常见的网络传输介质及其工作特点

合集下载

网络传输介质与硬件设备介绍

网络传输介质与硬件设备介绍

网络传输介质与硬件设备介绍一、引言网络传输介质和硬件设备是构建计算机网络的重要组成部分。

网络传输介质是信息传递的媒介,而硬件设备则是实现信息传输的工具。

本文将介绍常见的网络传输介质和硬件设备,并分析它们的特点和应用。

二、网络传输介质1. 有线传输介质有线传输介质是指通过电缆或光纤等物理媒介传输数据的方式。

常见的有线传输介质包括: - 铜缆:包括双绞线和同轴电缆。

双绞线广泛应用于局域网,是最常见的有线传输介质之一。

同轴电缆适用于电视信号传输等场景。

- 光纤:光纤传输介质通过光的反射和折射实现数据的传输。

光纤的传输速度快、抗干扰能力强,在长距离传输中有着广泛应用。

2. 无线传输介质无线传输介质是指通过无线电波或红外线等无线方式传输数据的介质。

常见的无线传输介质包括: - Wi-Fi:Wi-Fi是一种通过无线方式实现局域网的技术。

它广泛应用于家庭、办公场所等环境中,提供了无线上网的便利。

- 蓝牙:蓝牙技术是一种短距离无线通信技术,适用于手机、耳机、键盘等设备之间的数据传输。

-4G/5G:4G和5G是移动通信技术的代表,通过无线电波传输数据。

4G适用于移动电话通信,而5G提供了更高的传输速度和更低的延迟。

三、硬件设备1. 网卡网卡是计算机连接网络的硬件设备,它负责将计算机中的数据转换为网络可以识别的信号,并在计算机与网络之间进行数据传输。

网卡有有线网卡和无线网卡两种类型,分别对应有线传输介质和无线传输介质。

2. 路由器路由器是用于连接多个网络,并在这些网络之间进行数据传输的设备。

它能根据数据包的目标地址,在不同的网络之间进行转发和路由选择。

路由器是实现互联网连接的核心设备。

3. 交换机交换机是用于连接多台计算机并实现它们之间高速数据传输的设备。

它可以在局域网中实现数据交换和数据转发,提供了更高的传输速度和更低的延迟。

4. 防火墙防火墙是一种网络安全设备,用于保护计算机网络免受来自网络的攻击和非法访问。

计算机网络的传输介质

计算机网络的传输介质

计算机网络的传输介质计算机网络的传输介质是指用于在计算机网络中传输数据和信息的媒介,通常包括有线传输介质和无线传输介质两种类型。

本文将详细介绍这两种传输介质的特点和应用。

一、有线传输介质有线传输介质是指利用电缆、光纤等物理链路来传输数据和信息的媒介。

它具有传输速度快、抗干扰能力强等优点,广泛应用于各种计算机网络和通信系统中。

1. 电缆电缆是一种常用的有线传输介质,它可以分为双绞线、同轴电缆和光纤电缆等几种类型。

双绞线广泛应用于局域网(LAN)中,它分为无屏蔽双绞线(UTP)和屏蔽双绞线(STP)两种,UTP常用于家庭和办公室网络,而STP适用于需要较高抗干扰能力的环境。

