核磁共振氢谱课件教学内容
合集下载
《核磁共振氢谱》PPT课件

各向异性效应
化合物中非球形对称的电子云,如 电子系统,对邻近质 子会附加一个各向异性的磁场,即这个附加磁场在某些区 域与外磁场 B0的方向相反,使外磁场强度减弱,起抗磁性 屏蔽作用,而在另外一些区域与外磁场 B0方向一样,对外 磁场起增强作用,产生顺磁性屏蔽的作用。
通常抗磁性屏蔽作用简称为屏蔽作用,产生屏蔽作用的区 域用“ + 〞表示,顺磁性屏蔽作用也称作去屏蔽作用,去 屏蔽作用的区域用“ -〞表示。
芳烃的各向异性效应
H: 7.3
环外氢受到强的去屏蔽作用: 8.9 ;环内H 在受到高度的屏蔽作用 ,故 : -1.8
双键的各向异性效应
屏蔽
去屏蔽
H
O
R
H: 56
H: 9-10
三键的各向异性效应
三键是一个 键〔sp杂化〕 和两 键组成。sp 杂化形成 线性分子,两对 p 电子相互 垂直,并同时垂直于键轴, 此时电子云呈圆柱状绕键轴 运动。炔氢正好处于屏蔽区 域内,所以在高场共振。同 时炔碳是 sp杂化轨道,C— H 键成键电子更靠近碳,使 炔氢去屏蔽而向低场移动, 两种相反的效应共同作用使 炔氢的化学位移为 2-3 ppm 。
氢化学位移
1. 化学位移值能反映质子的类型以及所处的化学环境,与分子 构造密切相关
2. (TMS)=0 (TMS)=10 =10-
3. 影响化学位移的因素:
4.
= d + p + a + s
5. H核外只有s电子,故d 起主要作用, a 和s对也有一 定的作用。
6.
影响化学位移的因素---诱导效应
X的电负性 4.0 3.5
(ppm) 4.26 3.24
3.1
2.8
核磁氢谱解析ppt课件

三键,双键,苯环由于磁各项异性都会产生屏蔽区和去屏蔽区,所以 这些也是影响化学位移的重要因素,经常借此因素来区分异构体。单 键也有磁各向异性,所以C3CH>C2CH2>CCH3
4) 共轭作用和诱导作用(对不饱和烷烃影响) 对不饱和烷烃共轭作用和诱导作用要综合考虑。
共轭作用有p-π共轭给电子,π-π共轭吸电子;诱导效 应主要是吸电子效应。
2. 在有机化学中使苯环活化的邻, 对位定位基, 主要是有 p-π共轭作用. 这类有: -OH, -OR, -NH2, -NHR.
3. 第三类取代基是有机化学中使苯环钝化的间位定位基. 主要是纯在π-π共轭, 同时杂原子拉电子性, 使苯电子云密 度降低, 尤其是邻位.这类集团有: -CHO, -COR, -COOR, COOH, -CONHR, -NO2, -N=NR 等.
谢谢!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2)S-P杂化 从sp3(碳碳单键)到sp2(碳碳双键)s 电子的成分从25%增加到33%,键电子 更靠近碳原子,因而对相连的氢原子有 去屏蔽作用,即共振位移移向低场. (芳 环与烯烃比饱和烷烃的化学位移低场的 原因)
3)磁各向异性 根据S-P杂化原理, 炔烃应该比烯烃更低场,苯环与烯烃相近.但实
还有些化合物在一种溶剂里不稳定,做出来的谱图比较杂,这时可 以换一种溶剂来做。
如 成盐后氮旁边的CH2会低场偏移0.5 ppm,同 样在CDCl3或DMSO做溶剂的谱图中没有成盐之前的氨活 泼氢在0.5-4.0ppm处,但成盐后活泼氢会出在10- 12ppm处,并且是两个NH.HCl,这也是鉴定氨是否成盐 的一种方法。
下面是我们比较常见的两种结构的互变异构.在有些化合物中只表现一种 构型.有些化合物中两种构型皆有,此时在核磁管里面加入浓盐酸1-2滴,会 发现变为单一的构型,这样的方法比升温要方便。
4) 共轭作用和诱导作用(对不饱和烷烃影响) 对不饱和烷烃共轭作用和诱导作用要综合考虑。
共轭作用有p-π共轭给电子,π-π共轭吸电子;诱导效 应主要是吸电子效应。
2. 在有机化学中使苯环活化的邻, 对位定位基, 主要是有 p-π共轭作用. 这类有: -OH, -OR, -NH2, -NHR.
