开关电源中光耦的作用

合集下载

开关电源上的光耦损坏会怎样

开关电源上的光耦损坏会怎样

开关电源上的光耦损坏会怎样在许多电子设备中,开关电源模块被广泛应用于将交流电转换为稳定的直流电供给电路。

而在开关电源模块中,光耦是一个至关重要的元件。

光耦是一种将输入端和输出端通过光信号隔离的器件,常用于电气隔离和信号转换。

如果光耦这一关键元件遭受损坏,就会对整个开关电源模块产生影响。

首先,光耦在开关电源模块中扮演着信号传递的重要角色。

当克服输出负载的变化,以保持开关电源输出的稳定电压时,光耦可以帮助实现输入端和输出端之间的隔离,起到传递信号的作用。

如果光耦损坏,会影响这种信号传递功能,导致输入端无法准确地控制输出端,从而使整个开关电源模块的稳定性受损。

其次,光耦的损坏还可能导致开关电源模块的工作不正常。

在开关电源的调节过程中,通过光耦实现的隔离保护可以有效地防止过压、短路等问题对电源模块的损坏,确保电路的正常工作。

一旦光耦发生故障,这种保护机制将无法正常发挥作用,极有可能导致开关电源模块受损,甚至引发电路故障。

此外,光耦的故障还可能对整个电子设备的安全性产生负面影响。

在一些高要求的电子设备中,开关电源模块的性能和稳定性直接关系到设备的运行安全。

如果开关电源上的光耦损坏,可能会造成电路短路、过流等严重问题,从而危及设备和使用者的安全。

因此,为了确保开关电源模块的正常工作和设备的安全性,平时应该定期检查光耦元件是否正常,一旦发现问题及时更换损坏的光耦器件。

在维护和使用开关电源时,要注意保护光耦元件,避免过载、过热等因素导致其损坏,从而确保整个电源系统的稳定性和安全性。

只有保证光耦元件的正常运行,设备的电源系统才能正常工作,最大程度地避免了因光耦损坏而带来的不良影响。

1。

光耦合器在开关电源中的作用

光耦合器在开关电源中的作用

光耦合器在开关电源中的作用
光耦合器在开关电源中的作用主要是隔离、提供反馈信号和开关。

1. 隔离作用:光耦合器能很好地隔离输入信号和输出信号,使其不受彼此的干扰。

在单片开关电源中,应用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,以实现精密稳压。

2. 提供反馈信号:光耦合器在开关电源中还可以为各种电路提供反馈信号。

当输出电压低于齐纳管电压时,光耦会打开,增加占空比以增加输出电压;反之,当输出电压过高时,光耦会关闭,降低占空比,导致输出电压下降。

3. 开关作用:在开关电源电路中,光耦的电源由高频变压器的二次电压提供。

当高频变压器二次负载过载或开关电路故障时,没有光耦电源,光耦控制开关电路不振动,以保护开关管不被烧毁。

此外,光耦合器还具有单向传输、抗干扰能力强、工作稳定、无触点、应用寿命长和传输效率高等优点。

开关电源中的光耦的作用

开关电源中的光耦的作用

开关电源中的光耦的作用开关电源的光耦主要是隔离、提供反馈信号和开关作用。

开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压是给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。

旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。

通常光耦与TL431一起使用。

下面是led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG03655的部分电路。

两电阻串联取样到431R端与内部比较器进行比较.然后根据比出的信号再控制431K端(阳极接光耦那一端)对地的电阻,然后达到控制光耦内部发光二极管的亮度.(光耦内部一边是一发光二极管,一边是一光敏三极管)通过发光的强度.控制另一端三极管的CE端的电阻也就是改变了led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365检测脚的电流(1脚:电压反馈引脚,通过连接光耦到地来调整占控比).根据电流的大小,led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365就会自动调整输出信号的占空比,达到稳压的目的TMG0321/TMG0165/TMG0265/TMG0365芯片是一款高集成度、高性能的PWM+MOSFET 管二合一的电流型离线式开关电源控制器。

