新北师大版《整式的加减》单元测试卷及答案
北师大版七上整式的加减单元测试题

七(上)第三章-整式的加减一、填空题1.比a和b差的平方大9的数是2、细胞在分裂过程中, 一个细胞第一次分裂成两个, 第二次分裂成4个, 第三次分裂成8个, 那么第n次时细胞分裂的个数为个3.单项式的系数是,次数是4.整式是次项式, 三次项的系数是5、如果是三次三项式, 则=6.多项式按的升幂排列是7、单项式减去单项式的和, 结果是8、当时, 代数式-= , =9、写出一个关于x的二次三项式, 使得它的二次项系数为-5, 则这个二次三项式为10、已知: , 则代数式的值是11.张大伯从报社以每份0.4元的价格购进了份报纸, 以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社, 则张大伯卖报收入元12.-的相反数是, = , 最大的负整数是13.若多项式的值为10, 则多项式的值为14.若, =15.多项式是关于的三次三项式, 并且一次项系数为-7, 求16.十位数字是, 个位数字比小2, 百位数字是的一半, 则这个三位数是17、是关于x、y的一个单项式, 且系数是4, 次数是5, 则.18、一个多项式加上得到, 则这个多项式是19、在代数式中, 和是同类项, 合并后的结果是20、一个多项式A减去多项式, 马虎的同学将减号抄成加号, 运算结果得, 多项式A是二、选择题1.若, 则的值()A.等于4B.等于C.D.不能确定2.与是同类项的是()A. B. C. D.3、对去括号, 结果是()A. B. C. D.4.将合并同类项得()A. B. C. D.5、已知, 则的值为()A.80B.C.160D.606.若A= , B= , 则A与B的大小关系是…….()A. A>BB. A<BC. A=BD. 无法确定7、下列等式中正确的是()A. B.C.-D、8、下列说法正确的是()A.0不是单项式B. 没有系数C. 是多项式D、是单项式9、下列各式中,去括号或添括号正确的是( )A. B.C. D 、-10、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( )A.3B.4C.5D.611、若A 和B 都是4次多项式, 则A-B 一定是( )A.8次多项式 B 、4次多项式C.次数不高于4次的整式D.次数不低于4次的整式12、已知 是同类项, 则( )A. B. C. D.13.下列计算中正确的是( )A. B. C. D.14.已知:关于x 的多项式 ( )A.m=-5,n=-..B.m=5,n=..C.m=-5,n=..D.m=5,n=-1三、化简1. 2.3. 4.5. 6.-7、)(4)()(3222222y z z y y x ---+- 8、1}1]1)1([{2222-------x x x x9、)43(2)65(3n m n m -+- 10、)32(4)2(52222ab b a c c ab b a -+-+-四、解答题1.化简求值: , 其中31,51-=-=y x .2.化简求值: 其中: .3.化简求值: 其中: .4.已知: , 求 的值.5.若代数式 的值与字母 的取值无关, 求代数式 的值.6.已知: 是同类项, 求代数式: 的值.7、已知: A= , B= , 求(3A-2B )-(2A+B )的值.8、试说明: 不论 取何值代数式 的值是不会改变的.9、已知多项式3 +-8与多项式-+2 +7的差中, 不含有、, 求+的值.。
第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章整式及其加减(单元测试)2024-2025学年七年级上册数学北师大版一、单选题1.将化简得( )A .B .C .D .2.下列运算中,正确的是( )A .B .C .D .3.如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数最多是( )A .33B .34C .35D .364.下列式子:,,,,,中,整式的个数是( )A .3B .4C .5D .65.如果,那么代数式的值为( )A .B .C .D .6.多项式2x 2﹣x ﹣3的项分别是( )A .x 2,x ,3B .2x 2,﹣x ,﹣3C .2x 2,x ,﹣3D .2x 2,x ,37.下列说法正确的是( )A .单项式的系数是,次数是B .多项式的是二次三项式C .单项式的次数是1,没有系数D .单项式的系数是,次数是8.下列各题正确的是( )A .B .()()2x y x y +-+x y +x y --+x y x y--23325x x x +=235x x +=2222ab b a -=()222a b a b--=-+3x 3a c32d +32y --034a 2a b +=-18762a b a b ⎛⎫+--- ⎪⎝⎭3113-11-25xy π-15-422231x y x -+-a 2-xy z 1-4336x y xy +=0x x --=C .D .9.