3. 第三类取代基是有机化学中使苯环钝化的间位定位基. 主要是纯在π-π共轭, 同时杂原子拉电子性, 使苯电子云密 度降低, 尤其是邻位.这类集团有: -CHO, -COR, -COOR, COOH, -CONHR, -NO2, -N=NR 等.
谢谢!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2)S-P杂化 从sp3(碳碳单键)到sp2(碳碳双键)s 电子的成分从25%增加到33%,键电子 更靠近碳原子,因而对相连的氢原子有 去屏蔽作用,即共振位移移向低场. (芳 环与烯烃比饱和烷烃的化学位移低场的 原因)
3)磁各向异性 根据S-P杂化原理, 炔烃应该比烯烃更低场,苯环与烯烃相近.但实
还有些化合物在一种溶剂里不稳定,做出来的谱图比较杂,这时可 以换一种溶剂来做。
如 成盐后氮旁边的CH2会低场偏移0.5 ppm,同 样在CDCl3或DMSO做溶剂的谱图中没有成盐之前的氨活 泼氢在0.5-4.0ppm处,但成盐后活泼氢会出在10- 12ppm处,并且是两个NH.HCl,这也是鉴定氨是否成盐 的一种方法。
下面是我们比较常见的两种结构的互变异构.在有些化合物中只表现一种 构型.有些化合物中两种构型皆有,此时在核磁管里面加入浓盐酸1-2滴,会 发现变为单一的构型,这样的方法比升温要方便。
04-核磁共振氢谱-总PPT课件

质量数 原子序数 自旋量子数I
偶数
偶数
0
偶数
奇数
1,2,3….
奇数
奇数或偶数 1/2;3/2;5/2….
.
6
表 常见核的核磁共振数据
核 天然丰度% 自旋量子数I 磁矩μ/μ0
1H 99.985
1/2
4.83724
磁旋比
共振频率/MHz
γ / 107rad·s-1·T-1 (H0=2.3488T)
26.7519
三氯乙酸
CCL3COOH
二氧六环
P-C2H6O2
环己烷
C6H12
四氯化碳
CCl4
二硫化碳
CS2
二氯甲烷
CH2Cl2
7.27
76.9
2.05
206,29.1
4.0**
/
2.5
39.6
7.20
128.0
3.34,4.11
49.0
7.18,7.57,8.57 149.9,135.5,123.5
2.31,7.10
(3)I=1/2的原子核 1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自
旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有
机化合物的主要组成元素。 .
9
讨论:
在1950年,Proctor等研究发现:质子的共振频率与其结 构(化学环境)有关。在高分辨率下,吸收峰产生化学位移 和裂分,如右图所示。
.
15
表4-3 常见溶剂及其化学位移
名称
分子式
化学位移/ppm*
1H
13C
氯仿-d1
CHCl3- d1
丙酮- d6
核磁共振氢谱PPT课件

•
m=I, I-1, I-2, ……-I
• 每种取向各对应一定能量状态
• I=1/2的氢核只有两种取向
• I=1的核在B0中有三种取向
.
10
z
z
z
m =+1
m =
B0
m = +1/2
m =
m =
m =
m = 1/2
m = 1
m = 1 m = 2
I = 1/2
I=1
I=2
I=1/2的氢核 与外磁场平行,能量较低,m=+1/2, E 1/2= -B0
与外磁场方向相反, 能量较高, m= -1/2, .