适用于充电器、电源适配器、LED驱动电源等各类小功率的开关电源。

采用DIP8 封装,无需加散热器可输出0~36W 的功率(加散热可以做到更大)。

电路结构简单,成本低。

具有完善的保护功能,包括过压、欠压、过温、过载及短路等保护。

固定振荡频率及抖频功能,可以降低EMI。

待机功率低,在待机时进入跳周期模式,符合“能源之星”等待机功耗标准要求。

光耦在开关电源中有两个作用。

1;隔离,把进线220V的强电和电路板电路隔离开来,也就是常说的…冷底板‟。

光耦在开关电源中的作用有哪些

光耦在开关电源中的作用有哪些

光耦在开关电源中的作用有哪些
在现代电子设备中,开关电源作为一种高效、轻巧的电源供应方案,被广泛应用于各种电子产品中,如手机充电器、电脑电源等。

而光耦作为开关电源中的一个重要元件,发挥着关键的作用。

本文将探讨光耦在开关电源中的作用,以及它的原理和应用。

首先,光耦是一种将输入端和输出端通过光学耦合隔离的元件,主要由发光二极管和光敏三极管组成。

在开关电源中,光耦扮演着信号隔离和传递的关键角色。

当输入端施加电压时,发光二极管产生光信号,经过光传感器后转换为电信号输出到开关电源的控制电路中。

这种光电耦合的设计能够有效地隔离输入和输出端,提高了系统的安全性和稳定性。

其次,光耦在开关电源中还可以实现开关控制信号的隔离和传递。

在开关电源中,控制信号经过光耦隔离后,可以有效地防止输入端噪声和干扰信号对输出端的影响,保证电路的稳定性和可靠性。

同时,光耦还可以实现不同电路之间的隔离,防止电压和电流的干扰,提高系统的抗干扰能力。

此外,光耦还可以实现电流限制和过载保护功能。

在开关电源中,通过控制光耦的工作状态,可以实现对输出电流的限制和监测,保护电路不受过载损坏。

一旦输出电流超过设定值,控制电路会自动切断光耦,实现对电路的保护,避免电子设备的损坏。

总的来说,光耦作为开关电源中的重要元件,具有信号隔离、传递、控制和保护等多种功能。

它不仅可以提高系统的稳定性和安全性,还可以实现电路之间的隔离和互联。

在现代电子设备中,光耦在开关电源中的作用日益重要,为电子设备的高效、稳定运行提供了重要保障。

1。

开关电源光耦通用吗

开关电源光耦通用吗

开关电源光耦通用吗光耦,即光电耦合器件,是将LED光源和光敏元件(光电二极管、光敏电阻等)集成在一起的电子元器件,具有隔离、传输信号、抑制干扰等重要功能。

在开关电源电路中,光耦作为一个重要的隔离元件,发挥着至关重要的作用。

但是,如何正确选择和使用光耦,以及光耦在开关电源中的通用性,却是需要深入探讨的问题。

首先,光耦在开关电源中的作用主要是实现输入输出之间的电气隔离,避免高压部分对低压部分的干扰,从而提高电路的安全性和稳定性。

开关电源中的开关管会产生高频噪声和电磁干扰,通过光耦的隔离,可以有效地将这些干扰信号隔离开来,不影响低压侧的稳定工作。

因此,光耦在开关电源中的应用是非常重要的。

在选择光耦时,需要考虑的因素主要包括工作电压、耐压能力、响应速度和耐久性等。

开关电源中的工作电压一般较高,因此选用的光耦需要具有足够的耐压能力,以确保在高电压下仍能正常工作。

此外,由于开关电源的工作频率较高,光耦的响应速度也需要很快,以确保准确传输信号,避免引起延迟等问题。

同时,光耦作为一个隔离元件,其耐久性也是需要考虑的因素,需要具有足够的可靠性和稳定性。

然而,并不是所有类型的光耦都适用于开关电源电路。

在选择光耦时,需要根据具体的电路设计要求和工作环境来进行选择。

例如,一些特殊要求的开关电源电路可能需要采用高频率、高速响应的光耦,而一些普通的开关电源电路可能只需要使用一般性能的光耦即可。

因此,光耦在开关电源中的通用性并非绝对,需要根据具体情况具体分析。

另外,光耦的选用还需要考虑到光耦的耦合系数、传输比率等参数。

耦合系数是指输入端LED发出的光与输出端光敏元件接收到的光之间的比例关系,耦合系数越高,传输的信号越稳定可靠。

而传输比率则是指输入端和输出端之间的电流、电压传输比率,也是衡量光耦性能的重要指标之一。

综上所述,光耦作为一种重要的隔离元件,在开关电源中发挥着不可替代的作用。

在选择光耦时,需要综合考虑工作电压、耐压能力、响应速度、耐久性等因素,并根据具体情况进行选择。

开关电源中光耦的作用是什么

开关电源中光耦的作用是什么

开关电源中光耦的作用是什么在开关电源电路中,光耦是一种重要的元件,其作用十分关键。

光耦主要由发光二极管(LED)和光敏三极管(光电晶体管)组成,其基本原理是利用LED发出的光照射到光敏三极管上,从而产生光电效应,实现输入和输出信号的隔离和传递。

