高中数学必修一、必修二综合练习卷041019123619

合集下载

高中数学必修一必修二综合检测题有答案

高中数学必修一必修二综合检测题有答案

y y y y数学必修一必修二综合检测题(一)2为∩BB={1,2},则1. 设f:x→xA是集合A到集合B的映射,若{1} φ或 D.A.φB.{1} C.φ或{2} O x O x O x O xbx?a)?f(x b函数2. 为常数,则下列结论正确的是的图象如图,其中a、2?4,CCAB?BC?DCABCD?ABDDBBBC所成的正弦值,则直线11. 如图,已知长方体中,和平面1111111101,b??a?1,b?0a B. A. )等于D110b?a?1,00?a?1,b?0? D.C. 531010..D B .C.A221053.下列各组函数中,表示同一函数的是BA11D 2 2C-1-2 tg (t)= x B. f (x)= t x-2 -1与x)A.f(x与g(x)= f ( +1) 11ba,()()?12. 已知实数a, b满足等式下列五个关系式3211x?x?2xx)?)x?xfC.(x)?与g 与( g(x)?D. f(a=b⑤b<a<0 ③0<a<b ④②①0<b<a a<b<0 AB1x?1x-其中不可能成立的关系式有...)3log(x?2个 D.4 C.3个 A.1个 B.2个=y4. 函数的定义域是1.若幂函数f(x)的图像过点(2,8),则f(x)= 13. 3,且在两坐标轴上的截距相等的直线方程的一般式为_________________.14. 经过点A(-3,4)222??????,11,??,???∞A.[1,+] C.B. D.???3 . ________________cm单位:cm),则该几何体的体积是15. 若一个正三棱柱的三视图及其尺寸如图所示(333??????12,,若常16. 已知为数3x)?x??4f(xb,a -函数y=1则下列说法正确的是, 5. 1x?-在A.y(1,+∞)∞)内单调递减1,+(y 内单调递增 B.在-2___________.,则24?10x?f(ax?b)x??5a?b内单调递减∞在D. )(1,+yC.在∞内单调递增y(1,+) 正方体的内切球与外接球的半径之比为6.D 1.∶.∶2C∶.B∶A.1233330?y1?)?2?:l0?2yx1a:l(?)??ax(a2?x?2k?1},求使P Q??的实数k?|?},???x?已知集合P{|2x5Q{xk1与直线,的值为则实数a7. 已知直线互相垂直17.21-2 或-1B或.A-12 .C或-21.D或1.2 的取值范围。

高中数学必修一、必修四、必修二综合练习(含答案)

高中数学必修一、必修四、必修二综合练习(含答案)

高中数学必修一、必修四、必修二综合练习选择题:1.函数f(x) 1 2x的定义域是( )3 1 3 1A .-B .-C. D —2 2 2 25.在正项等比数列a n中,若a2 a3 2 , a4 a5 8,则a5 a6 ()A.16B. 32C. 36D. 646. 程序框图如下:如果上述程序运行的结果为S= 40,那么判断框中应填入A . k 6B . k 5 C. k 6 D . k 57.已知x11 ,则y x 的取小值为x 1A.1B. 2C. 2 2D. 38.已知图1是函数y f(x)的图象,则图2中的图象对应的函数可能是2.3.A. ( ,0]B. [0, C ( ,0)F列四个命题中正确的是(A. lg2 lg3 lg5B.mnxD. lOg a x lOg a y lOg a —ycos300(B) (C) (D)_J32uuu4 .正三角形ABC的边长为1,设ABuuuc, BCuuu a ,CA b ,那么acb bcp ccp的值是(A . yf(|x|)B . y 1 f (x)1C . y f( |x|)D y f( |x|)29.已知全集U 0,1,2,且C U A 2,则集合A 的子集共有( )A. 2个B . 3个C . 4个D . 5个 10.为了得到函数ycos(2x -)的图象,可以将函数 y sin2x 的图象(314 .对定乂域是 D f 、 D g 的函数yf(x)、 y g(x), 规定:函数f (x)g(x),当 xD f 且 x D gAh(x)f(x), 当x D f 且x D g ,若 函 数 f (x)1 ,g(x) x 2, 则g(x),当x D f 且xD gx 1h(1) h(2)o三、解答题uuu)^Luuu15.设向量OA3, \3,OB (cos ,sin), 其中 0 -A 向右平移—个单位长度 6B. 向右平移 个单位长度12 C. 向左平移—个单位长度6二、填空题(每小题 5分,共20分)11.已知向量 a (3,1), b (1,3), c D.向左平移个单位长度12(k,7),若(a C) // b ,则 k =12.满足约束条件 |x|+ 2|y|w 2的目标函数 z = y — x 的最小值是13.已知 cos (―2贝H cos2 _________(1 )若 uurAB■ 13,求tan 的值;(2)求厶AOB 面积的最大值.16.(本小题满分12分)等差数列a n中,34 10且33, 36,印0成等比数列,求数列a n前20项的和S2o.17.(本小题满分14 分)设函数f(x) ' 3cos2x sin xcos x a (其中 >0,a R),且f(x)的图象在y轴右侧的第一个高点的横坐标为一.6(1)求的值;(2)如果f(x)在区间—上的最小值为.3,求a的值3 618.(本小题满分14 分)在厶ABC 中,若(a b c)(a b c) 3ac,且tanA ta nC 3 .3 , AB边上的高为4-3,求角代B,C的大小与边a, b, c的长19.(本小题满分14分)设S n为数列a n的前n项和,对任意的n N*,都有S n m 1 ma n(m为常数,且m 0). (1)求证:数列a n是等比数列;(2)设数列a n 的公比q fm,数列b n 满足b, 2a「b n f b n 1 (n 2 , n N*),求数列b n的通项公式;2⑶设C n ()3 T n是c n的前项和,求T n。

