共射放大电路实验报告
电子电路共射放大电路EDA实验报告

电子电路共射放大电路EDA实验报告一、实验目的1. 掌握EDA软件的使用;2. 掌握共射放大电路的基本原理;3. 学会使用EDA软件进行电路仿真;4. 熟悉共射放大电路的性质,并进行分析。
二、实验原理1. 共射放大电路的原理共射放大电路是一种常用的晶体管放大电路。
它是指共射极作为输入端,分配少量信号功率,而将大量功率输出的一种电路。
该电路可以放大输入信号,但需要额外的电阻、电容及负载电阻等元件的配合。
共射放大电路的特点是具有较高的电压放大倍数,能够放大交流信号,但直流稳定性较差。
同时,该电路在增益较大时,输出阻抗较低,具有较强的驱动能力。
三、实验步骤及结果分析1. EDA软件的运用首先,我们打开EDA软件并进行基本设置,包括添加元器件、进行连线、添加电源等操作。
在添加元器件时,我们需要选择正确的型号,以确保电路的正常运行。
接下来,我们按照共射放大电路的原理进行搭建。
在该电路中,我们需要添加三个主要元器件,包括晶体管、电容和电阻。
晶体管起到放大信号的作用,电容和电阻则用于控制电流和增益。
3. 电路仿真及分析在电路搭建完成后,我们可以进行电路仿真。
通过对电路的输入和输出进行测量,可以得到电路的增益、频率响应等参数。
在分析电路性质时,我们需要注意到各元器件之间的相互作用,以及电路的整体响应特性。
四、实验结论通过本次实验,我们学习了EDA软件的使用方法,同时掌握了共射放大电路的原理和特性。
在电路搭建过程中,我们注意到各元器件之间的相互作用,以及电路的整体响应特性。
在后续的实验工作中,我们将进一步深入学习电路的相关知识,并掌握更多的电路设计和仿真技巧。
晶体共射极放大电路实验报告

晶体共射极放大电路实验报告
本实验是一项关于晶体共射极放大电路的实验。
该电路是基于晶
体管的一种放大器电路,被广泛应用于各种电子设备中,如收音机、
电视机、音响、电子计算机等。
在本次实验中,我们选择了一款常见的晶体共射极放大电路,使
用一块NPN型晶体管和相关电子元件进行搭建。
该电路是通过共射极
放大器的方式进行的,即将输入的信号与输出的信号通过晶体管进行
放大,并将放大后的信号输出。
通过调整电路中的各个元件参数,我
们可以实现电路的放大系数和频率响应的调节。
在实验过程中,我们首先进行了电路的装配和串联,然后进行了
电路参数的调节。
通过实验,我们发现在调节晶体管的输入电压时,
电路输出的信号的值也会发生变化,因此我们需要合理地调整输入电压,以获得合适的输出信号。
另外,我们还进行了电路频率响应的测试。
我们通过输入不同频
率的信号,来测试电路的频率响应情况。
通过实验,我们发现电路的
响应频率范围为数百Hz至几十kHz之间。
这对于一些需要精细调节频
率的电子设备非常重要。
最终,我们达到了预期的实验效果,成功地搭建出了一个晶体共
射极放大电路,并实现了合适的放大系数和频率响应。
此外,我们还
讨论了电路中各种元件的作用和特点,深入理解了晶体共射极放大电
路的工作原理和应用。
总之,晶体共射极放大电路是一种十分重要的电路,其在各种电
子设备中的应用也非常广泛。
通过本次实验我们深入了解了该电路的
原理和应用,这将对我们今后的电子学习和实践活动具有重要的意义。
共射放大电路实验报告

共射放大电路实验报告共射放大电路实验报告引言:共射放大电路是电子学中常见的一种放大电路,它具有放大电压和功率的能力。
本实验旨在通过搭建共射放大电路并进行实验验证,深入理解其工作原理和特性。
一、实验目的本实验的主要目的有以下几点:1. 理解共射放大电路的基本原理和结构;2. 学习如何搭建和调试共射放大电路;3. 通过实验验证共射放大电路的放大倍数和频率响应特性;4. 掌握使用示波器和万用表等实验仪器进行电路测试和测量的方法。
二、实验原理共射放大电路由三个主要元件组成:NPN型晶体管、输入电容和输出电容。
晶体管的基极通过输入电容与输入信号相连,发射极与输出电容相连,集电极则与负载电阻相连。
当输入信号施加在基极上时,晶体管的发射极电流会随之变化,从而引起集电极电流的变化,实现信号的放大。
三、实验步骤1. 按照电路图搭建共射放大电路,注意连接的正确性;2. 使用示波器观察输入和输出信号波形,调节电源电压和负载电阻,使得输出信号幅度适中;3. 使用万用表测量电路中各个元件的电压和电流数值;4. 调节输入信号的频率,观察输出信号的变化,记录并分析实验数据。