那么,光耦在开关电源中具体扮演着怎样的角色呢?首先,光耦在开关电源中扮演着信号隔离的重要作用。

在电路中,有时候需要对输入信号和输出信号之间进行隔离,以防止干扰或电气隔离。

光耦的引入能够有效地实现输入和输出信号的隔离,从而提高电路的稳定性和可靠性。

在开关电源中,输入端往往与交流电网相连,而开关管等元件则处于高压高频环境下,这时光耦的隔离作用就显得尤为重要。

通过光电效应的原理,输入端和输出端之间能够实现电气隔离,避免高压高频环境对低压低频端的干扰,确保整个电路的正常工作。

其次,光耦在开关电源中还承担着信号传递的功能。

在一些需要控制的情况下,输入信号需要被准确地传递到输出端,以准确地控制开关电源的开关状态。

通过光耦,可以实现输入信号与输出信号的准确传递,从而使得开关电源能够按照设计要求正常工作。

光耦在这一过程中起到了信号放大、隔离和保护的作用,有效地保证了开关电源电路的稳定性和可靠性。

另外,光耦还在开关电源中扮演着功率控制的角色。

在一些功率控制较为敏感的情况下,光耦可以通过对LED的驱动电流进行调节,实现对输出端功率的控制,从而达到对开关电源整体功率的控制。

因为LED的电流与输出端的功率具有一定的相关性,通过合理地控制LED的驱动电流,可以实现对输出端功率的调节,保证开关电源在不同功率要求下的稳定工作。

综上所述,光耦在开关电源中扮演着信号隔离、信号传递和功率控制等重要角色。

其作用不仅体现在保护电路、提高稳定性,还能有效地实现对开关电源功率的控制。

因此,在设计和应用开关电源电路时,合理地选用和配置光耦元件能够提高电路的稳定性、可靠性和灵活性,确保开关电源正常、安全、高效地工作。

光耦在开关电源中的应用

光耦在开关电源中的应用

光耦在开关电源中的应用光耦是一种常见的电子元件,它在开关电源中有着广泛的应用。

本文将从光耦的工作原理、开关电源的基本结构、光耦在开关电源中的作用以及光耦的选型等方面进行详细介绍。

我们来了解一下光耦的工作原理。

光耦是由发光二极管和光敏三极管(也称为光电二极管)构成的。

当给发光二极管正向电压时,它会发出可见光。

而当这个光照射到光敏三极管时,会产生电流。

这样,通过光耦就可以实现一个光电转换的过程。

接下来,我们来了解一下开关电源的基本结构。

开关电源是一种能将交流电变换成直流电的电源装置。

它由输入端、变压器、整流滤波电路、开关管和输出端等部分组成。

输入端接收交流电信号,经过变压器降压后,通过整流滤波电路将交流电转换为直流电。

然后,通过开关管的开关控制,将直流电调整为所需的输出电压。

在开关电源中,光耦扮演着重要的角色。

它主要用于隔离输入端和输出端,以保证安全性和稳定性。

具体来说,光耦一般被用作开关电源的控制器,用于控制开关管的导通和断开。

当输入端的交流电信号通过变压器降压后,经过整流滤波电路转换为直流电后,光耦会将这个电信号转换为光信号,然后通过光敏三极管将光信号再转换为电信号。

这个电信号会用于控制开关管的开关状态,从而实现对输出端电压的调整。

在开关电源中选择合适的光耦也是非常重要的。

首先,要根据开关电源的输入电压和输出电压范围来选择合适的光耦。

其次,要考虑光耦的耐压能力和工作温度范围是否符合要求。

此外,还需要考虑光耦的响应速度和隔离性能等因素。

最后,要对光耦进行可靠性和寿命测试,确保其在开关电源中的稳定性和可靠性。

光耦在开关电源中发挥着重要的作用。

它通过光电转换的方式,实现了输入端和输出端的电气隔离,保证了开关电源的安全性和稳定性。

在选择光耦时,要考虑其特性参数是否符合要求,并进行可靠性和寿命测试。

通过合理选择和应用光耦,可以提高开关电源的性能和可靠性,满足不同应用场景的需求。

光耦在开关电源中的应用十分广泛。

开关电源光耦坏了会有什么现象

开关电源光耦坏了会有什么现象

开关电源光耦坏了会有什么现象
开关电源光耦在电子设备中扮演着重要的角色,它用于隔离控制信号与功率信号,起到传递信号和隔离保护的作用。

当开关电源光耦出现故障时,会导致一系列不良影响。

本文将对开关电源光耦故障可能导致的现象进行探讨。

首先,当开关电源光耦出现故障时,可能会导致电源无法正常工作。

开关电源光耦在电源模块中承担着传递控制信号的功能,如果光耦出现问题,控制信号无法传递,电源无法正常启动或关闭,从而影响设备的正常运行。

其次,光耦损坏可能会导致设备出现电源波动或不稳定的现象。

在电子设备中,开关电源光耦不仅承担信号传递的任务,还能够提供一定程度的隔离和稳定性保护。

一旦光耦出现故障,会导致控制信号与功率信号之间的不良干扰,从而引起设备的电源波动,严重时可能导致设备性能不稳定或损坏。

此外,开关电源光耦损坏还可能导致设备的安全性问题。

在一些对设备安全性要求较高的场合,开关电源光耦往往被设计为安全隔离装置,一旦光耦出现故障,设备的安全性保障将会大大降低,存在电气隔离不到位的风险,可能引发电路短路、过载等安全隐患。

最后,开关电源光耦的故障还可能导致设备的正常通讯功能受到影响。

许多设备在通讯时需要准确的信号传递,一旦光耦出现问题,会导致通讯信号传递不畅,甚至出现通讯中断的情况,影响设备的数据传输和信息交互。

综上所述,开关电源光耦如果出现故障,可能会导致电源无法正常工作、电源波动不稳定、安全性问题以及通讯功能受到影响等现象。