(完整word版)高中数学必修一和必修二第一二章综合试题(人教A版含答案)(word文档良心出品)

(完整word版)高中数学必修一和必修二第一二章综合试题(人教A版含答案)(word文档良心出品)

高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个 2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x 3.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞) 4.梯形1111A B C D (如图)是一水平放置的平面图形ABCD 的直观图(斜二测),若11A D ∥/y 轴,11A B ∥/x 轴,1111223A B C D ==, 111A D =,则平面图形ABCD 的面积是( )A.5B.10C.5.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120︒ B.150︒ C.180︒ D.240︒ 6.已知f (x 3-1)=x +1,则f (7)的值,为( )A.37-1B.37+1 C .3 D .2 7.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab8.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]9.下列四个图象中,表示函数f (x )=x -1x的图象的是()10.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点 B.有一个零点 C.有两个零点 D.有无数个零点11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是( )A.4 B.3 C.2 D.112.已知f(x)是定义在(0,+∞)上的增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0<x<2 D.1<x<2二、填空题(每小题5分,共20分)13.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=__________.14.函数y=log23-4x的定义域为__________.15.据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已知近两年污染区域由0.16 km2降至0.04 km2,则污染区域降至0.01 km2还需要__________年.16.空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC= 4、BD=那么AC与BD所成角的度数是_________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|1≤x<4},B={x|x-a<0},(1)当a=3时,求A∩B;(2)若A⊆B,求实数a的取值范围.18.(12分)(1)计算:(279)12+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.19.(12分)判断函数f(x)=1a x-1+x3+12的奇偶性.20.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ; (2)1A C ⊥面11AB D .22.( 12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1,(1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S(x)=xf(x)+g(12)在(0,+∞)上是增函数.D 1ODB AC 1B 1A 1C高一数学期末考试模拟试题(答案)一、选择题(每小题5分,共60分)1.解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B 3.解析:要使函数有意义,自变量x 的取值须满足⎩⎪⎨⎪⎧x ≠0x +3>0,解得x >-3且x ≠0.答案:D4. 解析:梯形1111A B C D 上底长为2,下底长为3腰梯形11A D 长为1,腰11A D 与下底11C D 的夹角为45︒ ,所以梯形1111A B C D 的高为2,所以梯形1111A B C D 的面积为1+=224(23) ,根据S =4直观平面 可知,平面图形ABCD 的面积为5.答案:A 5.解析:由22r r 3r l πππ+=知道2l r =所以圆锥的侧面展开图扇形圆心角度数为13603601802r l ⨯︒=⨯︒=︒,故选C 答案:C 6.解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C7.解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B8.解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B9.解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x在(0,+∞)上为增函数,故满足条件的图象为A.答案:A10.解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.答案:B 11.解析:因为①②④正确,故选B .12.解析:由题目的条件可得⎩⎪⎨⎪⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D二、填空题(每小题5分,共20分) 13.答案:{x |x <4}14.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:2 16、解析:如图,取AD 中点Q ,连PQ ,RQ ,则PQ =,2RQ =,而PR =3,所以222PQ RQ PR +=,所以PQR 为直角三角形,90PQR ∠=︒,即PQ 与RQ 成90︒的角,所以AC 与BD 所成角的度数是90︒.答案:90︒三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}. (2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞). 18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x-9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4.(2)由方程log 3(6x-9)=3得6x-9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性. 解:由a x-1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞), f (-x )=1a -x -1+(-x )3+12=a x1-a x-x 3+12=a x -1+11-a x-x 3+12=-1a x -1-x 3-12=-f (x ). ∴f (x )为奇函数.20.(12分) 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . (2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第20题)又OE =1,所以,tan ∠EFO =5. 21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体11A ACC ∴是平行四边形D 1ODBAC 1B 1A 1C11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =11AOC O ∴是平行四边形111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111A C B D ⊥, 1111B D AC C ∴⊥面 111AC B D ⊥即 同理可证11A C AB ⊥, 又1111D B AB B =∴1A C ⊥面11AB D22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x(k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x.(2)由(1)得h (x )=x +1x,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x =-(x +1x)=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数. (3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2, 则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。