同轴电缆主要用于电视有线网络和宽带接入,光纤电缆则被广泛应用于长距离的通信传输,其传输速度和带宽较高。

2. 光纤光纤是一种采用光信号传输数据和信息的传输介质,它具有传输速度快、抗干扰能力强、传输距离远等优点。

光纤被广泛应用于长距离的通信传输、局域网和广域网等网络中。

光纤可以分为多模光纤和单模光纤两种类型,多模光纤适用于短距离传输,而单模光纤适用于长距离和海底光缆等特殊环境。

二、无线传输介质无线传输介质是指利用无线电波或红外线等无线技术进行数据和信息传输的媒介。

它具有灵活性高、移动性强等特点,被广泛应用于移动通信、物联网和无线局域网等领域。

1. 无线电波无线电波是一种常见的无线传输介质,它通过调制和解调技术将数据和信息转换成无线信号进行传输。

无线电波被广泛应用于移动通信系统,如2G、3G、4G和5G等移动网络。

它可以实现远距离的无线传输,但受限于频段资源和传输速率等因素。

2. 红外线红外线是一种利用红外光进行数据和信息传输的无线传输介质。

它通常应用于近距离的无线通信,如红外线遥控器、红外线数据传输等。

红外线传输速率较低,受限于传输距离和遮挡物等因素。

结论计算机网络的传输介质是实现数据和信息传输的重要组成部分。

有线传输介质如电缆和光纤具有传输速度快、抗干扰能力强等特点,适用于各种网络环境;无线传输介质如无线电波和红外线具有灵活性高、移动性强等特点,适用于移动通信和无线网络。

计算机网络传输介质

计算机网络传输介质

计算机网络传输介质计算机网络是现代社会中不可或缺的一部分,而计算机网络的传输介质则是网络建设的基础,它决定了网络的稳定性和传输速度。

本文将探究计算机网络传输介质的类型、特点以及应用场景。

一、传输介质的分类计算机网络中常用的传输介质分为三种:双绞线、光纤和同轴电缆。

1. 双绞线双绞线是计算机网络中最常用的传输介质。

双绞线是由两股细铜丝(或多股铜线)缠绕在一起形成的一种传输媒介。

它可以分为一类、二类和五类三种类型。

一类双绞线主要用于传输10Mbps以下的信号,主要用于LAN 网络的建设;二类双绞线支持100Mbps的传输速度,广泛应用于大多数企业的内部网络建设;五类双绞线则支持1000Mbps的传输速度,被称为千兆双绞线,目前在数据中心等高速网络中得到了广泛应用。

