岩石强度及破坏准则优缺点

合集下载

岩石_岩体的动力强度与动力破坏准则

岩石_岩体的动力强度与动力破坏准则
[5 ]
动力强 度/ at m
2 730 1 890 4 900 4 000
动力 、 静力 强度之比
6. 5 9. 0 7. 8 5. 7
图 1 和图 2 是相应于实验室中动力等速加载试 验 [ 7 ] ,其中 ,τ 为加载至破坏的时间 , s ;σ 为破坏应 σ 力 ;σ dyn , st 为相应的动力与静力加载下的破坏应 力 ;ε( t ) 为应变率 ;ε 区与 Ⅱ 区之间的分界线 ; 1为 Ⅰ ε 区与 Ⅲ 区的分界线 . 2为 Ⅱ
Fig. 2 The strain rate dependence of strength
1
γ τ
G0 + K T ln
γ γ 0
・ ・

( 5)
式中 : Yτ 为动力剪切强度 ;γ τ 为剪切变形情况下的 活化体积 ; G0 为剪切情况下的活化能 ;γ为剪切应 变率 ;γ0 = γ0 / τ 0 ,其中 γ 0 为材料的极限剪切应变 . 研究表明 [ 10 ] , 在不同的应变率区段 , 不同的机 制起主导作用 . 在应变率较低阶段 ,变形的热活化机 制起主导作用 ; 当应变率大于某一值时 ,材料强度随 应变率的增加而急剧增加 , 此时材料的变形和破坏 具有绝热性质 ,粘性阻尼机制起主导作用 ; 当应变率 很大时 ,粘性系数随应变率增加而减少 ,热活化机制 又重新出现 , 此时 , 裂纹的临界应力不依赖裂纹尺 寸 ,这样在广泛的裂纹尺寸范围内 ,裂纹增长同时启 动 ,多裂纹的增长和连接使得破坏产生 . 岩石等脆性 材料随应变率变化实验曲线的定性一般规律如图 3 所示 .
(1. 解放军理工大学 工程兵工程学院 ,南京 210007 ; 2. 北京建筑工程学院 土木交通学院 ,北京 100044)

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

岩石的破坏准则汇总

岩石的破坏准则汇总

岩石的破坏准则岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。

岩石的应力、应变增长到一定程度,岩石将发生破坏。

用来表征岩石破坏条件的函数称为岩石的破坏准则。

岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。

在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延1岩石的破坏准则2性性质,同时它的强度极限也大大提高了。

岩石的破坏准则许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则3岩石的破坏准则41、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。

即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。

适用条件: 单向应力状态。

对复杂应力状态不适用。

写成解析式:破坏岩石的破坏准则52、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。

则破坏准则为式中 m ax ε——岩石内发生的最大应变值;u ε——单向拉、压时极限应变值;这一破坏准则的解析式为(由广义虎克定律)岩石的破坏准则6R — R t 或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用。

岩石的破坏准则73、最大剪应力理论(H.Tresca )该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态。

其破坏准则为:在复杂应力状态下,最大剪应力231max σστ-=岩石的破坏准则8单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石。

岩体的强度特性

岩体的强度特性
沿结构面破坏: (1)、沿结构面破坏:对岩体强度有影响的 节理方位: 节理方位:β1≤β≤ β2
2CJ +2 fJ σ3 σ1m =σ3 + Байду номын сангаас1− fJctgβ) sin2β
12
岩石力学
三、单结构面强度效应
对岩体强度有影响的节理方位角: 对岩体强度有影响的节理方位角: β1≤β≤ β2 可以直接在图上量取, β1、β2可以直接在图上量取,也可以由 正弦定律推求: 正弦定律推求:
2 n c
28
岩石力学
五、岩体强度估算
Hoek曾指出, 与库伦— Hoek曾指出,m与库伦—莫尔判据中的内 曾指出 摩擦角Φ非常类似, 则相当于内聚力C 摩擦角Φ非常类似,而s则相当于内聚力C 值。如果这样,根据Hoek—Brown提供的常 如果这样,根据Hoek—Brown提供的常 Hoek 最大为25 25, 数,m最大为25,显然这时估算的岩体强度 偏低, 偏低,特别是在低围压下及较坚硬完整的 岩体条件下,估算的三轴强度明显偏低。 岩体条件下,估算的三轴强度明显偏低。 但对于受构造扰动及结构面较发育的裂隙 化岩体,Hoek(1987)认为用这一方法估算 化岩体,Hoek(1987)认为用这一方法估算 是合理的。 是合理的。
(σ1 + σ 3 + CJ ctgϕJ )sin ϕJ 1 β1 = + arc sin[ ] σ1 − σ 3 2 2 (σ1 + σ 3 + CJ ctgϕJ )sin ϕJ 1 β2 = + − arc sin[ ] σ1 − σ 3 2 2 2
ϕJ π
ϕJ
13
岩石力学
三、单结构面强度效应 岩石(岩块) (2)、岩石(岩块)破坏:

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

岩石的破坏准则[详细]

岩石的破坏准则[详细]

五、岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论).岩石的应力、应变增长到一定程度,岩石将发生破坏.用来表征岩石破坏条件的函数称为岩石的破坏准则.岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系.在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延性性质,同时它的强度极限也大大提高了.许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则1、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力.即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏.适用条件: 单向应力状态.对复杂应力状态不适用.写成解析式:破坏2、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏.则破坏准则为式中ε——岩石内发生的最大应变值;m axε——单向拉、压时极限应变值;u这一破坏准则的解析式为(由广义虎克定律)R —R t或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用.3、最大剪应力理论(H.Tresca)该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态.其破坏准则为:在复杂应力状态下,最大剪应力231 max σστ-=单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石. 该理论未考虑中间主应力的影响.4、八面体剪应力理论(Von.米ises)该理论认为岩石达到危险状态取决于八面体剪应力.其破坏准则为已知单元体1σ,2σ,3σ ,作一等倾面(其法线夹角相同).为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面体来研究.N 与x 、y 、z 的夹角分别为γβα、、,且 γβα==. 设:l =αcos ,m =βcos ,n =γcos设等倾面ABC 面积为S,则三个主应力面(1σ,2σ,3σ面)的面积分别为根据力的平衡条件∑=0X , ∑=0Y , ∑=0Z推出:⎪⎩⎪⎨⎧⋅⋅=⋅=⋅⋅=⋅=⋅⋅=⋅=∑∑∑γσβσασcos 0cos 0cos 0321S S p Z S S p Y S S p X z y x , 而 等倾面S 上合力:222z y x p p p p ++=所以另,等倾面S 上的法向应力为各分力p x 、p y 、p z 在N 上的投影之和,即S oct ττ≥,推出适用条件:塑性,5、莫尔理论及莫尔库伦准则该理论是目前应用最多的一种强度理论.该理论假设,岩石内某一点的破坏主要取决于它的大主应力和小主应力,即σ1和σ3,而与中间主应力无关.也就是说,当岩石中某一平面上的剪应力超过该面上的极限剪应力值时,岩石破坏.而这一极限剪应力值,又是作用在该面上法向压应力的函数,即)(στf = .这样,我们就可以根据不同的σ1、σ3绘制莫尔应力图. 每个莫尔圆都表示达到破坏极限时应力状态.一系列莫尔圆的包线即为强度曲线一方面与材料内的剪应力有关,同时也与正应力有关关于包络线:抛物线:软弱岩石双曲线或摆线:坚硬岩石直线:当σ<10米Pa 时为简化计算,岩石力学中大多采用直线形式:c ——凝聚力(米Pa) ϕ——内摩擦角.该方程称为库伦定律,所以上述方法合称为:莫尔库伦准则. 当岩石中任一平面上f ττ≥ 时,即发生破坏.即: ϕσττtg c f ⋅+=≥下面介绍用主应力来表示莫尔库仑准则. 任一平面上的应力状态可按下式计算①②α(σ1)力圆,可建力之间关系1)c和ϕ值与σ1、σ3和α角关系在σ1~σ3的应力圆上,找出2α的应力点T(T米为半径为231σσ-) 则,与直径T米垂直且与圆相切的直线即为ϕστtgc⋅+=根据几何关系,902)2180(90-=--=ααϕ,得出代入ϕστtg c ⋅+=中,得到另由公式推导:将σ1、σ3表示的 σ 和 τ 代入ϕστtg c ⋅+=中,导出对α求导,01=ασd d 推出:245ϕα+= 破坏面与最大主应力面的夹角而与最大主应力方向的夹角2).用主应力σ1、σ3表达的强度准则 将 σ 和 τ 的表达式代入 ϕστtg c ⋅+=中,ϕασσσσασσtg c ⎥⎦⎤⎢⎣⎡-+++=-2cos 222sin 2313131利用关系:ααϕ2sin )902cos(cos =-= ααϕ2cos )902sin(sin -=-= 化简得:当σ3=0时(单轴压缩):ϕϕσsin 1cos 21-==c R c ,令ϕϕϕsin 1sin 1-+=N ,则,σ1当σ1=0时(单轴抗拉该值为 )(στf =但与实测的R t 线段进行修正.岩石破坏的判断条件:ϕ>, 破坏sin极限ϕ<,稳定sin6、格里菲思(Griffith)理论以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为:当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩石的破坏往往从缝端开始,裂缝扩展,最后导致破坏.方向成β角.且形状接近于椭圆,的局部抗拉强度,的边壁就开始破裂.1).任一裂隙的应力.