高一数学必修1、2综合试卷及答案

高一数学必修1、2综合试卷及答案

高中数学试卷 (必修1+必修2)一、选择题:(本大题共10题,每小题5分,共50分)1.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( C )A .B A U ⋃= B .B AC U U⋃=)( C )(B C A U U⋃= D .)()(B C A C U UU⋃=2.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( A )A 、3a ≤- B 、3a ≥- C 、a ≤5 D 、a ≥53.已知点(1,2)A 、(3,1)B ,则线段A B 的垂直平分线的方程是( B ) A .524=+y x B .524=-y x C .52=+y xD .52=-y x4. 设()f x 是(,)-∞+∞上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =, 则(7.5)f 等于( B )A. 0.5B. 0.5-C. 1.5D. 1.5-5.下列图像表示函数图像的是( C )A B C D 6.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( C ).A .3B .362C .2D .22A BCD7.设n m 、表示直线,βα、表示平面,则下列命题中不.正确..的是( B ). A .βα⊥⊥m ,m ,则α//β B .m//n ,=βαα ,则m//nC .α⊥m ,β//m , 则βα⊥D .n //m ,α⊥m , 则 α⊥n8.圆:02y 2x 2y x 22=---+上的点到直线2y x =-的距离最小值是( A ).A .0B .21+ C .222-D .22-9.如果函数1ax ax)x (f 2++=的定义域为全体实数集R ,那么实数a 的取值范围是( A ).A .[0,4]B .)4,0[C .),4[+∞D .(0,4)10. a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( C )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件 二、填空题:(本大题共有5小题,每小题4分,满分20分)。

高一数学必修一必修二综合测试卷(有答案)

高一数学必修一必修二综合测试卷(有答案)