E -1/2=1B1 0
• 核磁矩与外磁场相互作用而产生的核磁场作用能 E, 即各能级的能量为 E=-ZB0
E 1/2= -B0 E-1/2= B0
.
12
I=1/2的核自旋能级裂分与B0的关系
• 由式 E = -ZB0及图可知1H核在磁场 中,由低能 级E1向高能级E2跃迁,所需能量为 △E=E2-E1= B0 -(-B0) = 2 B0
代入上式得: h I(I1) 2
当I=0时,P=0,原子核没有自旋现象,只有I﹥0,原 子核才有自旋角动量和自旋现象
.
9
二、核自旋能级和核磁共振
(一)核自旋能级
• 把自旋核放在场强为B0的磁场中,由于磁矩 与磁 场相互作用,核磁矩相对外加磁场有不同的取向,共 有2I+1个,各取向可用磁量子数m表示
.
6
• 自旋角动量
– 一些原子核有自旋现象,因而具有自旋角动 量。由于核是带电粒子,故在自旋同时将产 生磁矩。核磁矩与角动量都是矢量,磁矩的 方向可用右手定则确定。
核磁共振氢谱解析ppt课件

第三章 核磁共振氢谱
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
• 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。
• 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
• 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。
• 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
《核磁共振H谱》PPT课件

上式表明;核(1H 及13C)由低能级向高能级跃迁时
需要的能量(⊿E)与外加磁场强度(H0)及核磁矩()成
正比。显然,随着H0增大,发生核跃迁时需要的能 量也相应增大;反之,则相应减小。
2019/10/15
2、核在能级间的定向分布及核跃迁
通常在热力学平衡条件下,自旋核在两个能级
间的定向分布数目遵从Boltzmann分配定律,即低能 态核的数目比高能态的数目稍多一些(仅百万分之
– 具有非球形电荷分布,有电四极矩,核磁共振的谱 线加宽,不利于检测。
27
2019/10/15
第一节、基础原理
二)磁性原子核在外加磁场中的行为特性
原子核在强磁场中,吸收无线电波而产
生核自旋能级跃迁,导致核磁矩方向改变而产
第
三 章
生感应电流,这种现象称为核磁共振。测定核
核
磁 共
磁共振时电流的变化信号就可以判断原子核的
2019/10/15
⑵碳—13 核磁共振谱(13C-NMR spectrum, 13CNMR),简称碳谱。碳谱弥补了氢谱的不足, 可给出丰富的碳骨架信息。特别对于含碳较多的 有机物,具有很好的鉴定意义。
缺点 峰面积与碳数一般不成比例关系, 因而氢谱 和碳谱可互为补充。
⑶氟与磷核磁共振用于鉴定,研究含氟及含磷化 合物,用途远不如氢谱及碳谱广泛。氮—15NMR (15N—NMR)用于研究含氮有机物的结构信息,是 生命科学研究的有力工具。
5.了解1H-NMR及13C-NMR的测定条件
第
三 以及简化图谱的方法,并能综合应用谱图提供
章
核 磁
的各种信息初步推断化合物的正确结构。
共
振
氢
谱
3
2019/10/15
《NMR核磁共振氢谱》课件

数据采集:进行氢谱实验, 采集数据
数据处理:对采集到的数据 进行处理和分析,如基线校 正、峰面积计算等
结果解释:根据数据处理结 果,对样品进行定性和定量 分析
实验报告:撰写实验报告, 包括实验目的、方法、结果、 讨论和结论等
样品准备:确保样品纯净、 无杂质
仪器设置:正确设置仪器 参数,如温度、磁场强度 等