因此,在电子设备维护和管理过程中,应定期检查光耦的工作状态,确保其正常运行,以保证设备的稳定性和安全性。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。

但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。

而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。

本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。

1、常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。

这里以TLP521为例,介绍这类光耦的特性。

TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。

副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。

作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。

此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。

通常选择TL431结合TLP521进行反馈。

这时,TL431的工作原理相当于一个内部基准为2.5V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。

TL431是三端可编程并联稳压二极管开关电源中光耦的作用常见的光耦反馈第1种接法,如图1所示。

图中,Vo为输出电压,Vd为芯片的供电电压。

com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。

注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。

图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。

开关电源中光耦的作用常见的第2种接法,如图2所示。

与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。

因此,采用这种接法的电路,一定要把PWM芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。

图2所示接法的工作原理是:当输出电压升高时,原边电流If增大,输出电流Ic增大,由于Ic已经超过了电压误差放大器的电流输出能力,com脚电压下降,占空比减小,输出电压减小;反之,当输出电压下降时,调节过程类似。

常见的第3种接法,如图3所示。

与图1基本相似,不同之处在于图3中多了一个电阻R6,该电阻的作用是对TL431额外注入一个电流,避免TL431因注入电流过小而不能正常工作。

实际上如适当选取电阻值R3,电阻R6可以省略。

调节过程基本上同图1接法一致。

常见的第4种接法,如图4所示。

该接法与第2种接法类似,区别在于com端与光耦第4脚之间多接了一个电阻R4,其作用与第3种接法中的R6一致,其工作原理基本同接法2。

2、各种接法的比较在比较之前,需要对实际的光耦TLP521的几个特性曲线作一下分析。

首先是Ic-Vce曲线,如图5,图6所示。

开关电源中光耦的作用由图5、图6可知,当If小于5mA时,If的微小变化都将引起Ic与Vce的剧烈变化,光耦的输出特性曲线平缓。

这时如果将光耦作为电源反馈网络的一部分,其传递函数增益非常大。

对于整个系统来说,一个非常高的增益容易引起系统不稳定,所以将光耦的静态工作点设置在电流If小于5mA是不恰当的,设置为5~10mA较恰当。

此外,还需要分析光耦的Ic-If曲线,如图7所示。

由图7可以看出,在电流If小于10mA时,Ic-If基本不变,而在电流If大于10mA之后,光耦开始趋向饱和,Ic-If的值随着If的增大而减小。

对于一个电源系统来说,如果环路的增益是变化的,则将可能导致不稳定,所以将静态工作点设置在If过大处(从而输出特性容易饱和),也是不合理的。

需要说明的是,Ic-If曲线是随温度变化的,但是温度变化所影响的是在某一固定If值下的Ic值,对Ic-If比值基本无影响,曲线形状仍然同图7,只是温度升高,曲线整体下移,这个特性从Ic-Ta曲线(如图8所示)中可以看出。

由图8可以看出,在If大于5mA时,Ic-Ta曲线基本上是互相平行的。

根据上述分析,以下针对不同的典型接法,对比其特性以及适用范围。

本研究以实际的隔离半桥辅助电源及反激式电源为例说明。

第1种接法中,接到电压误差放大器输出端的电压是外部电压经电阻R4降压之后得到,不受电压误差放大器电流输出能力影响,光耦的工作点选取可以通过其外接电阻随意调节。

按照前面的分析,令电流If的静态工作点值大约为10mA,对应的光耦工作温度在0~100℃变化,值在20~15mA之间。

一般PWM芯片的三角波幅值大小不超过3V,由此选定电阻R4的大小为670Ω,并同时确定TL431的3脚电压的静态工作点值为12V,那么可以选定电阻R3的值为560Ω。