2. 光纤光纤是一种用于传输光信号的传输介质,它是一根纤细的玻璃或塑料芯子,外面有一层光学纤维包覆。

光纤的传输速度非常快,最高可达数十Gbps,而且它能够抵御电磁干扰和抗干扰能力较强,因此被广泛应用于高速网络建设和数据中心等场合。

不过,光纤传输方式采用全息成像技术,设备昂贵,安装维护复杂,数据传输范围有限,因此也有一定的局限性。

3. 同轴电缆同轴电缆是由内部由一个铜质或铝质的中心导体、一个绝缘体以及一个绝缘外层组成的传输介质。

同轴电缆的传输速度较慢,同时电磁干扰比较大,已经逐渐淘汰。

二、传输介质的特点不同类型的传输介质具有不同的特点,下面我们将逐一进行分析。

1. 双绞线双绞线的主要特点在于成本低廉、安装方便、使用范围广泛。

同时,它还具有抗干扰能力较强、传输稳定等优点。

但是,双绞线的传输距离受到限制,需要设备之间的距离较近,同时,双绞线在传输信号时易受到干扰,因此对维护和保养也有一定要求。

2. 光纤光纤的主要特点在于传输速度快、传输范围大、误码率低、抗干扰能力强、安全性高等优点。

但是,光纤设备的价格高昂、安装维护成本也比较高,同时由于光缆本身具有易折损性、输送介质透明性等特点,也易受到破环损坏和竞争干扰等问题。

各种传输介质的特点

各种传输介质的特点

各种传输介质的特点
传输介质是指信息传输过程中所使用的物质,比如电信号、光信号、无线电波等。

不同的传输介质有各自的特点,下面列举一些常见的传输介质及其特点:
1. 电信号:电信号是通过电流来传输信息的,在使用上比较广泛。

它的特点是传输距离相对较短,信号衰减比较快,但传输速度较快。

2. 光信号:光信号是通过光波来传输信息的,主要应用于光纤通信中。

它的特点是传输距离较远,信号衰减比较慢,传输速度较快,但成本较高。

3. 无线电波:无线电波是通过无线电信号来传输信息的,主要应用于无线通信中。

它的特点是传输距离相对较远,信号衰减较慢,但容易受到干扰和噪声的影响。

4. 红外线:红外线是通过红外辐射来传输信息的,主要应用于遥控器等短距离通信中。

它的特点是传输距离较短,只能传输简单的信息,但成本较低。

5. 微波:微波是通过微波信号来传输信息的,主要应用于卫星通信和雷达等领域。

它的特点是传输距离较远,信号衰减较慢,但成本较高。

综上所述,不同的传输介质有各自的特点,可以根据需要选择最合适的传输介质来进行信息传输。

- 1 -。

传输介质的分类和特征

传输介质的分类和特征

传输介质的分类和特征传输介质是指用于传输信息的物质或设备,其分类可以根据不同的特征进行划分。

下面将介绍传输介质的常见分类和特征。

一、根据物理性质分类:1.有线传输介质:有线传输介质是指需要物理线缆来传输信号和数据的介质。

常见的有线传输介质有以下几种:(2)同轴电缆:同轴电缆是指由中心导体、绝缘层、屏蔽层和外部绝缘层构成的一种电缆。

常用于电视、广播等传输。

(3)光纤:光纤是一种由纯净的玻璃或塑料制成的用于传输光信号的介质。

由于其具有高速、大容量和抗干扰性等特点,常用于长距离的高速数据传输。

2.无线传输介质:无线传输介质是指通过电磁波在空气中传输信号和数据的介质。

常见的无线传输介质有以下几种:(1)无线电波:无线电波是通过调制电磁波的频率、振幅和相位等特性来传输信息的一种无线传输介质。

广泛应用于无线电通信、广播、雷达等领域。

(2)红外线:红外线是指波长较长但仍能被人眼所感知的一种电磁辐射。

常用于遥控器、红外传输等领域。

(3)微波:微波是一种具有较高频率和较短波长的电磁波,常用于无线局域网、雷达、卫星通信等。

二、根据传输方式分类:1.广播传输介质:广播传输介质是指通过广播频道统一发送信号和数据,由接收设备接收。

常见的广播传输介质有无线电波、卫星信号等。

2.点对点传输介质:点对点传输介质是指在两个终端间建立专用通信线路,通过该线路直接传输信号和数据。

常见的点对点传输介质有双绞线、光纤等。

三、根据传输速率分类:2.中速传输介质:中速传输介质指传输速率适中的介质。

常用于局域网、广播电视等领域,如双绞线、同轴电缆等。

3.高速传输介质:高速传输介质指传输速率较高的介质。

常用于对数据传输速率要求较高、距离较远的场景,如光纤、微波等。

四、根据传输距离分类:1.近距离传输介质:近距离传输介质指传输距离较短的介质。

常用于局域网、家庭网络等小范围内的通信,如双绞线、红外线等。

2.远距离传输介质:远距离传输介质指传输距离较远的介质。

常见网络传输介质及特点

常见网络传输介质及特点

一、常见的网络传输介质及其工作特点网络传输介质是网络中发送方与接收方之间的物理通路,它对网络的数据通信具有一定的影响。

常用的传输介质有:双绞线、同轴电缆、光纤、无线传输媒介。

1.双绞线:简称TP,将一对以上的双绞线封装在一个绝缘外套中,为了降低信号的干扰程度,电缆中的每一对双绞线一般是由两根绝缘铜导线相互扭绕而成,也因此把它称为双绞线。