更宽范围:拓宽氢 谱检测范围,实现 更广泛的应用
更智能化:开发智 能化氢谱分析软件, 提高分析效率和准 确性
技术挑战:提高分辨率、灵敏度、 速度等性能指标
应用领域:拓展到生物医学、材料 科学、环境科学等领域
添加标题
添加标题
添加标题
添加标题
技术展望:发展新型核磁共振技术, 如超导核磁共振、量子核磁共振等
药物筛选:通过氢 谱分析药物与靶点 的结合情况
药物设计:通过氢 谱分析药物的化学 结构,优化药物设 计
药物代谢:通过氢 谱分析药物在体内 的代谢情况
药物毒性:通过氢 谱分析药物的毒性 ,评估药物的安全 性
更高分辨率:提高 氢谱分辨率,实现 更精细的谱图分析
更快速度:提高 氢谱采集速度, 缩短实验时间
数据采集:确保数据采集 的准确性和完整性
数据处理:正确处理和分 析数据,避免误判和错误 结论
实验安全:遵守实验室安 全规定,确保实验安全进 行
峰的位置:根据化学位移确定 峰的强度:根据峰面积确定 峰的形状:根据峰形确定
峰的分裂:根据峰的分裂情况确定
峰的耦合:根据峰的耦合情况确定
峰的归属:根据峰的位置、强度、形状、 分裂、耦合等信息综合判断
PPT,a click to unlimited possibilities
汇报人:PPT
核磁共振氢谱教育课件

17
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理:扫频--固定 H0,改变υ射,使υ射与H0匹配;
扫场--固定υ射,改变H0,使H0与υ射匹配;
10
高能级与低能级的能量差△E应由下式定:
△E= E (-1/2)- E (+1/2) =(h/2)B0
式中: B0 外加磁场强度
磁矩与外加磁场相反 高能自旋取向
E2 = (+1/2)(h/2)B0 m = +1/2
磁距与外加磁场一致 低能自旋取向 E1 = (-1/2)(h/2)B0 m = -1/2
• 晶格泛指环境,即高能态自旋核把能量传给周围环境 (同类分子、溶剂小分子、固体晶格等)转变为热运 动而本身回到低能态维持Boltzmann分布。
• 自旋-晶格弛豫过程的半衰期用T1表示 (T1与样品状 态及核的种类、温度有关),液体T1~1s,固体或粘度 大的液体T1 很大。
• 自旋-晶格弛豫又称纵向弛豫。
原子核的自旋
原子核的自旋量子数:ms 与原子的质量数和原子序数之间的关系:
A、Z均为偶数,ms=0
A Z
X
A为偶数,Z为奇数, ms=1,2,3…整数 A为奇数,Z为奇或偶数, ms=1/2,3/2,
5/2…半整数
当ms≠0时,原子核的自旋运动有NMR讯号。
6
由自旋量子数与原子的质量数及原子序数的关系可知: 原子质
11
2.核磁共振
如果以射频照射处于外磁场H0 中的核,且照射频 率υ恰好满足下列关系时
hυ= △E 或 υ= ( /2)B0 处于低能级的核将吸收射频能量而跃迁至高能 级, 这种现象称为核磁共振现象。 由上式可知, 一个核的跃迁频率与磁场强度B0 成正比, 使1H 核发生共振,由自旋m = ½取向变成m = -1/2 的取向。应供给△E 的电磁波(射频)。照射频率 与外加磁场强度成正比。
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理:扫频--固定 H0,改变υ射,使υ射与H0匹配;
扫场--固定υ射,改变H0,使H0与υ射匹配;
10
高能级与低能级的能量差△E应由下式定:
△E= E (-1/2)- E (+1/2) =(h/2)B0
式中: B0 外加磁场强度
磁矩与外加磁场相反 高能自旋取向
E2 = (+1/2)(h/2)B0 m = +1/2
磁距与外加磁场一致 低能自旋取向 E1 = (-1/2)(h/2)B0 m = -1/2