假定:①椭圆可作为半元限弹性介质中的单个孔洞处理, ②二维问题处理,取0=z σ椭圆参数方程:αcos a x =,αsin b y = 椭圆的轴比为:ab m =椭圆裂隙周壁上偏心角的α的任意点的切向应力 可用弹性力学中英格里斯(Inglis)公式表示:由于裂缝很窄,轴比很小,形状扁平,所以最大应力显然发生在靠近椭圆裂隙的端部,即α很小的部位,当0→α时,αα→sin ,1cos →α又由于米,α很小,略去高次项,则有米为定值,当1σ,2σ,3σ确定时,y σ、xy τ也为定值,则b σ仅随α而变.这是任一条裂隙沿其周边的切向应力.显然在椭圆周边上,随α不同b σ有不同的值,对α求导.2mτxy则,2).岩块中的最大切向应力所在的裂隙上面导出了 某一条裂隙上的最大切向应力,但在多条裂隙中,哪一条裂隙的b σ 最大?y σ,xy τ与1σ,3σ的关系为:βσσσσσ2cos 223131--+=y , βσστ2sin 231--=xy代入 m ax ,b σ中,显然m ax ,b σ与β有关,对其求导,便可求得b σ为最大的那条裂隙,即确定出β角. 即取 0m ax ,=⋅βσd d m b则①02sin =β,有β=0或 90代入m ax ,b σ中,β=0时, mb 3max ,2σσ= 或 0 β= 90时,mb 1max ,2σσ=或0. 共四个可能极值,与σ1平行或垂直的裂隙.②将)(22cos 3131σσσσβ+-=代入 m ax ,b σ中,共有两个极值,即与σ1斜交裂隙中有两个方向裂隙的切向应力达极值.因为β=0或 90时,12cos =β或-1.因此,与σ1斜交时,必须β≠0或 90, 即 12cos <β 时 才是与σ1斜交,则要求或 0331>+σσ此时,裂隙的最大拉应力为(*)如果0331<+σσ, 则1)(23131>+-σσσσ,则3σ必为负值(拉应力)此时由12cos ≥β推出12cos =β,即β为0或90°,表明裂隙与σ1平行或正交.因为03<σ,考查β=0, 90的极值,则3max ,2σσ=b m (**) 为最大拉应力.式(*)(**)即为岩石中的m ax ,b m σ达到某一临界值时就会产生破坏. 为了 确定米值,做单轴抗拉试验,使σ3垂直裂隙面(椭圆长轴),则这时的t R -=3σ 推出 t b R m 2max ,-=σ 这说明裂隙边壁最大应力m ax ,b m σ与米乘积必须满足的关系.此时,格菲思强度理论的破坏准则为:I. 由(**)式,,t b R m 2max ,-=σ, 则 322σ=-t RII. 由(*)式,代入 t b R m 2max ,-=σ, 则有:等于0,处于极限状态; 大于0, 破坏; 小于0, 稳定.上面的准则是用σ1、σ3表示的,也可用y σ,xy τ表示 将t b R m 2max ,-=σ 代入 )(122max ,xy y y b mτσσσ+±=中, 222xyy y t R τσσ+±=- 推出:t y xy y R 222+=+±στσ,22224)2(t y t y xy y R R +=+=+σστσ 在0<σ时的包线更接近实际.7、修正的格里菲思理论格里菲思理论是以张开裂隙为前提的,如果压应力占优势时裂隙会发生闭合,压力会从裂隙一边壁传递到另一边,从而缝面间将产生摩擦,这种情况下,裂隙的发展就与张开裂隙的情况不同.麦克林托克(米eclintock)考虑了这一影响,对格里菲思理论进行了修正.麦克林托克认为,在压缩应力场中,当裂缝在压应力作用下闭合时,闭合后的裂缝在全长上均匀接触,并能传递正应力和剪应力.由于均匀闭合,正应力在裂纹端部不产生应力集中,只有剪应力才能引起缝端的应力集中.这样,可假定裂纹面在二向应力条件下,裂纹面呈纯剪破坏.其强度曲线如图.由图可知 OC =c τBD=)(2131σσ-(半径)OD=)(2131σσ+(圆心)EB=τ, OE=σ,ED=OD-OE=)(2131σσ+-σAB=EB ϕcos ⋅=ϕτcos ⋅ϕsin ⋅=ED DA =ϕσϕσσsin sin )(2131⋅-+由 AB=BD-AD,可推出式中,摩擦系数ϕtg f =另外,推出tyt xy R R στ+=12取y σ为c σ,裂隙面上的压应力,则有②当c σ很小时,取c σ=0时(勃雷斯Brace)=t R 4当时c σ<0时(拉应力),上两式不适用.低应力时,格里菲思与修正的格里菲思理论较为接近,高应力时差别大(当σ3>0时).8、伦特堡(Lundborg)理论定限度,于晶体破坏,大抗剪强度.的破坏状态:σ,τ——研究点的正应力和剪应力(米Pa)τ——当没有正应力时(σ=0)岩石的抗切强度(米Pa)i τ——岩石晶体的极限抗切强度(米Pa)A ——系数,与岩石种类有关.当岩石内的剪应力τ和正应力σ达到上述关系时,岩石就发生破坏.式中的τ实际上是代表最大的剪应力,因而是强度.上式中的0τ,i τ,A 由试验确定,见P55表3-5.9、经验破坏准则现行的破坏理论并不能全面的解释岩石的破坏性态,只能对某一方面的岩石性态做出合理的解释,但对其它方面就解释不通.因此,许多研究者在探求经验准则,目前应用较多的经验破坏准则为霍克(Hoke)和布朗(Brown)经验破坏准则.①Hoke和Brown发现,大多数岩石材料(完整岩块)的三轴压缩试验破坏时的主应力之间可用下列方程式描述:R c—完整岩石单轴抗压强度(米Pa); 米—与岩石类型有关的系数米值是根据岩石的完整程度,结晶及胶结情况,通过大量试验结果及经验而确定的.岩石完整、结晶或胶结好,米值就越大,最大的为25.②对于岩体,Hoke和Brown建议:米和S——常数,取决于岩石的性质以及在承受破坏应力σ1和σ3以前岩石扰动或损伤的程度.完整岩块S=1,岩石极差时S=0.当取σ3=0时,可得到岩体的单轴抗压强度:由于s =0~1,则c cm R R ≤ 如果令σ1=0,则得到岩体的单轴抗拉强度.从R厘米和R t 米中可看出,当S=1时,R 厘米=R c 为完整岩块,当S=0时,R t 米=R 厘米=0为完全破损的岩石.因此,处于完整岩石和完全破损岩石之间的岩体,其S 值在1~0之间.。

