质点运动学及牛顿运动定律
质点系的牛顿运动定律

n
n
i1 Fi m1a1 m2 a2 m a 质点系的牛i顿1运动定i 律i
质点系的牛顿第二定律
例1:如图,质量为M、倾角为α的 斜面静止在粗糙的水平面上,质量 为m的滑块沿M粗糙的斜面以加速度 a下滑,求: (1)物体M受到地面的摩擦力大小 和方向。 (2)物体M受到地面的支持力大小
质点系的牛顿运动定律
F
1 2
质点系的牛顿运动定律
Fi
质点系各质点受系统以外力 F1、F2、…Fi…
mi
F1i Fi1
m1
F1
F31
F13
质点1
F3
m3
F1 F21 F31 Fi1 m1a1
各质点
… F21
F12
m2
F2 F12 F32 Fi2 m2a2
F2
Fi F1i F2i Fni miai
作用在质点系中的合外力,等于质点系的总质量和质心加 速度的乘积。
推论:
(1)如果一个质点系的质心原来是不动的,那么在无外力作用下,
则它的质心始终不动。
(2)如果一个质点系的质心原来是运动的,那么在无外力作用下,
则它的质心将以原来的速度做匀速直线运动。
(3)如果一个质点系在恒定合外力作用下,且质心的初速度为零
y
y
y
A
A
A
y A
x B
O
y A
B
B
O
O
A
B
B
B
O
O
C
D
质点系的牛顿运动定律
质心的应用
例2:在光滑水平面上,直立一 长度为l的均质杆AB,在如图所 示的坐标系中,(2)求杆从竖直 位置开始无初速倒下到触地的 过程中,端点A的轨迹方程。
大学物理知识点汇总

大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。
3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。
二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。
2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。
3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。
三、动量1、动量的定义:物体的质量和速度的乘积。
2、动量的计算公式:p = mv。
3、动量守恒定律:在不受外力作用的系统中,动量守恒。
四、能量1、动能:物体由于运动而具有的能量。
表达式:1/2mv²。
2、重力势能:物体由于被举高而具有的能量。
表达式:mgh。
3、动能定理:合外力对物体做的功等于物体动能的改变量。
表达式:W = 1/2mv² - 1/2mv0²。
4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。
表达式:mgh + 1/2mv ² = EK0 + EKt。
五、刚体与流体1、刚体的定义:不发生形变的物体。
2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。
大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。
2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。
3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。
4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。
5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。
(完整版)大学物理所有公式

第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理知识点总结

Br ∆A rB ryr ∆第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
大学物理所有公式

第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dtds ==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim△t →△t △v =dtdv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gta v v av v y x sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-∙=∙=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —g gx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dt d R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
质点动力学 牛顿运动定律

M
N1
aM N 2 Mg
N2
mg
amM
am amM aM
M: m: amM cos aM
x aM
y
0
amM sin
N 2 sin Ma M N 1 N 2 cos Mg 0
N 2 sin m(amM cos aM ) N 2 cos mg ma mM sin
解:(1)
mg F ma
dv dv 2lsg 1 xsg 2 sl 2lsv dt dx
A B x o
x
1 x vdv (1 ) gdx 2l v x 1 x 0 vdv 0 (1 2l ) gdx
2 1 2 1 x x 1 gx v (x ) g 0 v 2 gx 2l 2 2l
x
1-37 一根长为L、质量均匀的软绳,挂在一 半径根小的光沿木钉上,如图。开始时,BC =b. 试证:当BC = 2L/3时,绳的加速度为 a=g/3,速度为: 2 g 2 v ( L2 bL b 2 ) L 9 B 证明:设在任意时刻 t L-x AB L x, BC x
A
v N mg sin m R
2
N
dv dvds dv v dt dsdt Rd
mg
vdv Rg cos d
vdv
0
v
0
Rg cos d
A
1 2 v Rg sin 2
N
y
v 2 Rg sin
v N mg sin m R
fr
m
大学物理力学总结完整版