双绞线分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP),适合于短距离通信。

非屏蔽双绞线价格便宜,传输速度偏低,抗干扰能力较差。

屏蔽双绞线抗干扰能力较好,具有更高的传输速度,但价格相对较贵。

2.同轴电缆由绕在同一轴线上的两个导体组成。

具有抗干扰能力强,连接简单等特点,信息传输速度可达每秒几百兆位,是中、高档局域网的首选传输介质。

3.光纤:又称为光缆或光导纤维,由光导纤维纤芯、玻璃网层和能吸收光线的外壳组成。

是由一组光导纤维组成的用来传播光束的、细小而柔韧的传输介质。

应用光学原理,由光发送机产生光束,将电信号变为光信号,再把光信号导入光纤,在另一端由光接收机接收光纤上传来的光信号,并把它变为电信号,经解码后再处理。

与其它传输介质比较,光纤的电磁绝缘性能好、信号衰小、频带宽、传输速度快、传输距离大。

主要用于要求传输距离较长、布线条件特殊的主干网连接。

具有不受外界电磁场的影响,无限制的带宽等特点,可以实现每秒几十兆位的数据传送,尺寸小、重量轻,数据可传送几百千米,但价格昂贵。

二、网络拓扑结构及其特点、IP地址、网络协议1.网络拓扑结构及其特点(1)总线拓扑结构总线型拓扑结构采用单根数据传输线作为通信介质,所有的节点都通过相应的硬件接口直接连接到一根中央主电缆上,任何一个节点的信息都可以沿着总线向两个方向传输扩散,并且能够被总线任何一个节点所接受,其传输方式类似于广播电台,因而总线网络也称为广播式网络。

特点:这种结构具有费用低、数据端用户入网灵活、站点或某个端用户失效不影响其它站点或端用户通信的优点。

常见网络传输介质及特点

常见网络传输介质及特点

一、常见的网络‎传输介质及‎其工作特点‎网络传输介‎质是网络中‎发送方与接‎收方之间的‎物理通路,它对网络的‎数据通信具‎有一定的影‎响。

常用的传输‎介质有:双绞线、同轴电缆、光纤、无线传输媒‎介。

1.双绞线:简称TP,将一对以上‎的双绞线封‎装在一个绝‎缘外套中,为了降低信‎号的干扰程‎度,电缆中的每‎一对双绞线‎一般是由两‎根绝缘铜导‎线相互扭绕‎而成,也因此把它‎称为双绞线‎。

双绞线分为‎非屏蔽双绞‎线(UTP)和屏蔽双绞‎线(STP),适合于短距‎离通信。

非屏蔽双绞‎线价格便宜‎,传输速度偏‎低,抗干扰能力‎较差。

屏蔽双绞线‎抗干扰能力‎较好,具有更高的‎传输速度,但价格相对‎较贵。

2.同轴电缆由‎绕在同一轴‎线上的两个‎导体组成。

具有抗干扰‎能力强,连接简单等‎特点,信息传输速‎度可达每秒‎几百兆位,是中、高档局域网‎的首选传输‎介质。

3.光纤:又称为光缆‎或光导纤维‎,由光导纤维‎纤芯、玻璃网层和‎能吸收光线‎的外壳组成‎。

是由一组光‎导纤维组成‎的用来传播‎光束的、细小而柔韧‎的传输介质‎。

应用光学原‎理,由光发送机‎产生光束,将电信号变‎为光信号,再把光信号‎导入光纤,在另一端由‎光接收机接‎收光纤上传‎来的光信号‎,并把它变为‎电信号,经解码后再‎处理。

与其它传输‎介质比较,光纤的电磁‎绝缘性能好‎、信号衰小、频带宽、传输速度快‎、传输距离大‎。

主要用于要‎求传输距离‎较长、布线条件特‎殊的主干网‎连接。

具有不受外‎界电磁场的‎影响,无限制的带‎宽等特点,可以实现每‎秒几十兆位‎的数据传送‎,尺寸小、重量轻,数据可传送‎几百千米,但价格昂贵‎。

二、网络拓扑结‎构及其特点‎、I P地址、网络协议1.网络拓扑结‎构及其特点‎(1)总线拓扑结‎构总线型拓扑‎结构采用单‎根数据传输‎线作为通信‎介质,所有的节点‎都通过相应‎的硬件接口‎直接连接到‎一根中央主‎电缆上,任何一个节‎点的信息都‎可以沿着总‎线向两个方‎向传输扩散‎,并且能够被‎总线任何一‎个节点所接‎受,其传输方式‎类似于广播‎电台,因而总线网‎络也称为广‎播式网络。