电阻R1与R2的值容易选取,这里取为27k与4.7k。

电阻R5与电容C1为PI补偿,这里取为3k与10nF。

实验中,半桥辅助电源输出负载为控制板上的各类控制芯片,加上多路输出中各路的死负载,最后的实际功率大约为30w。

实际测得的光耦4脚电压(此电压与芯片三角波相比较,从而决定驱动占空比)波形,如图9所示。

对应的驱动信号波形,如图10所示。

图10的驱动波形有负电压部分,是由于上、下管的驱动绕在一个驱动磁环上的缘故。

可以看出,驱动信号的占空比比较大,大约为0.7。

对于第2种接法,一般芯片内部的电压误差放大器,其最大电流输出能力为3mA左右,超过这个电流值,误差放大器输出的最高电压将下降。

所以,该接法中,如果电源稳态占空比较大,那么电流Ic比较小,其值可能仅略大于3mA,对应图7,Ib为2mA左右。

由图6可知,Ib值较小时,微小的Ib变化将引起Ic剧烈变化,光耦的增益非常大,这将导致闭环网络不容易稳定。

而如果电源稳态占空比比较小,光耦的4脚电压比较小,对应电压误差放大器的输出电流较大,也就是Ic比较大(远大于3mA),则对应的Ib也比较大,同样对应于图6,当Ib值较大时,对应的光耦增益比较适中,闭环网络比较容易稳定。

同样,对于上面的半桥辅助电源电路,用接法2代替接法1,闭环不稳定,用示波器观察光耦4脚电压波形,有明显的振荡。

光耦的4脚输出电压(对应于UC3525的误差放大器输出脚电压),波形如图11所示,可发现明显的振荡。

这是由于这个半桥电源稳态占空比比较大,按接法2则光耦增益大,系统不稳定而出现振荡。

实际上,第2种接法在反激电路中比较常见,这是由于反激电路一般都出于效率考虑,电路通常工作于断续模式,驱动占空比比较小,对应光耦电流Ic比较大,参考以上分析可知,闭环环路也比较容易稳定。

以下是另外一个实验反激电路,工作在断续模式,实际测得其光耦4脚电压波形,如图12所示。

实际测得的驱动信号波形,如图13所示,占空比约为0.2。

因此,在光耦反馈设计中,除了要根据光耦的特性参数来设置其外围参数外,还应该知道,不同占空比下对反馈方式的选取也是有限制的。

反馈方式1、3适用于任何占空比情况,而反馈方式2、4比较适合于在占空比比较小的场合使用。

3、结束语本研究列举了4种典型光耦反馈接法,分析了各种接法下光耦反馈的原理以及各种限制因素,对比了各种接法的不同点。

通过实际半桥和反激电路测试,验证了电路工作的占空比对反馈方式选取的限制。

最后对光耦反馈进行总结,对今后的光耦反馈设计具有一定的参考价值。

开关电源的光耦主要是隔离、提供反馈信号和开关作用。

开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压是给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。

旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。

通常光耦与TL431一起使用。

下面是LED电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG03655的部分电路。

两电阻串联取样到431R 端与内部比较器进行比较。

然后根据比出的信号再控制431K端(阳极接光耦那一端)对地的电阻,然后达到控制光耦内部发光二极管的亮度。

(光耦内部一边是一发光二极管,一边是一光敏三极管)通过发光的强度。

控制另一端三极管的CE端的电阻也就是改变了led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365检测脚的电流(1脚:电压反馈引脚,通过连接光耦到地来调整占控比)。

根据电流的大小,led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365就会自动调整输出信号的占空比,达到稳压的目的。

TMG0321/TMG0165/TMG0265/TMG0365芯片是一款高集成度、高性能的PWM+MOSFET管二合一的电流型离线式开关电源控制器。

适用于充电器、电源适配器、LED驱动电源等各类小功率的开关电源。

采用DIP8封装,无需加散热器可输出0~36W的功率(加散热可以做到更大)。

电路结构简单,成本低。

具有完善的保护功能,包括过压、欠压、过温、过载及短路等保护。

固定振荡频率及抖频功能,可以降低EMI。

待机功率低,在待机时进入跳周期模式,符合“能源之星”等待机功耗标准要求。

相关文档
最新文档