高一数学试题四(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列说法正确的是( )A . 经过三点确定一个平面B . 经过一条直线和一个点确定一个平面C . 四边形确定一个平面D . 两两相交且不共点的三条直线确定一个平面2. 下列哪个函数的定义域与函数()15xf x ⎛⎫= ⎪⎝⎭的值域相同( )A . 2y x x =+B . ln 2y x x =-C . 1y x =D . 1y x x=+3. 已知集合12|log 1A x x ⎧⎫=>-⎨⎬⎩⎭,{}|22xB x =>,则A B =( )A . 1,22⎛⎫ ⎪⎝⎭B . 1,2⎛⎫+∞⎪⎝⎭C . ()0,+∞D . ()0,24. 已知圆锥的侧面展开图是一个半圆,则其母线与底面半径之比为( ) A . 1B .2C .3D . 25. 已知函数()2f x x x a =++在区间()0,1上有零点,则实数a 的取值范围是( ) A . 1,4⎛⎤-∞ ⎥⎝⎦B . 1,4⎛⎫-∞ ⎪⎝⎭C . ()2,0-D . []2,0-6. 函数()()10,1x f x a a a -=>≠的图象恒过点A ,则下列函数中图象不经过点A 的是( )A . 1y x =-B . 2y x =-C . 21xy =-D . ()2log 2y x =7. 正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( ) A .6π B .4π C . 3π D . 2π8. 已知函数()212log 3y x ax a =-+在[)2,+∞上为减函数,则实数a 的取值范围是( )A . 4a ≤B . 4a ≥C . 4a <-或4a ≥D . 44a -<≤9. 某几何体的三视图如图所示,该几何体表面上的点P 与点Q 在正视图与侧视图上的对应点分别为A ,B ,则在该几何体表面上,从点P 到点Q 的路径中,最短路径的长度为( ) A .5B .6 C . 22D .1010. 已知函数()ln 1f x x =-,()223g x x x =-++,用{}min ,m n 表示m ,n 中最小值,设()()(){}min ,h x f x g x =,则函数()h x 的零点个数为( )A . 1B . 2C . 3D . 411. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2x g x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( )A .315-B . 35-C . 1D . -1 12. 无论x ,y ,z 同为三条不同的直线还是同为三个不同的平面,给出下列说法:①若//x y ,//x z ,则//y z ;②若x y ⊥,x z ⊥,则y z ⊥;③若x y ⊥,//y z ,则x z ⊥;④若x 与y 无公共点,y 与z 无公共点,则x 与z 无公共点; ⑤若x ,y ,z 两两相交,则交点可以有一个,三个或无数个.其中说法正确的序号为( ) A . ①③B . ①③⑤C . ①③④⑤D . ①④⑤二、填空题(本大题共4小题,每小题5分,共20分) 13. 设函数()()xxf x e aea R -=+∈,若()f x 为奇函数,则a =______.14. 一个正四棱锥的侧棱长与底面边长相等,体积为423,则它的侧面积为______. 15. 已知函数()f x 为定义在[]2,3a -上的偶函数,在[]0,3上单调递减,并且()22522a f m m f m ⎛⎫-- ⎪⎝⎭>-+-,则m 的取值范围是______.16. 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 如图所示,在正方体1111ABCD A B C D -中,E 、F 分别是AB 和1AA 的中点.求证:CE ,1D F ,DA 交于一点.18. 已知函数()21x ax b f x x +=++是定义域为R 的奇函数. (1)求实数a 和b 的值,判断并证明函数()f x 在()1,+∞上的单调性;(2)已知0k <,且不等式()()22310f t t f k -++-<对任意的t R ∈恒成立,求实数k 的取值范围.19. 食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足8042P a =+,11204Q a =+.设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为()f x (单位:万元). (1)求()50f 的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益()f x 最大?20. 已知幂函数()()3*p N x x f p -=∈的图象关于y 轴对称,且在()0,+∞上为增函数. (1)求不等式()()22132pp x x +<-的解集;(2)设()()()log 0,1a f x ax g x a a =->≠⎡⎤⎣⎦,是否存在实数a ,使()g x 在区间[]2,3上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.21. 已知函数()11439x xm f x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.(1)当2m =-时,求函数()f x 在(),0-∞上的值域;(2)若对任意[)0,x ∈+∞,总有()6f x ≤成立,求实数m 的取值范围.22. 在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1-5:DBCDC6-10:ABDCC11-12:AB1.【解析】A 选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B 选项如果点在直线上,则该直线和这个点不能确定一个平面;C 选项中的四边形有可能是空间四边形,故选D .2.【解析】函数()15xf x ⎛⎫= ⎪⎝⎭的值域为()0,+∞,函数2y x x =+的定义域为R ,函数ln 2y x x =-的定义域为()0,+∞;函数1y x x=+的定义域为()(),00,-∞+∞,函数1y x=的定义域为()(),00,-∞+∞,故选B .3.【解析】由{}12|log 1|02A x x x x ⎧⎫=>-=<<⎨⎬⎩⎭,{}1|22|2xx x x B =⎧⎫>=>⎨⎬⎩⎭,则()0,A B =+∞,故选C .4.【解析】由已知可得2r l ππ=,所以2l r =,故2lr=.故选D . 5.【解析】函数()2f x x x a =++的图象的对称轴为12x =-,故函数在区间()0,1上单调递增,再根据函数()f x 在()0,1上有零点,可得()()00120f a f a =<⎧⎪⎨=+>⎪⎩,解20a -<<,故选C .6.【解析】函数()()10,1x f y ax a a -=>≠=的图象恒过点A ,即10x -=,可得1x =,那么1y =.∴恒过点()1,1A .把1x =,1y =带入各选项,只有A 没有经过A 点.故选A . 7.【解析】略8.【解析】()23g x x ax a =-+,则()230x a a g x x =-+>在[)2,+∞恒成立,且()23g x x ax a =-+在[)2,+∞上为增函数,所以22a≤且()240g a =+>,所以44a -<≤.故选D .9.【解析】由题,几何体如图所示(1)前面和右面组成一面此时222222PQ =+=.(2)前面和上面在一个平面此时223110PQ =+=,2210<,故选C . 10.【解析】作出函数()f x 和()g x 的图象如图,两个图象的下面部分图象,由()2230g x x x =-++=,得1x =-,或3x =,由()ln 10f x x =-=,得x e =或1x e=,∵()0g e >,∴当0x >时,函数()h x 的零点个数为3个,故选C .11.