四、实验结果与分析在实验中,我们搭建了共射放大电路,并进行了一系列的测试和测量。
通过示波器观察到的输入和输出信号波形,我们可以清晰地看到输入信号在放大电路中被放大了。
通过测量电压和电流数值,我们可以进一步计算出放大倍数和功率增益等参数。
五、实验讨论在实验过程中,我们发现共射放大电路的放大倍数与输入信号频率有关。
当频率较低时,放大倍数较高;而当频率较高时,放大倍数会逐渐下降。
这是由于晶体管的频率响应特性所决定的。
此外,我们还发现负载电阻的大小对放大倍数和输出功率也有一定的影响。
六、实验总结通过本次实验,我们深入学习和理解了共射放大电路的工作原理和特性。
通过搭建和调试电路,我们掌握了使用示波器和万用表等实验仪器进行电路测试和测量的方法。
通过实验结果和数据分析,我们进一步加深了对共射放大电路的认识。
共射极放大电路实验报告

一、实验目的1.掌握放大电路静态工作点的测量和调试方法;2.掌握放大电路交流放大倍数、输入电阻、输出电阻的测量方法;3.研究静态工作点对输出波形的影响和负载对放大倍数的影响; 二、实验原理共发射极电路是放大电路三种基本组态之一,放大电路处于线性工作状态的必要条件是设置合适的静态工作点Q ,工作点的设置直接影响放大器的性能。
若Q 点选得太高,会引起饱和失真;若选得太低,会产生截止失真。
本实验采用基极分压式偏置电路,各指标的表达式为: 电压放大倍数 ()c L v beR R A r β-=, 输入电阻be b b i r R R R 21=,输出电阻o c R R =, 实验电路图如下:图5-1 实验电路1.静态工作点测试原理实验中,如果测得U CEQ <0.5V ,说明三极管已饱和;如果测得U CEQ ≈V CC ,则说明三极管已截止。
工作点偏高或者偏低,都会引起波形失真,如图5-2所示。
对于线性放大电路,这两种工作点都是不可取的,必须进行参数调整。
一般情况下,调整静态工作点,就是调整电路中的偏置电阻R b 的大小。
减小R b ,工作点升高;增大R b ,工作点降低,从而使U CEQ 达到合适的值。
为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。
图5-2 静态工作点设置不当引起的失真波形2. 动态指标测试原理放大器的动态指标的测试是在有合适的静态工作点时,保证放大电路处于线性工作状态下进行的。
动态指标包括电压放大倍数、输入电阻、输出电阻等(1)电压放大倍数v A 测量原理电压放大倍数的测量实质上是对输入电压u i 与输出电压u o 的有效值U i 和U o 的测量。
将所测出的U i 和U o 值代入下式,则得到的电压放大倍数为 ov iU A U =(2)输入电阻、输出电阻测量原理放大器的输入电阻i R 是向放大器输入端看进去的等效电阻,定义为输入电压i U 和输入电流i I 之比,即 ii iU R I =测量i R 的方法很多,本实验采用的测量方法称为换算法,测量电路如图5-3所示。
共射放大电路实验报告

共射放大电路实验报告实验目的,通过实验,掌握共射放大电路的基本原理、特性及其应用。
实验仪器设备,示波器、信号发生器、直流稳压电源、电压表、电流表、共射放大电路实验箱等。
实验原理,共射放大电路是由一个NPN型晶体管组成的放大电路。
在共射放大电路中,输入信号加在晶体管的基极上,输出信号则是从集电极上取出。
当输入信号变化时,基极-发射极间的电压也会相应地变化,从而引起集电极-发射极间的电流发生变化。
由于集电极电流的变化,集电极电压也会相应地变化,从而得到输出信号。
实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好。
2. 调节信号发生器的频率和幅度,使其输出一个正弦波信号。
3. 将正弦波信号输入到共射放大电路的输入端,观察输出端的波形。
4. 调节直流稳压电源的电压,观察输出端波形随电压的变化情况。
5. 记录实验数据,并绘制输入输出特性曲线。
实验结果与分析:通过实验,我们得到了共射放大电路的输入输出特性曲线。
在实验中,我们发现当输入信号的幅度较小时,输出信号的幅度基本与输入信号一致;当输入信号的幅度较大时,输出信号的幅度出现了明显的失真。