岩石的强度理论及破坏判据[详细]

岩石的强度理论及破坏判据[详细]

依据适合的强度理论,判断岩体的破坏及其破坏形式。 岩体本构关系:指岩体在外力作用下应力或应力速率与其应变 或应变速率的关系。
岩石或岩体的变形性质:弹塑性或粘弹塑性。 本构关系:弹塑性或粘弹塑性本构关系。 本构关系分类:
①弹性本构关系:线性弹性、非线性弹性本构关系。 ②弹塑性本构关系:各向同性、各向异性本构关系。 ③流变本构关系:岩石产生流变时的本构关系。流变
Griffith强度准则只适用于研究脆性岩石的破坏。
Mohr-coulomb强度准则的适用性一般的岩石材料。
0
σ1=σ3
P β
σc / 2
σc
σ1
-σt
A
S
岩石强度理论与破坏判据
三、 莫尔强度理论
莫尔(Mohr,1900年)把库仑准则推广到考虑三向应力状态。最主
要的贡献是认识到材料性质本身乃是应力的函数。他总结指出“到极 限状态时,滑动平面上的剪应力达到一个取决于正 应力与材料性质的最大值”,并可用下列函数关系表示:
σ1 σ
莫尔包络线的具体表达式,可根据试验结果用拟合法求得。
包络线形式有:斜直线型、二次抛物线型、双曲线型等。
斜直线型与库仑准则基本一致,库仑准则是莫尔准则的一个特例。
这里主要介绍二次抛物线和双曲线型的判据表达式。
1、二次抛物线型
τ
岩性较坚硬至较弱的岩石。
2 n t
2
τ=
n(σ
+σt
)
M(σ ,τ)
四、 格里菲斯强度理论
格里菲斯(Griffith ,1920年)认为:脆性材料断 裂的起因是分布在材料中的微小裂纹尖端有拉应力 集中(这种裂纹称之为Griffith裂纹)。
格里菲斯原理认为:当作用力的势能始终保持不 变时,裂纹扩展准则可写为:

岩石的力学特性及强度准则

岩石的力学特性及强度准则

岩石的力学特性及强度准则岩石力学性质主要是指岩石的变形特征及岩石的强度。

由于在石油工程中,并壁稳定、出砂分析、水力压裂、储层物性变化等都与岩石力学性质亲密相关,因此有必要讨论岩石的力学性质及其在物理环境下应力场中的反映。

影响岩石力学性质的因素许多,例如岩石的类型、组构、围压、温度、应变率、含水量、载荷时间以及载荷性质等。

要讨论这些简单因素对岩石力学性质的影响,只能在试验艾博希室内严格掌握某些因素的状况下进行。

岩石的变形特性,最直观的表达方法是通过应力一应变关系曲线及应变随时间变化的曲线来表示。

通常首先讨论在常温、常压(即室温与通常大气压)条件下岩石的力学性质,然后再考虑其他影响因素下岩石的力学性质。

这样才能渐渐弄清在地质条件下,综合因素对岩石力学性质的影响。

岩石在常温、常压下一般产生脆性破坏,但深埋地下的岩石却表现为明显的延性。

,岩石这一性质的变化是由于所处物理环境的转变造成的。

所谓脆性与延性至今尚无非常明确的定义。

一'般所谓脆性破坏是指由弹性变形发生急剧破坏,破坏后塑性变形较小。

延性是指弹性变形之后产生较大的塑性变形而导致破坏,或直接进展为延性流淌。

所谓延性流淌IC现货商是指有大量的永久变形而不至于破坏的性质* 对于岩石而言,破坏前的应变或永久应变在3%以下可作为脆性破坏,5%以上作为延性破坏,3% 一5%为过渡状况。

由于地下的岩体和井壁围岩均处于三向应力状态,所以对岩石力学性态的测定不能靠简单的单轴压缩试验方法,而必需在肯定的围压作用厂(必要时还要考虑温度的作用)进行试验测定。

真三轴试验(岩石上三个主方向的作用力均不等)非常简单,一般均不采纳。

普退采纳的是常规三轴压缩试验方法,一般用圆柱形岩样,在其横向施加液体围压,即在水平的两个主方向上的应力相等且等于围压久,如图1—1所示。

假如上下垫块是带孔可渗透的,亦可通入孔隙流体压力以讨论孔隙压力的影响。

在试验过程中把岩样放在高压室中先对岩样四周用围压油加压至所需的值9c(需要时亦可加孔隙压至所需的夕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩石力学中常用的几种强度准则
Mohr-Coulomb准则
τ
当压力不大(小于10MPa) 时,包络线可采用直线型 近似
f Ctan
破坏角(剪裂面与最大主
应力 σ1的夹角)满足: = +
42
C
1 2
(
1
3
)
φ