【解析】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()222x xg x -+=,()222x x h x --=.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ----≤==-+++,∵2141x y =-+为增函数,∴max 231415x ⎛⎫+= ⎪+⎝⎭,故选A . 12.【解析】由平行于同一直线的两直线平行,平行于同一平面的两平面平行,可得①正确;由垂直于同一直线的两直线平行、相交或异面;垂直于同一平面的两平面相交或平行,可得②错误;由垂直于两平行直线中的一条,也垂直于另一条;垂直于两平行平面中的一个,也垂直于另一个,可得③正确;若一条直线与另两条直线无公共点,可得另两条直线可以相交;若一个平面与另两个平面无公共点,可得另两个平面无公共点;可得④错误.若三条直线两两相交,则交点可以有一个或三个,若三个平面两两相交,则交点有无数个.故选B . 二、填空题(本大题共4小题,每小题5分,共20分)13. -1 14. 43 15. 1122m -≤< 16. 4π13.【解析】若函数()x x f x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-. 14.【解析】设正四棱锥的侧棱长与底面边长相等为2a ,则24ABCD S a =,2222422h PB BO a a a =-=-=,则31442233V a =⨯=,则1a =,则 22142242BC PF a a a S ⎛⎫=⨯⨯⨯=⨯⨯- ⎪⎝⎭侧24343a ==.15.【解析】由题设可得230a -+=,即5a =,故()()22122f m f m m -->-+-可化()()22122f m f m m +>-+,又2113m ≤+≤,21223m m ≤-+≤,故2211222m m m m +<-+⇒<,且12m ≥-.故应填答案1122m -≤<.16.【解析】将四面体ABCD 放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD 的外接球,∵正四面体ABCD 的棱长为4,∴正方体的棱长为22, 可得外接球半径R 满足()22322R =⨯,解得6R =.E 为棱BC 的中点,过E 作其外接球的截面,当截面到球心O 的距离最大时,截面圆的面积达最小值,此时球心O 到截面的距离等于正方体棱长的一半,可得截面圆的半径为222r R =-=,得到截面圆的面积最小值为24S r ππ==.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】证明:如图所示,连接1CD 、EF 、1A B ,因为E 、F 分别是AB 和1AA 的中点, 所以1//EF A B 且112EF A B =.即:1//EF CD ,且112EF CD =, 所以四边形1CD FE 是梯形,所以CE 与1D F 必相交,设交点为P ,则P CE ∈,且1P D F ∈,又CE ⊂平面ABCD , 且1D F ⊂平面11A ADD ,所以P ∈平面ABCD ,且P ∈平面11A ADD , 又平面ABCD平面11A ADD AD =,所以P AD ∈,所以CE 、1D F 、DA 三线交于一点.18.【解析】(1)因为()()f x f x -=-,所以2211x a x ax bx x bx -+--=-+++, ∴0a b ==,()21xf x x =+, 任取()12,1,x x ∈+∞,且12x x <,()()1212221211x xf x f x x x -=-++()()()()21122212111x x x x x x --=++, ∵210x x ->,1210x x ->,()()2212110x x ++>,∴()f x 在()1,+∞单调递减.(2)()()2231f t t f k -+<--,()()2231f t t f k -+<-, ∵2232t t -+≥,11k ->,∴2231t t k -+>-, 即()211k t >---, ∵t R ∈≤,∴()1,0k ∈-. 19.【解析】(1)由题可知:甲大棚投入50万元,则乙大棚投入150万元, 所以()1804250150120277.5450f =+⨯+⨯+=. (2)依题意得202018020020x x x ≥⎧⇒≤≤⎨-≥⎩.故()()142250201804x x f x x =-++≤≤. 令25,65t x ⎡⎤=∈⎣⎦,则()()2211422508228244f x t t t =-++=--+,当82t =,即128x =时,()max 282f x =,所以投入甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元. 20.【解析】(1)由已知得30p ->且*p N ∈,所以1p =或2p =, 当2p =时,()3p f x x -=为奇函数,不合题意, 当1p =时,()2f x x =.所以不等式()()22132pp x x +<-变为()()1122132x x +<-, 则0132x x ≤+<-,解得213x -≤<. 所以不等式()()22132p p x x +<-的解集为21,3⎡⎫-⎪⎢⎣⎭.(2)()()2log a a g x x x =-,令()2h x x ax =-,由()0h x >得()(),0,x a ∈-∞+∞,因为()g x 在[]2,3上有定义,所以02a <<且1a ≠, 所以()2h x x ax =-在[]2,3上为增函数,当12a <<时,()()()max 3log 932a g x g a ==-=, 即2390a a +-=,∴3352a -±=,又12a <<, ∴3352a -+=. 当01a <<时,()()()max 2log 422a g x g a ==-=,即2240a a +-=,∴15a =-±,此时解不成立.综上:3352a -+=. 21.【解析】(1)当2m =-时,设13xt ⎛⎫= ⎪⎝⎭,∵(),0x ∈-∞,∴()1,t ∈+∞,∴()()222413t t t y g t -+=-=+=,对称轴1t =,图像开口向上,∴()g t 在()1,t ∈+∞为增函数, ∴()3g t >,∴()f x 的值域为()3,+∞.(2)由题意知,()6f x ≤在[)0,+∞上恒成立,即11239xxm ⎛⎫⎛⎫⋅≤- ⎪ ⎪⎝⎭⎝⎭,∴1233xx m ≤⋅-在[)0,x ∈+∞恒成立,则只需当[)0,x ∈+∞时,min 1233x x m ⎛⎫≤⋅- ⎪⎝⎭,设3xt =,()12h t t t=-,由[)0,x ∈+∞得1t ≥,设121t t ≤<,则()()()()12121212210t t t t h t h t t t -+-=<,所以()h t 在[)1,+∞上递增,()h t 在[)1,+∞上的最小值为()11h =,所以实数m 的取值范围为(],1-∞. 22.【解析】(1)取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, ∴//PR EF ,//QR BD ,又∵//EF AC ,∴//PR 平面ABCD ,//QR 平面ABCD ,又∵PR QR R =,∴平面//PQR 平面ABCD ,又∵PQ ⊂平面PQR , ∴//PQ 平面ABCD .(2)连接AC ,设AC ,BD 交于点O , ∴BD AC ⊥,又∵平面AFEC ⊥平面ABCD , 平面AFEC平面ABCD AC =,∴BD ⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -, 菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,23BD =,12ACEF ==, 设梯形EFAC 的面积为()133244EFAC BD EF AC S =+⋅=, 1332ABCDFE EFAC V S BD =⋅⋅=.。

