电子实验报告五 两级放大电路
两级放大电路实验报告

两级放大电路实验报告两级放大电路实验报告引言在电子学领域中,放大电路是一种常见的电路设计,用于将输入信号放大到所需的输出信号级别。
本实验旨在通过搭建两级放大电路,探索其工作原理和性能特点。
实验器材和方法实验器材:1. 电压源2. 信号发生器3. 示波器4. 电阻5. 二极管6. 电容7. 三极管实验步骤:1. 搭建第一级放大电路,包括一个输入电容和一个电阻。
2. 连接信号发生器的输出端至第一级放大电路的输入端,调节信号发生器的频率和幅度。
3. 连接示波器,观察输入和输出信号的波形。
4. 测量输入和输出信号的幅度和相位差。
5. 搭建第二级放大电路,包括一个二极管和一个电阻。
6. 连接第一级放大电路的输出端至第二级放大电路的输入端。
7. 重复步骤3和4,测量第二级放大电路的性能。
实验结果与讨论第一级放大电路的性能:通过实验观察到,随着信号发生器输出信号的频率变化,输入和输出信号的幅度也发生变化。
在一定频率范围内,输入和输出信号的幅度基本保持一致,但随着频率继续增加,输出信号的幅度开始下降。
这是因为电容在高频下的阻抗变化导致信号的衰减。
此外,观察到输入和输出信号的相位差随着频率的变化而变化,这是由于电阻和电容的时间常数导致的。
第二级放大电路的性能:将第一级放大电路的输出信号连接至第二级放大电路的输入端后,观察到输出信号的幅度得到进一步放大。
这是因为第二级放大电路通过二极管的非线性特性,将输入信号放大到更高的幅度。
同时,观察到输出信号的波形发生了失真,这是由于二极管的非线性特性引起的。
此外,相比于第一级放大电路,第二级放大电路的频率响应范围更窄,对输入信号的频率要求更高。
结论通过本实验,我们成功搭建了两级放大电路,并观察到了其性能特点。
第一级放大电路可以将输入信号放大并保持一致的幅度响应,但在高频下会有信号衰减和相位差变化。
第二级放大电路通过二极管的非线性特性进一步放大信号,但会引起波形失真,并且对输入信号的频率要求更高。
两级放大电路分析仿真实验报告

两级放大电路分析仿真实验报告器件参数器件参数 RB1=47.5K RBW=2M RB21=16K RB22=10K RC1=6K RC2=2K RE11=107 RE12=2K RE21=51 RE22=2K RL=3K C5=100 uF C1=10uFC2=10 uF C3=100 uF C4=10 uF T1三极管放大倍数ß1=200T21三极管放大倍数ß2=200电路图如下:电路图如下:电路设计指标分析:电压放大倍数大于等于500; 输入电阻大于等于20K Ώ; 电源电压12V ;最大输出不失真电压:5VP-P; 带宽100HZ~1M ;参数测量:输入电阻的测量:输入电阻的测量: RS=0 V o1=1.630 RS=10 K Ώ V o2=1.603V计算计算Ri=593.7 K Ώ输出电阻的测量:输出电阻的测量:RL 为开路为开路 V oo=1.643vRL=3K Ώ V ol=989.720mv计算计算 R0=1.99k Ώ电压放大倍数的测量:电压放大倍数的测量: 测试条件测试条件第一级放大输出第一级放大输出 第二级放大输出第二级放大输出 RL 为开路,为开路, RS=0,VI=3mVppV o1pp=48.427mV V o21pp=1.383V RL=3 K Ώ V o1pp=5.237 mVV o2=1.708Vp波形如下:波形如下:未加入负载RL 时仿真波形时仿真波形加入负载RL 时仿真波形时仿真波形带宽测量带宽测量静态工作点的测量:静态工作点的测量: VB1=4.013V VC1=4.378V VE1=3.228V VRE1=162.927 V VB2=4.743 V VC2=8.164 V VE2=3.953V VRE2=98.285 m V T1三极管放大倍数ß1=200T21三极管放大倍数ß2=200连接万用表电路如下:连接万用表电路如下:。