大学物理力学总结Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】大学物理力学公式总结第一章(质点运动学)1.r=r(t)=x(t)i+y(t)j+z(t)kΔr=r(t+Δt)- r(t)一般地 |Δr|≠Δr2.v=d rdt a=d rdx=d r2dt3.匀加速运动:a=常矢v0=v x+v y+v z r=r0+v0t+rrat24.匀加速直线运动:v= v0+at x=v0t+12at2 v2-v02=2ax5.抛体运动:a x=0 a y=-gv x=v0cos v y=v0sinθ-gtx=v0cosθ?t y=v0sinθ?t-12gt26.圆周运动:角速度ω=dθdt =v R角加速度α=dωdt加速度 a=a n+a t法相加速度 a n=v2R=Rω2,指向圆心切向加速度 a t=d rdt=Rα,沿切线方向7.伽利略速度变换:v=v’+u第二章(牛顿运动定律)1.牛顿运动定律:第一定律:惯性和力的概念,惯性系的定义, p=m v第二定律:F=d rdt当m为常量时,F=m a第三定律: F12=-F21力的叠加原理:F=F1+F2+……2.常见的几种力:重力:G=m g弹簧弹力:f=-kx3.用牛顿定律解题的基本思路:1)认物体2)看运动3)查受力(画示力图)4)列方程(一般用分量式)第三章(动量与角动量)1.动量定理:合外力的冲量等于质点(或质点系)动量的增量,即F dt=d p2.动量守恒定律:系统所受合外力为零时,p=∑r r r =常矢量 3. 质心的概念:质心的位矢 r c =∑r r r r rm(离散分布) 或 r c =∫r dmm(连续分布) 4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=m a c5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。
6. 质点的角动量:对于某一点, L=r ×p=m r ×v7. 角动量定理: M =d r dt其中M 为合外力距,M=r ×F ,他和L 都是对同一定点说的。
大学物理知识点总结

