,具有极高的纯度,其他材料也都是高纯物质,在极净化的条件下制成,液晶的驱动电压又很低,驱动电流更是很微小,这种器件的劣化几乎没有,寿命很长,从实际应用中考察,除硬性撞、破碎或配套件损坏外,液晶显示器件自身的寿命终结几乎没有。

8)无辐射无污染。

液晶显示器件在使用中不会产生软X射线或电磁波辐射,而辐射可以造成环境污染和信息的泄露,而液晶显示器件不会产生此类问题。

它是理想的显示器件。

4、缺点液晶显示器也有一些缺点,主要是:1)显示反应速度。

LCD的响应时间比较长,因此在动态图像方面的表现不理想。

2)显示品质。

LCD理论上只能显示18位色,但CRT的色深几乎是无穷大。

3)显示屏比较脆弱,容易受到损伤。

4)工艺上较难做大(主要是大屏幕成品率低)。

5、原理液晶显示是利用给液晶充电会改变它的分子排列,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度差别的原理。

在两片玻璃基板上装有配向膜,所以液晶会沿着沟槽配向,由于玻璃基板配向膜沟槽偏离90度,所以液晶分子成为扭转型,当玻璃基板加入电场时,光线透过偏光板跟着液晶做90度扭转,通过下方偏光板,面板显示液晶白色;当玻璃基板加入电场时。

液晶分子产生配列变化,光线通过液晶分子空隙维持原方向,被下方偏光板遮蔽,光线被吸收无法透出,液晶面板显示黑色。

液晶分子便是根据此电压的变化使面板达到显示效果。

形象点说,就好比是一个个小窗户,液晶分子就是一扇扇小窗扇,通过窗花的开关或开口的大小显示图像,而光源来自背面的灯管。

下表为几种具有代表性的显示器件结构原理和特点显示器件构造原理性能特点主动显示电子束管(CRT)基于电子束在电子透镜调制下扫描、激发荧光粉而实现显示基本参数:1kv~2kv调制电压,功耗为10w~100w,亮度约100L~2000L,工作温度范围约(-50~80)摄氏度,响应余辉3us~1s,寿命10万小时。

特点:真空管三维结构,模拟电路驱动,亮度高,灰度级别多,彩色化容易,寿命长,显示分辨率高,适合视频彩色活动画面显示,但体积大,重量大,功耗大,不易数字化驱动。

辉光显示基本于冷阴极辉光放电时,阴析字型周围的阴极辉区而实现显示基本参数:驱动为170V~300V直流或脉冲:功耗30mw~300mw,工作温度范围(-50~75)摄氏度,亮度为100~300FL,特点:亮度高,醒目,驱动简单但电压高,功耗大,外形呈真空管形式。

主动显示荧光显示(VFD)基于阴极电子发射经栅极加速后激发荧光粉即现显示基本参数:驱动为170V~300V直流或脉冲:功耗10w~200w,工作温度范围(-50~70)摄氏度,响应速度为7us,亮度为200FL,显示可彩色化。

特点:低压、小功耗、亮度高,显示清晰,真空管外形,需双电源驱动。

6、液晶显示方式1、反射式2、透射式3、投影式7、液晶LCD的连接方式LCD连接方式结构与PCB连接方式PITCH(间距)斑马条连接导电橡胶和绝缘橡胶层层相隔机械压力层与层的最小间距为0.4mm管脚连接金属管脚插在LCD台阶上焊接常用间距1.5, 1.8,2.0, 2.54mm斑马纸或扁平片连接涂有导电体的薄膜热压、粘接或机械压力Heat Seal:Min 0.4Soldering Type:Min 0.88、液晶显示器的应用液晶显示器件的优异特性决定了它在各类显示器件中的地位。

相关文档
最新文档