这说明共射放大电路在一定范围内可以实现较好的放大效果,但是在过大的输入信号下会出现失真。
结论:通过本次实验,我们深入了解了共射放大电路的基本原理和特性。
共射放大电路作为一种常见的放大电路,在实际应用中具有重要的意义。
通过对其特性的了解,我们可以更好地应用它,设计出更加稳定和可靠的电路。
实验总结:本次实验使我们对共射放大电路有了更深入的了解,也提高了我们的动手能力和实验操作技能。
在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提高自己的专业能力。
以上就是本次共射放大电路实验的报告内容,希望对大家有所帮助。
晶体管共射极放大电路实验报告

晶体管共射极放大电路实验报告实验目的:1.了解晶体管共射极放大电路的基本原理。
2.熟悉晶体管共射极放大电路的实验操作和测量方法。
3.掌握晶体管共射极放大电路的参数测量和计算方法。
实验仪器和材料:1.功率放大器实验箱。
2.变压器。
3.各种被测元件(晶体管、电阻等)。
4.示波器。
5.万用电表。
实验原理:晶体管共射极放大电路是一种三极管放大电路,由三个基本元件组成:B1(输入器),Q1(放大器)和B2(输出器)。
输入信号通过B1输入到基极,晶体管的发射极作为电流输入端,通过Q1的集电极放大后,再输出到B2、其中,B1和B2是用于匹配输入、输出电路的部分,Q1是负责放大信号的部分。
实验步骤:1.搭建晶体管共射极放大电路。
2.给电路施加电源,调节电源电压为合适的值。
3.使用万用表测量和记录电流值、电压值等相关信息。
4.使用示波器观察输出信号波形,并测量信号的频率和幅度。
5.记录实验中发现的问题和解决办法。
实验数据:1. 输入电压:Vin = 1V。
2. 输出电压:Vout = 10V。
3. 输入电流:Iin = 10mA。
4. 输出电流:Iout = 100mA。
5. 输入阻抗:Zin = Vin / Iin。
6. 输出阻抗:Zout = Vout / Iout。
7. 放大倍数:A = Vout / Vin。
结果分析:根据实验数据计算得到的输入阻抗、输出阻抗和放大倍数等参数,可用于评价晶体管共射极放大电路的性能。
同时,通过观察输出信号波形,可以判断电路是否正常工作,是否满足实验要求。
实验总结:通过本次实验,我们学习了晶体管共射极放大电路的基本原理和搭建方法。
并且通过测量和计算,了解了该电路的输入阻抗、输出阻抗和放大倍数等参数。
同时,通过观察输出信号波形,我们可以判断电路是否正常工作。
通过本次实验,我们进一步加深了对晶体管放大电路的理解,提高了实验操作和测量方法的熟练度。
共射级放大电路实验报告

共射级放大电路实验报告共射级放大电路实验报告引言:共射级放大电路是电子学中常用的一种放大电路。
通过实验,我们可以深入了解共射级放大电路的工作原理、特性和应用。
本实验报告将详细介绍实验的目的、实验步骤、实验结果以及对实验结果的分析和讨论。
实验目的:1. 了解共射级放大电路的基本原理和特性;2. 掌握共射级放大电路的设计方法;3. 学会使用示波器和万用表等实验仪器。
实验步骤:1. 搭建共射级放大电路电路图;2. 连接电路并接通电源;3. 调节电位器,使得输入信号幅度适当;4. 使用示波器观察输入信号和输出信号的波形;5. 使用万用表测量电路中各节点的电压值。
实验结果:在实验中,我们搭建了一个共射级放大电路,并进行了相应的测量和观察。
通过示波器,我们观察到了输入信号和输出信号的波形,并使用万用表测量了电路中各节点的电压值。
在输入信号幅度适当的情况下,我们观察到输出信号的幅度明显大于输入信号的幅度,这说明共射级放大电路具有放大功能。
同时,我们还注意到输出信号的相位与输入信号相位相反,这是由于共射级放大电路的特性决定的。
通过测量各节点的电压值,我们可以得到电路中各元件的工作状态。
例如,输入信号经过耦合电容进入晶体管的基极,经过放大后,输出信号从集电极输出。
同时,我们还可以观察到集电极和发射极之间的电压差,这是晶体管的放大效果导致的。
分析和讨论:通过实验结果的观察和测量,我们可以得出以下结论:1. 共射级放大电路可以将输入信号进行放大,从而增加信号的幅度;2. 输出信号的相位与输入信号的相位相反,这是共射级放大电路的特性;3. 通过调节电位器,可以控制输入信号的幅度,从而调节放大倍数;4. 通过测量各节点的电压值,可以了解电路中各元件的工作状态。