传输介质的分类和特征

传输介质的分类和特征

传输介质的分类和特征传输介质是指信息通过传输媒介进行传递的过程中所使用的媒介。

根据传输介质的不同特征和技术,可以将其分为有线传输介质和无线传输介质两大类。

一、有线传输介质有线传输介质是指利用电线、光纤等物理媒介将信息进行传输的技术。

主要的有线传输介质包括以下几种类型:1. 双绞线:双绞线是最常见的有线传输介质之一,由两根导线绞合而成,可以分为不同级别,如Cat5、Cat6等。

双绞线传输速率较高,信号传输质量稳定,受到外界干扰较小。

2.同轴电缆:同轴电缆由一个中心导体、绝缘层、金属屏蔽层和外部绝缘层组成,主要用于传输高频信号。

同轴电缆速率较高,但相对于双绞线来说,干扰和衰减较大。

3.光纤:光纤是利用光的传导性能来进行信息传输的一种传输介质。

它由一个或多个玻璃或塑料纤维组成,具有传输速率高、传输距离长和抗干扰能力强的特点。

4.并行线:并行线是一种传输速率较低的传输介质,主要用于连接计算机的外部设备,如打印机和扫描仪等。

有线传输介质的特征:1.传输距离较远:有线传输介质通常具有较长的传输距离,特别是光纤,可以实现几十公里的传输距离。

2.信号传输质量稳定:由于有线传输介质受到外界干扰较小,因此信号传输质量较为稳定可靠。

3.传输速率较高:有线传输介质通常具有较高的传输速率,可以满足大容量数据的传输需求。

4.成本较低:相对于无线传输介质来说,有线传输介质的设备和维护成本较低。

二、无线传输介质无线传输介质是指利用无线电波将信息进行传输的技术,主要包括以下几种类型:1.无线电:无线电是一种通过改变无线电波电磁场的一些参数来传输信号的技术。

无线电传输介质可以实现较远距离的传输,但传输速率相对较低。

2.微波:微波是一种高频无线电波,主要用于通信和雷达等领域。

微波传输介质速率较高,但受到大气、建筑物和物体障碍的影响较大。

3.红外线:红外线是一种电磁波,其频率低于可见光。

红外线传输介质主要用于短距离通信,速率较低,但受到环境光干扰较小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的网络传输介质及其工作特点
现在比较常见的有:
电话线,价格便宜、安装方便,使用DSL技术的情况下可以传输较长距离(例如ADSL的有效距离就有5公里),一般用于宽带网最后一公里的连接。

光纤:价格相对较贵,传输距离很远(单模光纤可以连接到40公里以上),一般用于广域网、城域网、省际骨干网。

双绞线
(1)工作原理:双绞线是现在最普通的传输介质,它由两条相互绝缘的铜线组成,典型直径为1毫米。

两根线绞接在一起是为了防止其电磁感应在邻近线对中产生干扰信号。

外面再用朔料套套起来。

(2)分类:
非屏蔽双绞线:无屏蔽层,一般由4对双绞线对组成,最长100米,有较好的性价比,被广泛使用。

分为1,2,3,4,5,超5类。

3类用于10MBPS的传输;5类100MBPS以上的网连接。

屏蔽双绞线:具有一个金属甲套,一般由2对双绞线组成,最长为十几千米,抗干扰性好,性能高,成本高,没有被广泛使用。

对电磁干扰具有较强的抵抗能力,适用于网络流量较大的高速网络协议应用。

屏蔽双绞线可分为6类、7类双绞线分别可工作于200MHz和600MHz的频率带宽之上,且采用特殊设计的RJ45 插头(座)。

[解释两个个概念]频率带宽(MHz)与线缆所传输的数据的传输速率(Mbps)是有区别的——Mbps衡量的是单位时间内线路传输的二进制位的数量,MHz衡量的则是单位时间内线路中电信号的振荡次数。