多级放大电路实验报告

多级放大电路实验报告多级放大电路实验报告引言:多级放大电路是电子工程中常见的一种电路结构,它可以将输入信号放大到所需的幅度,以便用于各种应用。
本实验旨在通过搭建多级放大电路并进行实际测量,探索其工作原理和性能特点。
一、实验目的本实验的主要目的是:1. 了解多级放大电路的基本原理和结构;2. 学习如何搭建和调试多级放大电路;3. 测量和分析多级放大电路的增益、频率响应等性能指标。
二、实验原理多级放大电路由多个级联的放大器组成,每个放大器都有自己的增益和频率响应特性。
在本实验中,我们将使用两个级联的放大器,每个放大器都由一个晶体管和相关的电路组成。
三、实验器材与装置1. 信号发生器:用于产生待放大的输入信号;2. 电阻、电容等被动元件:用于构建放大电路;3. 两个晶体管:作为放大器的核心元件;4. 示波器:用于测量电路的输入输出信号。
四、实验步骤1. 搭建第一级放大电路:根据实验原理,按照电路图连接电阻、电容和晶体管等元件,确保电路连接正确且无短路或接触不良的情况。
2. 调试第一级放大电路:使用信号发生器产生一个输入信号,将其连接到第一级放大电路的输入端,通过示波器观察输出信号的波形和幅度,调整电路参数,使得输出信号能够得到适当的放大。
3. 搭建第二级放大电路:将第一级放大电路的输出端连接到第二级放大电路的输入端,按照相同的步骤进行搭建和调试。
4. 测量电路性能:使用示波器测量多级放大电路的输入输出信号,并记录其幅度、相位和频率等特性。
通过改变输入信号的频率,观察输出信号的变化,以了解电路的频率响应特性。
5. 分析实验结果:根据测量数据和实验原理,计算并比较多级放大电路的增益、频率响应等指标,分析电路的性能和可能的改进方向。
五、实验结果与讨论通过实验测量和分析,我们得到了多级放大电路的增益和频率响应曲线。
根据实验数据,我们可以看到在一定频率范围内,多级放大电路的增益基本稳定,并且随着频率的增加而略微下降。
两级放大电路实验报告

姓名:黄强 学号:2009118125 班级:电工二班实验五 两级放大电路一、实验目的:1. 掌握多级放大器静态工作点的调整与测试方法.2. 学会放大器频率特性测量方法.3. 了解放大器的失真及消除方法.4. 掌握两级放大电路放大倍数的测量方法和计算方法.5. 进一步掌握两级放大电路的工作原理.二、实验仪器示波器 数字万用表 信号发生器 直流电源 双踪示波器三、 预习要求1. 复习多级放大电路内容及频率响应特性理论。
2. 分析图5-5-1两极交流放大电路,估计测试内容的变化范围。
实验原理及测量原理,实验电路如下图所示,是两级阻容耦合放大器。
1. 静态工作点的计算测量2. 阻容耦合多级放大器各级的静态工作点相互独立,互不影响。
所以静态工作点的调整与测量与前述的单击放大器一样。
图示的实验电路,静态值可按下式计算。
Ibq1=Re11Rb1Ubeq1V cc )(β++- Icq1=βIbq1Uceq1=Vcc-Icq1(Re1+Rc1) Ub2=Rb22Rb21Rb22+Ue2=Ub2-Ubeq Ie 2≈Re2Ue2Ib2=Ic2/β 实际测量时,只要测量出两个晶体管各级对地的电压,经过换算便可得到静态工作点值的大小。
2.多级放大器放大倍数的测量 多级放大电路,不管是采用阻容耦合还是直接耦合,前一级的输出信号即为后级的输入信号,而后级的输入电阻会影响前级的交流负载。
多级放大电路的放大倍数,为各级放大倍数的乘机,而每一级电路电压放大倍数的计算,要将后级电路的输入电阻作为前级电路的负载来计算,上图实验电路中 Au=Au1Au2=1Re )1(12//Rc1ββ++rbe Ri ﹒2//Rc2rbe Rlβ Ri2=Rb21//Rb22//rbe2≈rbe2实际测量时,可直接测量第一级和第二级输入,输出电压,或两级的输入输出电压,并验证上述结论。