• 晶格泛指环境,即高能态自旋核把能量传给周围环境 (同类分子、溶剂小分子、固体晶格等)转变为热运 动而本身回到低能态维持Boltzmann分布。
• 自旋-晶格弛豫过程的半衰期用T1表示 (T1与样品状 态及核的种类、温度有关),液体T1~1s,固体或粘度 大的液体T1 很大。
• 自旋-晶格弛豫又称纵向弛豫。
原子核的自旋
原子核的自旋量子数:ms 与原子的质量数和原子序数之间的关系:
A、Z均为偶数,ms=0
A Z
X
A为偶数,Z为奇数, ms=1,2,3…整数 A为奇数,Z为奇或偶数, ms=1/2,3/2,
5/2…半整数
当ms≠0时,原子核的自旋运动有NMR讯号。
6
由自旋量子数与原子的质量数及原子序数的关系可知: 原子质
11
2.核磁共振
如果以射频照射处于外磁场H0 中的核,且照射频 率υ恰好满足下列关系时
hυ= △E 或 υ= ( /2)B0 处于低能级的核将吸收射频能量而跃迁至高能 级, 这种现象称为核磁共振现象。 由上式可知, 一个核的跃迁频率与磁场强度B0 成正比, 使1H 核发生共振,由自旋m = ½取向变成m = -1/2 的取向。应供给△E 的电磁波(射频)。照射频率 与外加磁场强度成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而达到饱和,不再有NMR信号。
n
E
e kT
1.0000099
n
驰豫过程
n* 非电磁辐射形式释放能量 n0
驰豫现象:高能态的核以非辐射形式释放能量,回到低能
态,维持n-略大于n+,致使核磁共振信号存在,这种过程称
为“驰豫”。
1) 自旋-晶格驰豫(纵向驰豫):处于高能态的自旋体系与周 围的环境之间的能量交换过程,半衰期T1可以用来表示 自旋-晶格弛豫过程所需的时间。
在强磁场中,原子核发生自旋能级分裂(能级极小:在1.41T磁场中, 磁能级差约为2510-3J),当吸收外来电磁辐射(109-1010nm, 4900MHz)时,将发生核自旋能级的跃迁----产生所谓NMR现象。
测定有机化合物的结构,1H NMR─氢原子的位置、环境以 及官能团和C骨架上的H原子相对数目)
E
E 2
E
E
1
+
B 0
m=+1/2
E= -μB0,B0:磁场强度;E:作用能
E1= -μ1B0 E2= -μ2B0
ΔE= hγB0/2π
当用一频率为υ射=γB0/2π的射频波照射磁场中的氢核时,核的自
旋取向就会由高能级跃迁,产生核磁共振。磁场强度越高,发生
核磁共振所需的射频越高。
核磁共振条件
(1) 核有自旋 (磁性核) (2) 外磁场,能级裂分;
2) 自旋-自旋驰豫(横向驰豫)一些高能态的自旋核把能量转 移给同类的低能态核,同时一些低能态的核获得能量跃
迁至高能态。过程所需时间用T2表示。
液体样品的弛豫时间远小于固体样品,易于得到高分辨的NMR谱图
小结
核磁共振的条件 核磁共振与自旋弛豫的关系
3 核磁共振仪的分类
与UV-Vis和红外光谱法类似,NMR也属于吸收光谱,只是研究 的对象是处于强磁场中的原子核自旋能级对射频辐射的吸收。
3.2 核磁共振基本原理
3.2.1 原子核的自旋 原子核是由质子和中子组成的带正电荷的粒子,存在自旋,
其自旋运动将产生磁矩( μ )。 核的自旋角动量(ρ)是量子化
的,不能任意取值,可用自旋量子数(I)来描述。
I(I1) h 2
自旋量子数: I=0、1/2、1…
μ= γ*ρ,γ:磁旋比
I = 0, ρ =0, 无自旋,不能产生自旋角动量,不会产生共振信号。 ∴ 只有当I > O时,才能发生共振吸收,产生共振信号。
I 的取值可用下面关系判断:
质量数(A) 原子序数(Z)
奇数
奇数或偶数
偶数
奇数 偶数