同轴电缆
(1)概念:由同轴的内外两条导线构成,内导线是一根金属线,外导线是一条网状空心圆柱导体,内外导线有一层绝缘材料,最外层是保护性塑料外套。

金属屏蔽层能将磁场反射回中心导体,同时也使中心导体免受外界干扰,故同轴电缆比双绞线具有更高的带宽和更好的噪声抑制特性。

(2)分类:
一种为50Ω(指沿电缆导体各点的电磁电压对电流之比)同轴电缆,用于数字信号的传输,即基带同轴电缆;分为:粗缆最大距离为2500米,价格高。

细缆按最大长度为185米。

另一种为75Ω同轴电缆,用于宽带模拟信号的传输,即宽带同轴电缆。

但需要安装附加信号,安装困难,适用于长途电话网,电视系统,宽带计算机网
3)缺点:
由于物理可靠性不好,易受干拢,由双绞线替代
网络拓扑结构及其特点、IP地址、网络协议
网络拓扑结构
计算机网络中,通信处理机通过线路相互连接成通信子网。

人们借用拓扑学的概念,将通信处理机称为节点,将通信线路称为链路,将节点和链路连接的几何构型称为网络的拓扑结构。

网络拓扑结构是决定网络性能的主要因素,构造网络时首先要选择合适的网络拓扑结构来物理连接所有的节点及计算机系统。

常见的网络拓扑结构有总线型、环型、星型、树型、网状结构等。

总线型结构
优点:结构简单,价格低廉、安装使用方便。

缺点:故障诊断和隔离比较困难。

环型结构
优点:简化了路径选择控制,传输延迟固定。

实时性强。

可靠性较高。

缺点:节点过多时,影响传输效率。

环某处断开会导致
整个系统的失效,节点的加入和撤出过程复杂。

星型结构
优点:单点故障不影响全网,结构简单。

增删节点及维护
管理容易;故障隔离和检测容易,延迟时间较短。

缺点:成本较高,通信资源利用率低;网络性能过于依赖
中心节点。

树型结构
优点:结构比较简单,成本低。

扩充节点方便灵活。

缺点:对根的依赖性大。

网状结构
优点:具有较高的可靠性。

某一线路或节点有故障时,不会
影响整个网络的工作。

缺点:结构复杂,需要路由选择和流控制功能,网络控制软
件复杂,硬件成本较高,不易管理和维护。

IP地址
IP地址是在TCP/IP网络中用来识别主机的唯一标识。

由网络信息中心NIC(Network Information Center)统一分配。

每个IP地址都是由网络号和主机号两部分组成。

Ipv4格式: IP地址由四个8位域组成,共32位
11000010.10101000.00000000.00000001
为了方便记忆,通常用十进制表示。

192.168.0.1
最多个分配给232 台主机(超过四十亿的IP地址)
网络协议
是为了使计算机网络中的不同设备能进行数据通信而预先制定一整套通信双方相互了解和共同遵守的格式和约定。

网络协议是一系列规则和约定的规范性描述,定义了网络设备之间如何进行信息交换。

网络协议是计算机网络的基础。

只有遵从相应协议的网络设备之间才能够通信。

就像保障我们国家稳定健康运行的法律法规一样,如果任何人违反了法律法规的约束,必然会导致法律的制裁。

网络协议就是约束各种网络互连终端设备的法律,如果任何一台设备不支持用于网络互连的协议,它就不能与其他设备通信。

网络协议多种多样,主要有TCP/IP(Transfer Control Protocol/Internet Protocol)协议、Novell IPX/SPX (Internetwork Packet eXchange/Sequenced Packet eXchange)协议、IBM SNA(Syetem Network Architecture)等等。

目前最为流行的是TCP/IP协议栈,它已经成为Internet的标准协议。

学校网络拓扑结构
教学楼)中心机房主交换机 Internet 中心交换机防火墙路由器服务器(二级学院)(教务处)(财务处)主交换机主交换机主交换机服务器(招生、就业部)(审计部)主交换机服务器工作站工作站(学工部)主交换机(后勤部)主交换机工作站工作站(保卫处)主交换机主交换机(工会)服务器服务器工作站工作站工作站工作站。

相关文档
最新文档