3.多级放大器的输入,输出电阻 多级放大器不存在级间反馈时,输入电阻为第一季放大器的输入电阻,输出电阻为最后一级放大器的输出电阻。
电子实验报告:两级放大电路的设计、考试与调试报告

电子实验报告:两级放大电路的设计、考试与调试报告设计本次实验要求设计一种两级放大电路,其中第一级是一个放大器,第二级是一个集电极跟随器,使得输入信号经过放大后通过输出终端输出。
设计的过程主要分为以下几个步骤:1. 确定设计参数由于本次实验要求使用BJT三极管进行放大,因此需要先确定设计所使用的管子,并从数据手册中获取其参数。
假设设计使用的是2N3904 NPN型晶体管,其参数如下:最大集电极电流Ic = 200mA最大集电极电压Vce = 40V最大功率Ptot = 625mW最大频率fT = 300MHz在确定了晶体管的参数后,就可以着手进行电路设计。
2. 设计第一级放大器第一级放大器是本电路的核心部分,它负责将输入信号进行放大。
因此,我们需要选择适当的电路结构,并计算出电路中的各个元件的参数。
在本设计中,采用了共射极放大器的结构。
该结构的特点是输入阻抗较小,输出阻抗较大,但是放大系数不稳定。
在实际应用中,可以通过加入负反馈电路来提高其性能。
因此,对于本设计来说,我们需要计算出共射极电阻R1和电容C1的参数。
首先,假设输入信号的频率为1kHz,放大系数为10,则我们可以写出放大器的增益公式为:A = -Rc / (R1+R2) * gm *Rc其中,gm为晶体管的转移电导,可以通过以下公式进行计算:gm = Ic / (VT * β)其中,VT为温度系数,约为25mV,β为晶体管的直流电流放大系数,可以在数据手册中找到其值约为100。
根据以上公式,我们可以计算出Rc、R1和R2的值。
可以采用一般的放大器频率损失公式,计算C1的值:Afc = 1 / (2π * f *Rc *C1)当C1确定后,就可以设计出第一级放大器的电路图:+Vcc||R2|+||Vin R1 Q1 Rc---->| |-------/\\/\\/\\--->|----> Vout| | ||C1 | || | |+---+ Gnd3. 设计第二级跟随器在第一级放大器完成信号放大后,需要使用一个集电极跟随器(Emitter Follower)作为第二级放大器,来提高输出信号的驱动能力。
多级放大电路设计与调试实验报告

多级放大电路设计与调试实验报告1多级放大电路设计与调试实验报告一,实验目的:1( 自行设计,安装,调试一个放大电路,满足规定实验要求2( 对实验电路的设计,调试过程进行分析,用实验验证模拟电路分析所采用的近似方法的可行性及同实际电路特性相比的差异性。
3( 学会在对电路进行检测后,对对应的问题和不足进行对应调节,有针对性对元件进行调整的方法。
二,实验设备:直流稳压电源,函数信号发生器,交流毫伏表,万用电表,双踪示波器,BJT 三极管,电容器,电阻,导线若干。
三,实验原理:由小功率BJT组成的电压放大电路可以对交流小信号起到线性放大作用,但是由于BJT的技术特性所限,其构成电路只能在一定范围信号电压,一定信号频带宽度,一定范围环境温度内达到线性放大的目的,超出限度,便可能出现信号失真,噪声增大,甚至烧毁电路的结果,因此对电路的设计要根据具体工作要求,选取符合要求的电路组态,元件参数进行设计。
此次实验所规定的所要满足的技术参数如下:电源电压VCC=12V;电压增益音视颇简称=40dB;输入电阻Ri(20k;最大输出电压VOM (有效值)>1V;频带宽度30Hz~30KHz;负载电阻RL=2k;信号源内阻RS=1k;使用环境温度:-10~+60鉴于电路的上述工作要求,在对电路组态以及元件选取的时候有如下考虑: 1,由于电路电压增益要达到40DB,也就是要电压放大100倍,因此要选用一种高增益的电路组态,由BJT放大电路三种组态知,其中共发射极放大电路增益大,因此可选用其做为放大电路的一部分。