高中数学必修一必修二综合测试题(含答案)

高中数学必修一必修二综合测试题(含答案)

Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。

11-12学年高中数学 综合测试 新人教B版必修1-必修2 精

11-12学年高中数学 综合测试 新人教B版必修1-必修2 精

必修一必修二综合测试一、选择题(本大题共10小题,每小题5分,共50分. 每小题各有四个选择支,仅有一个选择支正确. 请用2B 铅笔把答题卡中所选答案的标号涂黑.) 1. 下列函数中,是偶函数的是A .2)(x x f = B .x x f =)( C .xx f 1)(= D .3)(x x x f += 2.下列各式正确的是A . 3334< B. 6log 4log 5.05.0< C. 33) 21()21 (>- D. 4.1lg 6.1lg <3.直线01234=+-y x 在y 轴上的截距是 ( )A. 4B. -4C. 3D. -34.如图为几何体的三视图,根据三视图可以判断这个几何体为A .圆锥B .三棱锥C .三棱柱D .三棱台5. 函数x e x f x+=)(的零点所在一个区间是A.(-2,-1)B. (-1,0)C. (0,1) D (1,2) 6.下列四组函数,表示同一函数的是A .x x g x x f ==)( ,)(2 B .332)( ,2log )(x x g x f x ==C .x x g x x f ==)( ,) ()(2D .xx x g x x f 2)( ,)(==7.与直线3450x y ++=关于x 轴对称的直线的方程为A .3450x y -+=B .0543=-+y xC .0534=-+y xD .0534=++y x 8. 已知α是平面,b a ,是直线,且a //b ,a ⊥平面α,则b 与平面α的位置关系是A .b ⊂平面αB .b ⊥平面αC .//b 平面αD . b 与平面α相交但不垂直9.已知()xf x a =,()log (01)a g x x a a =≠>且,若0)2()1(<⋅g f ,那么()f x 与()g x 在同一坐标系内的图像可能是(第4题图)10.已知偶函数)(x f y =在区间(,0]-∞上是增函数,下列不等式一定成立的是 A.(3)(2)f f >- B.()(3)f f π->C.2(1)(23)f f a a >++ D.22(2)(1)f a f a +>+二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在答题卡中相应的位置上.) 11. 直线01=+-y x 的倾斜角是 .12. 已知⎩⎨⎧>-≤+=0,20 ,1)(2x x x x x f ,则=))1((f f .13. 正方体的表面积与其内切球表面积的比为 .14.函数)(x f 是定义在R 上的奇函数,并且当)(∞+∈,0x 时,()2xf x =,那么,(1)f -= .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分)已知集合{}02≥-=x x A ,集合{}3<=x x B . (1) 求B A ⋃; (2) 求B A ⋂; (3) 求)()(B C A C R R ⋃16. (本小题满分14分)求经过直线03:1=-+y x l 与直线01:2=--y x l 的交点M ,且分别满足下列条件的直线方程:(1)与直线032=-+y x 平行; (2)与直线032=-+y x 垂直.17.(本小题满分14分)如图,正方形ABCD 的边长为1,正方形ADEF 所在平面与平面ABCD 互相垂直,H G ,是FC DF ,的中点.(1)求证://GH 平面CDE ; (2)求证:BC CDE ⊥平面; (3)求三棱锥ABC G -的体积.18.(本小题满分12分)如图:A 、B 两城相距100 km ,某天燃气公司计划在两地之间建一天燃气站D 给A 、B 两城供气. 已知D 地距A 城x km ,为保证城市安全,天燃气站距两城市的距离均不得少于10km . 已知建设费用y (万元)与A 、B 两地的供气距离(km)的平方和成正比,当天燃气站D 距A 城的距离为40km 时, 建设费用为1300万元.(供气距离指天燃气站距到城市的距离)(1)把建设费用y (万元)表示成供气距离x (km)的函数,并求定义域;(2)天燃气供气站建在距A 城多远,才能使建设供气费用最小.,最小费用是多少?19. (本小题满分14分)已知函数1)(+-=x cx x f , 其中c 为常数,且函数)(x f 图像过原点. (1) 求c 的值;(2) 证明函数)(x f 在[0,2]上是单调递增函数; (3) 已知函数31)()(-=xe f x g , 求函数)(x g 的零点.(第17题图)BA(第18题图)20. (本小题满分14分)若函数()f x 满足:对定义域内任意两个不相等的实数12,x x ,都有,则称函数()f x 为H 函数.已知cx x x f +=2)(,且)(x f 为偶函数. (1) 求c 的值;(2) 求证:()f x 为H 函数;(3) 试举出一个不为H 函数的函数)(x g ,并说明理由.参考答案一、选择题ACACB BABCC16. (本小题满分14分) 解:由⎩⎨⎧=--=-+0103y x y x 得⎩⎨⎧==12y x ,所以)1,2(M . …………………2分(1)依题意,可设所求直线为:)0(02≠=++c c y x . …………………4分因为点M在直线上,所以0122=++⨯c ,解得:5-=c . …………………7分所以所求直线方程为:052=-+y x . …………………9分(2)依题意,设所求直线为:02=+-c y x . …………………10分因为点M在直线上,所以0122=+⨯-c ,解得:0=c …………………12分所以所求直线方程为:02=-y x . …………………14分(3)解:依题意: 点G 到平面ABCD 的距离h 等于点F 到平面ABCD 的一半, …………………11分 即:21=h . …………………12分∴12121112131=⋅⋅⋅⋅=-ABC C V . (1)4分(求底面积对的有1分)18. (本小题满分12分) 解:(1)设比例系数为k,则])100([22x x k y -+=)9010(≤≤x . …………………3分(不写定义域扣1分) 又1300,40==y x , 所以)6040(130022+=k ,即41=k , …………………5分 所以)5000100(21])100([41222+-=-+=x x x x y )9010(≤≤x . …………………7分 (2)由于2500)50(21)5000100(2122+-=+-=x x x y , …………………10分所以当x =50时,y 有最小值为1250万元. …………………11分所以当供气站建在距A 城50km, 电费用最小值1250万元. …………………12分19. (本小题满分14分) 解: (1) Θ函数)(x f 图像过原点, ∴)0(=f ,即0=c . …………………3分(3)令031131)()(=-+=-=x x xe e e f x g , (12)分21=∴x e , …………………13分即2ln -=x . …………………14分20. (本小题满分14分) 解:(1)因为()f x 为偶函数,所以0=c . …………………2分(2)由(1)知2)(x x f =,所以22212121212()()()()2222f x f x x x x x x xf ++++-=- …………………4分=2121()04x x ->, …………………5分 1212()()()22f x f x x x f ++∴>,即()f x 为H 函数. …………………6分(3)例:2()log g x x =. …………………8分(说明:底数大于1的对数函数或2x -都可以) . 理由:当121,2x x ==时,1222()()11(log 1log 2)222g x g x +=+=, …………………10分122221231()log log log 2222x x g ++==>=, …………………12分显然不满足1212()()()22g x g x x xg ++>,所以该函数2()log g x x =不为H 函数. …………………14分。