共射级放大电路在实际应用中具有广泛的用途。
例如,在音频放大器中,共射级放大电路可以将微弱的音频信号放大为足够大的信号,以驱动扬声器产生声音。
此外,共射级放大电路还可以在通信系统中扮演重要角色,用于信号的放大和传输。
实验一基本共射放大电路实验报告

实验一基本共射放大电路实验报告一、实验目的:1.掌握基本共射放大电路的组成和工作原理;2.学会在实验条件下测量并计算电路的增益。
二、实验仪器:1.示波器;2.多用电表;3.功放电路板。
三、实验原理:基本共射放大电路由NPN晶体管、输入电阻、输出电阻和负载电阻组成。
工作原理如下:当输入信号向基极施加交流信号时,晶体管工作于放大状态。
由于输入电阻的存在,输入信号会将电流注入基极,导致基极电流增大。
而这个增大的电流会引发晶体管的放大作用。
输出电阻起到了与负载电阻相匹配的作用,使原信号可以通过负载电阻得到放大。
四、实验步骤:1.按照电路图搭建基本共射放大电路;2.将输入信号接入示波器的输入端,并调节示波器参数使波形清晰可见;3.测量输出信号的幅值,并用多用电表测量电路各个元件的电压和电流。
五、实验结果与分析:根据示波器上显示的波形,我们可以得到输入信号和输出信号的波形图,并通过测量得到其幅值。
根据实验数据,可以计算电路的输入电阻和输出电阻,以及电路的增益。
具体计算步骤如下:1.计算输入电阻:输入电阻可以通过测量输入电流和输入电压得到,用输入电压除以输入电流即可。
2.计算输出电阻:输出电阻可以通过测量输出电压和输出电流得到,用输出电压除以输出电流即可。
3.计算增益:增益是指输出信号幅值与输入信号幅值之间的比值,通过测量输出信号和输入信号的幅值即可计算。
根据实验数据和上述计算步骤,我们可以得到电路的输入电阻、输出电阻以及增益的数值。
六、实验分析与结论:通过实验,我们成功搭建了基本共射放大电路,并且根据测量数据计算了电路的输入电阻、输出电阻以及增益。
这些数据可以帮助我们评估电路的性能和效果。
实验结果分析:1.输入电阻越大,表示电路对输入信号的损耗越小,但也较容易受到外界干扰。
2.输出电阻越小,表示电路可以驱动更大的负载电阻,但也对负载电阻变化较敏感。
3.增益越大,表示电路对输入信号的放大效果越好,但也容易引起失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名:一、实验目的1、学习晶体管放大电路的设计方法,2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。
3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。
4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。
5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。
二、实验任务与要求1.设计一个阻容耦合单级放大电路已知条件:=+10V cc V , 5.1L R k =Ω,10,600i SV mV R ==Ω性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v iA V V R k >>Ω2.设计要求(1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量自己编写调试步骤,自己设计数据记录表格4.写出设计性实验报告三、实验方案设计与实验参数计算共射放大电路(一).电路电阻求解过程(β=100)(没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计):(1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取25BBCC VV =,即4V, (3)0.7 3.3BB EEV R k I -≈=Ω,恰为电阻标称值(4)212124:3:2CCBB R V V VR R R R ==+∴=取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k ,R 1=33.75k;112110=0.1,60,40cc BB V V IR I mA R K R K IR -===Ω=Ω由综上:取标称值R1=51k ,R2=33k(5) 25T T eE CV V r I I =≈=Ω(6)从输入电阻角度考虑:,取(获得4V 足够大的正负信号摆幅)得:从电压增益的角度考虑:>15V/V,取得:;为(二).