2,对电路输入电阻的要求为Ri>20k,而共射极放大电路的输入电阻一般较小,很难满足此种要求,考虑加入另一级电路以提高输入电阻,而射极输出电路具有高输入阻抗的特点,因此选用共集电极射极输出电路做为放大电路的输入级。
3,由电路设计要求放大信号的频带宽度为30Hz~30Khz,而放大电路中对交流信号频率响应起主要作用的是电路中的偶合电容,旁路电容,以及三极管的极间电容,因此要设法调节这些电容的大小,以满足频带宽度的要求。
多级放大电路实验报告

多级放大电路实验报告实验名称:多级放大电路实验实验目的:通过实验理解多级放大电路的工作原理,并掌握其参数的测量方法。
实验仪器和材料:1. 功率放大电路实验箱2. 信号发生器3. 示波器4. 电阻表5. 电压表6. 两个NPN型晶体管7. 电阻、电容等元件实验原理:多级放大电路由多个级联的放大器组成,每个放大器都是一个单独的放大器。
多级放大器可以实现对输入信号的放大,从而增加输出信号的幅度。
实验步骤:1. 搭建多级放大电路:根据实验电路图,按照电路连接指示搭建多级放大电路。
2. 测量输入和输出电压:使用信号发生器连接输入端,设置合适的频率和幅度。
使用示波器分别测量输入信号和输出信号的电压。
3. 测量增益:通过测量输入和输出电压,计算多级放大电路的增益。
增益的计算公式为输出电压与输入电压之比。
4. 测量频率响应:改变信号发生器的频率,同时测量输入和输出信号的电压,计算不同频率下的增益。
绘制增益与频率的图像。
实验数据记录与处理:1. 输入电压(Vin):输出电压(Vout):增益(Gain):0.2V 1.5V 7.50.4V 3.2V 8.00.6V 4.8V 8.00.8V 6.3V 7.91.0V 7.5V 7.52. 根据上述数据计算多级放大电路的平均增益:增益(Gain)= (7.5 + 8.0 + 8.0 + 7.9 + 7.5)/ 5 = 7.83. 绘制频率响应图像:频率(f)Hz 增益(Gain)100 8.0500 7.81000 7.65000 6.810000 5.9实验结果与分析:通过多级放大电路的实验,我们得到了输入电压与输出电压的关系,计算出多级放大电路的平均增益为7.8。
从频率响应图像可以看出,随着频率的增加,电路的增益逐渐降低。
这是因为电容和电感的影响,导致高频信号受到衰减。
结论:通过本次实验,我们深入了解了多级放大电路的原理和工作方式。
我们通过测量输入电压和输出电压,计算出了电路的增益,并绘制出了频率响应图像。
两级放大电路实验报告

两级放大电路实验报告实验目的,通过实验,掌握两级放大电路的基本原理和特性,加深对电子电路的理解。
实验原理,两级放大电路由两级放大器级联组成,第一级为前置放大器,第二级为输出放大器。
前置放大器起放大微弱信号的作用,输出放大器则进一步放大信号并驱动负载。
实验步骤:1. 按照电路图连接电路,注意电路连接的正确性。
2. 接通电源,调节电源电压至所需数值。
3. 接通示波器,观察输入输出信号波形。
4. 测量电路中各点的电压值,并记录下来。
5. 对电路进行调试,观察输出波形的变化。
实验数据:1. 输入信号频率,1kHz。
2. 输入信号幅度,100mV。
3. 输出信号幅度,2V。
4. 输入电阻,10kΩ。
5. 输出电阻,1kΩ。
实验结果分析:通过本次实验,我们成功搭建了两级放大电路,并且观察到了输入输出信号的放大效果。
在实验过程中,我们发现输入信号的频率和幅度对输出信号的影响较大,频率过高或过低时会导致输出信号失真,幅度过大或过小时也会影响输出信号的质量。
此外,我们还发现了前置放大器和输出放大器的工作特性,前置放大器能够放大微弱的输入信号,而输出放大器则能够将信号进一步放大并驱动负载。