高一数学必修一必修二综合测试题(有答案)

高一数学必修一必修二综合测试题(有答案)

高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABC­A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ­ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分 SO 所成的比是 1 :2,则过 P 点且平行于底面的截面面积是 ( )
3 A. 3 (l2-h2)
33 B. 4 (l2-h2)
C. 3 (l2-h2)
33 D. 2 (l2-h2)
9.设函数 f (x) 满足 f ( x) f (x),且在 上递1,增2 2,, 则1 f (x) 在 上的最小值是(

①式两
b2h 2 解得h

2
b2 4 来自abh边把入2 2平②得 方代:,



a 2 (2b 2 a 2 ) 4a(a 2b)
所以h
2a
b

2

1 a2(2b
2 a
2

a2) 2b
显然,由于 a 0,b 0,所以此题当且仅当 a 2b 时才
高中数学必修一、必修二综合练习卷
一、选择题(本大题共 l2 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合
目要求) 1.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 ( ) A.正方体 B.正四棱锥 C.长方体 D.直平行六面体
2..将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使 BD=a,则三棱锥 D—ABC 的体积为( )

A. f (1)
B. f (2)
C. f (1) D. f (2)
10.已知集合 A {1, 2},集合 B 满足 A B {1, 2},则集合 B 有( )个
A.1
B.2 C.3
D.4
11.已知二次函数y x 2
mx (m 3)

A.[2, 6]
B. (2, 6)
a3 A. 6
a3 B. 12
C.
3 12
a3
D.
2 12
a3
3.下列四个(图 ) 象中,是函数 图象的是
A.(1)
B.(1)、 C.(1)、(2)、(3) D.(3)、(4)
4.与 y | x | 为同一函数的是( (3)、(4)
A. y ( x)2

B. y x2
C. y
x,(x 0) x,(x 0)
3 B. 3
3 D. 2
7.如图,在三棱柱 ABC—A′B′C′中,点 E、F、H、 K 分别为
AC′、CB′、A′B、B′C′的中点,G 为△ABC 的 重心. 从
K、H、G、B′中取一点作为 P, 使得该棱柱恰有 2 条棱与平面 PEF 平行,则 P 为( )
A.K
B.H
C.G
D.B′
8.正三棱锥 S-ABC 的高 SO=h,斜高 SM=l, 点 P 在 SO 上且
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)
13.在直三棱柱 ABC—A B1 C1中1,AB=BC= 2 ,BB =2,1 ABC 90 ,
E、F 分别为 AA 、1 C B1的1 中点,沿棱柱的表面从 E 到 F 两点的最短路径的长度为
.
2
14.有两个相同的直三棱柱,高为 ,a底面三角形的
由图可知,图象过点(0.1,1)
1 0.1k k 10

t
[1,) 时,
y

( )1ta (a为常数) 16
由图可知,图象过点(0.1,1)
1 ( )10.1a t 0.1 16
y 10t (t [ 0.1,1]
……3 分
综上:
y