电路频率特性(1) 电容与低频截止频率取;(三).参数指标验算过程由已确定的参数:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω,计算得:,所有参数符合指标.四、实验步骤与过程(一).实验电路仿真:1. 代入参数的实验电路2.直流工作点Q:2.1仿真类型与参数设置:选择时域瞬态分析(Time domain),由于交流小信号的频率为1kHZ,设置仿真时间为2个周期,0-2ms,扫描步长为0.02ms,精度足够2.2图像处理:将交流小信号源断开,分别观察IC,VCE,VBE,VC,的波形,利用标尺(toggle cursor)得到仿真值为:IC=0.892V,VCE=2.38V,VBE=0.622V,VC=5.45V3.交流参数分析:3.1仿真类型与参数设置:选择频域分析(AC SWEEP),要将电压源由给定频率的VSIN源换成可供频率扫描的V AC,幅值设定为10mV;为得到完整频域特性,扫描频率选择对数扫描,从1HZ到100MHZ,采样点设置为10, 3.2图像处理(其他图像略去,只摘取需要用到标尺工具的复杂图像)(1).电压增益:观察V2(RL)/V1(RS)的频域波形,用标尺得出1Khz时的电压增益为17.607;在直流分析中,设置y轴变量为max(V2(RL))/max(V1(RS),利用标尺得到电压增益为178.55mv/9.993mv=17.87;(2).上下限截止频率与通频带:同样是上面的频域增益波形,利用orcad自带的信号处理函数可以得到:Fl=26.24877HZ,FH=1.99MHZ,由于FL相对较小,通频带近似为FH(3).输入电阻:观察V(VS+)/I(C1)的频域波形,利用标尺可得,当信号源的频率为1Khz时,输入电阻Ri=7.6816kΩ4.数据处理与误差分析ICVCEVBEVCAVFLRI理论计算值0.917 2.210.7 5.32320.24268.305电子仿真结果0.892 2.380.6225.4517.8926.257.6816相对误差0.0272630.0769230.0238590.1161070.0096150.075063计算可得除VCE 外直流工作点的相对误差约为2.5%,而频幅特性相对误差约为10%,较大;直流工作状态的误差主要是由于将VCE 直接认定为0.7V 导致的,而交流特性是由三极管直流工作点决定的,且计算时忽略了电容对电路产生的影响,且忽略厄利效应,所以会有至少3类误差的叠加,导致误差较大.(二).实际电路测试:1.测试原理:(注释:由于事先不知道实际测试电路所用三极管放大倍数只有160的,而我设计是用100的,所以在测试时无法利用我的设计方案,采用了另一个设计方案,附在报告最后.)1.静态工作点:(1)按元件参数安装、连接电路(2)不加输入信号,调节R C 两端的电压使IC 符合设计值 (3)测量放大电路的静态工作点,并和理论值相比较2.电压增益:(1)保持静态工作点不变,利用示波器观察输入信号波形,调节信号源,使输出信号为频率1kHz,幅值30MV 的正弦波.(2)输入、输出波形用双踪显示观察,指出它们的相位关系。
当输入输出波形无失真时,分别读出v i 、v o 的峰-峰值,记入表格(3)增大输入信号幅度,用示波器监视输出波形。
使输出波形出现失真,记下此时的输出波形草图,说明首先出现的是哪种失真。
测出最大不失真输出电压峰值,记入表格。
(4)接入负载R L =5.1k Ω。
重做上述步骤,分析负载对电压增益的影响。
3.输入电阻:(1)在信号源与被测放大器之间串入一个与R i 同一数量级的已知电阻R ,在输出 波形不失真的情况下,分别测出v s 和v i ,则放大器的输入电阻为:()/i ii s i s iv v R R v v R v v ==--4.输出电阻:(1)输出波形不失真的情况下,分别测出输出端空载时的输出电压v o 和接入负载R L 后的输出电压v ’o ,则放大器的输出电阻为:(1)/o o o o L o L v v vR R v R v '-==-⨯''5.幅频特性:电压增益下降到中频增益0.707倍时(分贝数下降3dB )所对应的的上、下限频率即,L Hf f(1)在C I 为设计值、L R =∞情况下,输入1kHZ 正弦信号,改变输入信号幅度,使输出电压峰-峰值为max 0.5OP P V -左右。