O σ3
σ1
σ
Hale Waihona Puke C·ctgφ1 2
(
1
3
)
库仑—莫尔强度条件
岩石力学中常用的几种强度准则
对Mohr-Coulomb强度准则评价:
优点: ➢ 公式简单实用,各参数一般都可以利用常规试验器材和方法 来确定; ➢ 不仅能反映岩体的碎性破坏,而且能反映其塑性破坏特征。
缺点:
该准则为线性破坏准则,在高围压压缩条件下,该准则 评估的岩石三轴强度与试验实测强度数据偏差较大;
该准则没有考虑中间主应力对岩石真三轴强度的影响; 该强度准则还指出,岩体的破坏角θ,但在拉伸条件下,
O
σ
岩石力学中常用的几种强度准则
对Mohr强度理论的评价:
优点: ➢ 适用于塑性岩石,也适用于脆性岩石的剪切破坏; ➢ 较好解释了岩石抗拉强度远远低于抗压强度特征; ➢ 解释了三向等拉时破坏,三向等压时不破坏现象; ➢ 简单、方便:同时考虑拉、压、剪,可判断破坏方向。
缺点:
忽视了σ2 的作用,误差:±15% 没有考虑结构面的影响 不适用于拉断破坏,破裂面趋于分离 不适用于膨胀、蠕变破坏
理上的困难; 1952 年 Drucker 和 Prager 构造了一个内切于 M-C 准则的六棱锥的圆锥屈服面;
函数形式
式中 I1xyz123, 为应力张量第一不变量
J2 1 6 [1 22 2 32 3 12 ],为第二应力偏量不变量
α 和K为 D-P 准则材料常数
岩石力学中常用的几种强度准则
其破坏面一般垂直拉应力方向,实质为张破裂,与压缩 条件属于两种不同的破坏机理。
岩石力学中常用的几种强度准则
Drucker-Prager强度准则
准则的提出
M-C 准则不能反映中间主应力对屈服和破坏的影响及单纯静水压力引起的屈服特性; M-C屈服面在主应力空间中是一个带尖顶的六棱锥面,如果应力点位于棱线或锥顶上,将引起数学处
谢谢!
对D-P强度准则评价:
优点: ➢ 考虑了中间主应力和静水压力的影响; ➢ 考虑了平均应力σm=I1/3的影响; ➢ 在岩石力学中应用较广,特别是在弹塑性有限元计算中 应用广泛;
缺点: 把岩石看成完整、无裂隙的连续介质,而实际上,岩石是多裂隙的 结构体;
岩石力学中常用的几种强度准则
Hoek-Brown强度准则
✓ 外力作用下,材料中裂隙的端部及其附近由于应力集中而产生很大的 拉应力,超过岩石抗拉强度时,裂隙便不断扩展而导致材料破坏。
岩石力学中常用的几种强度准则
Griffith强度准则
①数学式
133 133
0时,3 -t 0时,(13)2
13
8t
②最有利破裂的方向角
1arccos 12
2
2(13)
岩石力学中常用的几种强度准则
对Grriffith强度准则评价:
优点: ➢ 岩石抗压强度为抗拉强度的8倍,反映了岩石的真实情况 ➢ 证明了岩石在任何应力状态下都是由于拉伸引起破坏 ➢ 指出微裂隙延展方向最终与最大主应力方向一致
缺点:
仅适用于脆性岩石,对一般岩石莫尔强度准则适用性远大于Griffith 准则
对裂隙被压闭合,抗剪强度增高解释不够 Griffith准则是岩石微裂隙扩展的条件,并非宏观破坏
准则的提出
常规三轴强度试验中发现大多数岩石强度曲线并不是直线,而是各种类型 的曲线,也就是说随着围压的增加,破坏角是变化的
函数形式
1=3+ mc3sc2
岩石力学中常用的几种强度准则
对Hoek-Brown强度准则评价:
优点:
➢ 综合考虑了岩块强度、结构面强度、岩块结构等多种因素的影 响,能更好的反映岩块的非线性破坏特征;
岩石强度及破坏准则优缺点
岩石力学与石油工程
目录 Mohr强度准则 Mohr-Coulomb准则 Drucker-Prager强度准则 Hoek-Brown强度准则 Griffith强度准则
岩石力学中常用的几种强度准则
Mohr强度准则
τ
=f
强度曲线上每一点的坐标值
均代表材料沿着某一面破坏 时所需的正应力及剪应力
➢ 提供岩块破坏时强度条件,而且能对岩块破坏机理进行描述; ➢ 弥补了Mohr-Coulomb强度准则中岩体不能承受拉应力,以及
对低应力区不太适应的不足,能解释低应力区、拉应力及最小
主应力 σ3 对强度的影响,因而更符合岩块的破坏特点。
缺点:
该准则没有考虑中间主应力对岩石真三轴强度的影响; 该准则在高围压条件下评估的岩石三轴强度与试验实测
强度数据偏差较大; 准则各参数的确定受主观性影响程度较大。
岩石力学中常用的几种强度准则
Griffith强度准则
基本假设: ①物体内随机分布许多裂隙; ②所有裂隙都张开、贯通、独立; ③裂隙断面呈扁平椭圆状态; ④在任何应力状态下,裂隙尖端产生拉应力集中,导致裂隙沿 某个有利方向进一步扩展; ⑤最终在本质上都是拉应力引起岩石破坏。
相关文档
最新文档