实验总结:通过本次实验,我们深入理解了两级放大电路的工作原理和特性,掌握了搭建和调试电路的方法,提高了实际操作能力。
在今后的学习和工作中,我们将更加熟练地运用电子电路知识,为自己的专业发展打下坚实的基础。
实验存在的问题与改进方案:在本次实验中,我们发现了一些问题,如输入输出信号的失真、电路连接的不稳定等。
为了解决这些问题,我们可以进一步优化电路连接,提高电路的稳定性,同时也可以尝试使用不同的元器件,以获得更好的实验效果。
实验延伸:在今后的学习和工作中,我们可以进一步深入研究两级放大电路的设计原理和应用,探索更多的电子电路知识,为自己的专业发展做好准备。
通过本次实验,我们不仅增加了对电子电路的实际操作经验,还加深了对电子电路原理的理解,为今后的学习和工作打下了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五晶体管两级放大器
一、实验目的
1、掌握两级阻容放大器的静态分析和动态分析方法。
2、加深理解放大电路各项性能指标。
二、实验仪器
1、双踪示波器
2、万用表
3、交流毫伏表
4、信号发生器
三、实验原理
实验电路图如下所示:
图3-1 晶体管两级阻容放大电路
1、阻容耦合因有隔直作用,故各级静态工作点互相独立,只要按实验二分析方法,
一级一级地计算就可以了。
2、 两级放大电路的动态分析 1) 中频电压放大倍数的估算
21μμμA A A ⨯= (3-1)
单管基本共射电路电压放大倍数的公式如下:
单管共射 '
(1)Re
L
be R A r μββ=-++ (3-2)
要特别注意的是,公式中的,'
L R 不仅是本级电路输出端的等效电阻,还应包含下级电路等效至输入端的电阻,即前一级输出端往后看总的等效电阻。
2) 输入电阻的估算
两级放大电路的输入电阻一般来说就是输入级电路的输入电阻,即:
R i ≈R i1 (3-3) 3) 输出电阻的估算
两级放大电路的输出电阻一般来说就是输出级电路的输出电阻,即:
R o ≈R o2 (3-4) 3、 两级放大电路的频率响应 1) 幅频特性
已知两级放大电路总的电压放大倍数是各级放大电路放大倍数的乘积,则其对数幅频特性便是各级对数幅频特性之和,即:
||lg 20||lg 20||lg 202
1μμμA A A += (3-5) 2) 相频特性
两级放大电路总的相位为各级放大电路相位移之和,即
21ϕϕϕ+=
(3-6)
四、实验内容
a. 测量静态工作点
1、图3-1中,跳线J3、J5、J8连接,J4、J6、J7、J10断开。
2、输入信号V i 为0。
3、打开直流开关,第一级静态工作点已固定,可以直接测量。
调节RW2电位器使第二级的I C2=1.0mA (即U E2=0.43V ),用万用表分别测量第一级、第二级的静态工作点,记入表3-1。
b. 测试两级放大器的各项性能指标
1、关闭系统电源,连接信号源与Vi。
2、打开系统电源。
调节信号源使“OUT”点输出频率为1KHz、峰峰值为50mV的正弦波作为输入信号V i。
3、用示波器观察放大器输出电压V o的波形,在不失真的情况下用毫伏表测量出V i、V o,算出两级放大器的倍数,输出电阻和输入电阻的测量按实验二方法测得,V O1与V O2分别为第一级电压输出与第二级电压输出。
A V1为第一级电压放大倍数,A V2(V02/V01)为第二级电压放大倍数,A V为整个电压放大倍数,根据接入的不同负载测量性能指标记入表3-2。
c.*测量频率特性曲线(选做)
※此实验需外接信号发生器
从信号发生器输入信号V i,改变信号源频率f,逐点测出R L=10K时相应的输出电压V O,用双踪示波器观察V O与V i的相位关系,制作表格记录数据。
为了频率f取值合适,可先粗测一下,找出中频范围,然后再仔细读数。