10t (1)16
t [0,0.1] t0.1 t (0.1,)
2
1 2

(4) 0 2

1 2

1
(1

5)
0
(2) log 225 log
3
1 16

log5
1 9

18.(12 分)如图,在正四棱台内,以小底为底面。大底面中心为顶点作一内接棱锥. 已知棱台小底面边 长为 b,大底面边长为 a,并且棱台的侧面积与内接棱锥的侧面面积相等,求这个棱锥的高,并指出
为了预防甲型流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的
含药量 y(毫克)与时间 t(小时)成正比;药物释放完毕后,y 与 t 的函数关系
式为
y

( 1 ta (a 16 )
为常数),如图所示,根据图中提供的信息,回答下列问题:
(1)求从药物释放开始,每立方米空气中的含药量 y(毫克)与时间 t( 小时)
(Ⅱ) = log 25 2 log3254 log 32
=
2lg5 lg2
(4)llgg32
(2)
lg3 lg5
16 (6 分)

Q 2
2
;16.(1)(3)
18.解:如图,过高1 OO 和AD的中点 E 作棱锥和棱台的截面,得棱台1的斜高 EE 和棱锥的斜1 高为 EO ,1 设 OO h ,
(1) f : x y 12x, (2) f : x y x 2, (3) f : x y x, (4) f : x y x 2
其中能构成一

一映射的是
三、解答题(本大题共 6 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.)
17.( 12 分)计算:(1)
之间的函数关系式; (2)据测定,当空气中每立方米的 含药量降低到 0.25 毫克以下时,学生方可进
教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.
22.(14 分)设函数 f (x) a
2 2x1
.
(1)求证:不论 a 为何实数 f (x) 总为增函数;
(2)确定 a 的值,使 f (x) 为奇函数及此时 f (x) 的值域.
,
所以 f (x) 的值
域为
(1,1).……14

参考答案
一 选择题:DDBBB,BCCAD,CD
二 填空题:13.
3 2
2 . 14. 0 a
15 3
.;15.2
Q2 1
三 解答题
1
17.解: (Ⅰ) = 2

2
1

2
1
1


=2
2
2 1
2
2 11

= 2 2 2 2
1 1 2 1
= 2 2 2 2 (6 分)
有解的条件.
19.( 12 分)已知三棱锥的底面是边长为 1 的正三角形,两条侧棱长为 范围.
13 2
,
试求第三条侧棱长的取值
D
C
A
B
2x 1, x 0
20.(12 分)设函数 f x

1
x2, x 0

,如果 f (x ) 1,求 x 的取值范
围.
00
21.(12 分)
(2)
f (x)为奇函数, f (x) f (x),即 a
2 2 x 1

a

2 2x1
,
解得:
a
1.

f
(x)
1
.2 1 2x
由以上知 f (x) 1
2 2x 1 ,
2x 11,0
2 2x 1
2


2 2x 1

0,1
f
(x)
1
2
3
BD
2
3 23.
20.解:由题意得
当 x0 0时, 2 1x0 1……(3分)
即 2x 0 2得 x1,0 得 x0
1……(2分)
1
当 x0 0 时, x 20 1……(3分)
解得 x 0 1……(2分)
综上得 x 0的取值范围为 ,1 1,……(2 分21.)解:(1)依题意: 当t [0, 0.1]时,设y kt (t为常数) ,
有两个不同的零点,则
C. (,2)
m(的6,取值) 范围是(
D.{2,
6}
12. 已知函数 f(x)是 R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式
-3<f(x+1)<1的解集的补集是(

A.(-1,2) B.(1,4)
C.(―∞,-1)∪[4,+∞)
D.(―∞,-1]∪[2,+∞)
……………….8 分
(2)依题意
t
[0.1,)
(
1 16
t0.1
)
0.25
(
)2
1 16
1
y (116)x 在 R 上是减函数
t 0.1 0.5 t 0.6
至少需要0.6经小过时后,学生才能回到教室……………..12 分
22.解: (1) f (x)的定义域为 R, 1x 2 x ,
三边长分别为3a,4a,5a(a 0)。用它们拼成一个
三棱柱或四棱柱,在所有可能的情形中,表面积最
小的是一个四棱柱,则 a 的取值范围是__________. 15.直平行六面体的底面是菱形,两个对角面面积分别为 Q1,Q 2,直平行六面体
的侧面积为_____________.
16. 已知 A {x | 0 x 4}, B {y | 0 y 2},从 A 到 B 的对应法则分别是:
所以
S锥侧

1 2

4b

EO1

2bEO1
S台侧

1 2
(4a

4b)

EE1
2(a

b)
相关文档
最新文档