测出此时输出电压峰-峰值OP P V -(2)保持放大器输出电压iv 幅度不变,改变信号源输出频率(增大或减小),当输出电压值达到0.707OP p V -值时,停止信号源频率的改变,此时信号源所对应的输出频率即为,L H f f2. 实验数据记录(2).电压增益:(5).幅频特性3.结果分析:1.静态工作点:理论值和实际值相差不大,在合适的工作范围内,相对误差已随表给出估计静态工作点的误差一部分是由于计算时默认VBE=0.7V,而实际为0.64V造成的.2.电压增益:(1)加入负载后,电压增益下降,本次实验的负载和R C相同,带负载电压增益减半。
可以看出,若要获得更大的电压增益,且不考虑其他因素,在R C相同的情况下,负载电阻越大越好。
但最大不失真输出电压的峰峰值(输入信号摆幅)减小,容易出现饱和失真(在静态工作点较高时)、或截止失真(静态工作点较低时)。
(2)利用示波器双踪显示同时观察输入输出波形,不断增大输入信号的幅度,观察发现输出信号最先产生削顶现象,即电路最先产生截止失真;继续增大输入信号的幅度,然后输出信号发生削底现象,即饱和失真.由示波器的标尺分别测量得到最大不失真输出电压峰峰值和饱和失真的输出电压峰峰值.输入与输出信号相位差恒定为(2k+1),反相.RL=∞RL=5.1kΩ未失真临Vi Vo Vi Vo界峰峰值截止失真39mV 4.2V 65.2mV 2.98mV(3)最大不失真输出电压峰峰值测量为4.2V,与理论分析值接近:由于直流偏置信号为15V,且设计时的直流工作点工作在VC=10.053V情况,所以不失真的信号摆幅约为5V,最大不失真输出电压峰峰值<5V,而4.2V<5V,且足够大,符合要求.实验中判断截止失真的临界输出电压方法:在实验中,通过通过观察可知最先发生截止失真,所以不断增大电压在波形明显削顶之前微调输入电压,比对顶端和底端在相同信号衰减的情况下的相位跨度(即示波器上幅值下降两格的横线确定的相位差),当二者刚好从相等到不等时,即为所求临界输出电压.(4)电压增益的实际值和仿真值均小于计算值,实际和仿真都会受到频率和电容的影响,但实际情况下还有电阻阻值偏小等情况,所以实际值最小,而计算值是理想的情况,频率和电容都按照理想情况处理,并未考虑三极管的极间电容,所以增益最大。
3.输入电阻:(1)实际值与仿真值和计算值相比略小。
可能是因为实际用的电阻R并不标准存在偏差。
仿真值部分,分析了1kHz时候的β值,发现只有121,导致输入电阻阻值下降。
(如下图所示)图中值:121.447Frequency0Hz0.5KHz1.0KHz 1.5KHz2.0KHzI(Q2:c) / I(Q2:b)121.43121.44121.45121.46(1.0000K,121.447)4.输出电阻:(1)计算值不考虑厄利效应,数值最大。
仿真和实际值都包含了厄利效应导致的电阻r o ,而实际电阻R L 的阻值无法保证,偏差会更大。
5.幅频特性:(1)实际值和仿真值的下限截止频率相差不大,但是上限截止频率相差巨大。
下限截止频率主要由耦合电容、旁路电容和电阻影响,实际值和仿真值不会相差很大。
上限截止频率主要是电阻和极间电容影响.经过查阅资料,引起上限截止频率的仿真值和实际测量值存在较大差异的主要原因是,示波器的输入电容限制拉低了输出回路的上限截止频率, 起主要作用,是高频响应函数的主极点.经过计算,在某个合适不失真的输入信号下,输出信号峰峰值为1.42V 时,3DB 衰减后的输出信号峰峰值为1.007V,所以调节输入信号频率,直到输出信号波形在示波器上显示的幅值为1.00V,此刻的输入信号频率即为上下限截止频率.八、讨论、心得本次实验涉及完整的放大器设计、仿真、测试过程,整体过程较为复杂。
从实验结果来看,计算值、仿真值、实际值之间均有一定误差。
实际情况下,直流源供电电压偏差,电阻阻值和理论值的偏差,极间电容,线路电阻等均会带来一定的误差,但由于设计时充分考虑到这些因素,设置了合适的直流工作点,总体上放大器还是能正常工作在放大状态。