大学物理知识点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANBr ∆A rB ryr ∆第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s )2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、电磁力:(库仑力)f=kq1q2/r2 k=9 109Nm2/C2
3、强力:粒子之间的一种相互作用, 作用范围在0.410-15米至10-15米。
电磁力>>万有引力 !
强子:质子,中子,介子
强子夸克色核色力胶子
4、弱力:粒子之间的另一种作用力, 力程短、力弱(10-2牛顿)
四种基本自然力的特征和比较
质点运动学及牛顿运动定律
§1.1 质点的运动函数
z
质点
参考系
z( t
P( t )
)
·
运动的相对性 坐标系
r( t
)
质点运动学:描述
y( t
质点(或物体)的 位置随时间的变化。
x( t ) 0
) y
x rr
位置矢量(或矢径) r = r (t)
运动的叠加(或合成)原理:
运动方程
r
rrr
r(= tx ) (it ) y (jt z )(k t)
at
一般曲线运动
R
R为曲率半径
§1.8 相对运动
两个相对平动参照系
y
y′
S
S′
S′相对S平动,速度为 u
rr r
r= r r0
u rr r
B
·
v=vv0
Δr
Δr′
A
A′
x′
r r r ·
A′
Δr0
o′
o
x
v=vu -------伽里略速度变换
rr r a=aa0
长度测量的绝对性 时间测量的绝对性
§1.2 位移和速度 z
平均速度
r v
=
Δ
r r
Δt
P1
·
ΔS
Δr
·P2
r(t) r(t+Δt )
r(t)
0
0
y
Δr
Δr r(t+Δt )
瞬vrv r时== 速d l度trr i0m rr(t x rr tt)rrr(t)vr== lvti =m 0drrrtr=dddrrtr
dt
v = ds
dt dt
y
例2:一质点加速度为
x
rrr a=2i3tj
t= 0 时 x 0= 5 , m ,y 0= 0v 0 ,= 0
求:质点的运动方程。
r
例
v0
l
h
s
求:船速靠岸的速率
解: s = l2 h2
l = v0
s = lv 0 s
§1.4 匀加速运动
ar 为常矢量 rr (r0,v0)
r
r dr
r
r
v=dt=v0 at
描述质点运动的状态参量的特性:
(1)矢量性。注意矢量和标量的区别。 (2)瞬时性。状态参量一般是时间的
函数。 (3)相对性。对不同参照系有不同的
描述。
处理力学问题应使用统一座标系!
作业:书 1-9、1-10、1-24、1-26
§1.7 圆周运动
v
ΔS
R Δθ
θ 0
线速度 v=lims =ds t0 t dtr 来自(tt)r v(t )
vn
vt
vn=v(t)
an
=limv(t
t0 t
)
=v(t)=R2
v t= v (t t) v (t)= v
v dv
an =R2
at
=li m t0 t
= dt
at
=
dv dt
=R
=limR=R
t0 t
r att
ar
r ann
R
a = at2 an2
= tg 1 an
dt
vr=dxirdyrjdzkr
drt drt drt =vxivyjvzk
速度的叠加:速度是各分速度之矢量和
速率
r v=v=
vx 2vy 2vz2
§1.3 加速度 z v (t )
P1
平ar均=加速度vr
·
P·2 v (t+Δt )
r(t) r(t+Δt )
t
0
y
v (t ) Δv
v (t+Δt )
瞬时加速度
xar=limvr=dvr
方向、大小 的改变
令 t 0
t0t dt
加速度合成 ar=ddxvtirddyvtrjddzvtkr=axirayr jazk r
r a=a=
ax 2ay 2az2
例1:一质点运动方程为
求:x= -4时(t>0) 粒子的速度、速率、 加速度。
x = t2 y = t 4 2t 2
r
Br
rAB
rK3B
r
A
r rrAr K1
r
rK2K3
rK1K2
rr
r
r A r = B r r A 1 K r r K 1 K 2 r r K 2 K 3 r r K 3 B
v A = v B A 1 K v K 1 K 2 v K 2 K 3 v K 3 B
第二章 牛顿运动定律
rr 典型的匀加速运动, a=g
y
v0
0
运动叠加和运动的独立性
x
运动平面在
rr (v0,g)
内
x0=y0=0 ax=0 ay=g
v0x=v0cos v0y=v0sin
rr r =r0
vr0t12art2
rr r v=v0at
x =v0t cos
y
=
v0t
sin
1 2
gt2
vx =v0cos, vy =v0 singt
rr r =r0
r v0t
1art2 2
初始条件给定,质点运动确定
地面 ar=gr
§1.5 匀加速直线运动
r
r
a 为常矢量,且和 v 0 在一条直线上
只用一维描述
x=x0
v0t
1at2 2
典型:自由落体
* 实际有些自由落体受空气阻力很大,如雨点最终匀速运动, 此时速率称收尾速率(~10m/s)
§1.6 抛体运动
§2.1 牛顿运动定律 §2.2 SI 单位和量纲(自学) §2.3 常见力(自学) §2.4 基本自然力 §2.5 应用牛顿定律解题 §2.6 惯性系和非惯性系 §2.7 惯性力
一、牛顿运动定律
1. 牛顿第一定律(惯性定律)和惯性系
任何物体如果没有力作用在它上面,都将保持静止的或作匀速直线运动的状态。 惯性质量和惯性系
ω,α 角速度 =lim =d
x
t0 t dt
v=R
角加速度 = d = d2
dt d2t
v r(tt)
r v(t)
r 切向 t
r 内法向 n
R
O
r v
r v(tt)
rr r
v= v tt vn n
X vr=vt trvnnr
r
t t t
v(t )
vn
rr r a=attann
vt
r v
2. 牛顿第二定律
Fr=dpr=d(mvr) dt dt
m为常量 r r F=ma
当m改变时(如高速)仍成立!
3. 牛顿第三定律(作用力与反作用力)
作用力与反作用力大小相等、方向相反,作用在不同物体上
二、基本的自然力
1、万有引力:
G=6.6710-11Nm2/kg2
f
= Gm1m2 r2
例、地球对物体的引力P=mg=GMm/R2
力的种类 相互作用的物体 力的强度 力 程
万有引力 一切质点
弱力
大多数粒子
电磁力 电荷
强力
核子、介子等
10-34N 10-2N 102N 104N
无限远 小于10-17m 无限远 10-15m
电磁力、弱力统一为——电弱相互作用 超统一理论(大一统理论)?!
三、非惯性系和惯性力
1、惯性系和非惯性系