(3) 照射频率与外磁场的比值 / B0 = / (2 ) (4)对于同一种核 ,磁旋比 为定值, H0变,射频频率变。 (5)不同原子核,磁旋比 不同,产生共振的条件不同,需要
的磁场强度H0和射频频率不同。 (6)固定H0 ,改变(扫频) ,不同原子核在不同频率处发
生共振(图)。也可固定 ,改变H0 (扫场)。扫场方
式应用较多。
无磁场
有磁场
共振
弛豫
3.2.3 核的自旋弛豫
饱和现象
n0
吸收电磁辐射
n*
不同温度下,处于高能态的核数(n-)和处于低能态(n+)
的核数的比例不同,根据波尔兹曼分布定律,在常温下低能
态的核数占有极其微弱的优势,如果低能态的核跃迁不能有
效地释放能量回到低能态,则低能态的核数会越来越少,进
空间取向总数为:2 I + 1 。
H' H' 1H核 :自 旋 取 向 数=2× 1/2+1=2
即 : H核 在 外 场 有 两 个 自 旋 方 向 相 反 的 取 向 。
H' H' 1H核:自旋取向数=2×1/2+1=2
一致H0相反
即:H核在外场有两个自旋方向相反的取向。 一致H0相反
m=-1/2
第三章 核磁共振氢谱
核磁共振基本原理 核磁共振仪与实验方法 1H的化学位移 各类质子的化学位移 自旋偶合和自旋分裂 自选系统及图谱分类 核磁共振氢谱的解析
3.1 核磁共振氢谱发展史
NMR简介
NMR是研究处于磁场中的原子核对射频辐射(Radio-frequency Radiation)的吸收,它是对各种有机和无机物的成分、结构进行 定性分析的最强有力的工具之一,有时亦可进行定量分析。
自旋量子数为1/2的核的核磁共振信号相对简单已广泛用于化 合物的结构测定,然而,核磁共振信号的强弱与被测磁性核的 天然丰度和旋磁比的立方成正比,有些核因为天然丰度太小, 核磁共振信号很弱。
3.2.2 自旋核在外加磁场中的取向和能级及共振
具有磁矩(μ)的核在外磁场中的自旋取向是量子化的,可用m 表示核自旋的不同的空间取向,m=I,I-1,I-2,…,-I。
2 .射频振荡器:线圈垂直于 外磁场,发射一定频率的电 磁辐射信号。60MHz800MHz。
3 .射频信号接受器(检测 器):当质子的进动频率与 辐射频率相匹配时,发生能 级跃迁,吸收能量,在感应 线圈中产生毫伏级信号。
4.样品管:外径5mm的玻璃管, 测量过程中旋转, 磁场作用均匀。
3.3.3 样品的处理
自旋量子数(I) 半整数 n + 1/2。n = 0,1,2,…
整数 0
A(1)
H
Z(1)
A(12)
C
Z(6)
A(14)
N
Z(7)
奇-奇
I为半整数(1/2)I=1/2原子核
有共振吸收 的自旋形状
偶-偶
I=0
无
I=1、3/2、 2…原子核 的自旋形状
偶-奇
I为整数
有共振吸收
13C,15N,19F,31P; 11B, 33S, 35Cl,79Br,81Br,39K,63Cu, 5Cu,17O,25Mg,27Al,55Mn,67Zn(P98表3-1)
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,-800 MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分: 连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
3.3.2 构造
1.永久磁铁:提供外磁场, 要求稳定性好,均匀,不均 匀性小于六千万分之一。扫 场线圈。
1.非粘稠的液体样品,可以直接测定。 2.难溶解的物质,如高分子化合物,矿物,可用固体核磁共振
仪。 3.通常情况下,均是将样品配成溶液进行测定。
对溶剂的要求:不含质子,对样品溶解性好,不与样品发生 缔合作用等,常用溶剂有:四氯化碳、二硫化碳、氘代试剂 等。 氢谱标准物为::四甲基硅烷(TMS)