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第7个五边形数是( )A .62B .70C .84D .10810.多项式按字母的降幂排列正确的是( )A .B .C .D .二、填空题11.有一列数:1,3,2,,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2023个数是12.已知a 是最小的正整数,b 是最大的负整数,c 是立方为的数,则 .13.单项式次数是 ,系数是 .14.已知,则.15.如图,点是线段上的一点,分别以、为边在的同侧作正方形和正方形,连接、、,当时,的面积记为,当,的面积记为,,以此类推,当时,的面积记为,则的值为 .16.已知两个代数式的和是,其中一个代数式是,则另一个为.17.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为 .396y y y -=22990a b ba -=2323573x y xy x y +--x 3232537x y x y xy -+-+2323537x y xy x y --+2323753x y xy x y +--2233735xy x y x y-+-1-27-abc =3213a bc -()2760m n ++-=()20m n +=C AB AC BC AB ACDE CBFG EG BG BE 1BC =BEG 1S 2BC =BEG 2S ⋯BC n =BEG n S 20232022S S -25412a a -+236a -18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为,则 .三、解答题19.先化简,再求值:(1)(6a ﹣3ab )+(ab ﹣2a )﹣2(ab +b ),其中a ﹣b =9,ab =6;(2)x ﹣2(x ﹣)+(﹣),其中|x +2|+(y ﹣1)2=0.20.先化简,再求值:,其中,.21.如图,在数轴上,三个有理数从左到右依次是:,x ,.(1)利用刻度尺或圆规,在数轴上画出原点;(2)直接写出x 的符号为______.(填“正号”或“负号”)22.七年级新学期,两摞规格相同准备发放的数学课本整齐地叠放在课桌面上,小英对其高度进行了测量,请根据图中所给出的数据信息,解答下列问题:312a =420a =n ()3n a n ≥10a =2312213y 23123x y +22221322212222a b ab ab a b ab ab ⎡⎤⎛⎫----+++ ⎪⎢⎥⎝⎭⎣⎦3a =-2b =1-1x +(1)每本数学课本的厚度是 cm ;(2)若课本数为(本),整齐叠放在桌面上的数学课本顶部距离地面的高度的整式为 (用含的整式表示);(3)现课桌面上有48本此规格的数学课本,整齐叠放成一摞,若从中取出13本,求余下的数学课本距离地面的高度.23.为了参加校园文化艺术节,书画社计划买一些宣纸和毛笔,现了解情况如下:甲、乙两家文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.甲商店的优惠办法是:买1支毛笔送1张宣纸;乙商店的优惠办法是:全部商品按定价的9折出售.书画社想购买毛笔10支,宣纸x 张.(1)若到甲商店购买,应付_____________元;若到乙商店购买,应付_____________元(用含x 的代数式表示);(2)若时,去哪家商店购买较合算?请计算说明;(3)若时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要______个三角形.(2)照此规律,摆成第n 个图案需要______个三角形.(用含n 的代数式表示)(3)照此规律,摆成第2022个图案需要几个三角形?x x (10)x >30x =30x =参考答案:1.D2.D3.C4.B5.A6.B7.D8.D9.B10.A11.112.13.14.115.16.17.606918.11019.(1)2a ﹣2b ﹣3ab ,0;(2)﹣3x +y 2,7.20.,21.(1)略;(2)正号22.(1);(2);(3)23.(1),(2)到甲商店购买较为合算(3)先到甲商店购买10支毛笔,送10张宣纸,再到乙商店购买张宣纸,费用为272元24.(1)16;(2);(3)6067个3613-4045222418a a -+2ab -18-0.5850.5x +102.5cm()4160x +()3.6180x +20(31)n +。
整式及其加减单元测试(一)(北师版)(含答案)

学生做题前请先回答以下问题问题1:字母和数字的书写格式有哪些注意事项?问题2:什么是单项式?什么是单项式的系数和次数?问题3:什么是多项式?什么是多项式的项和次数?整式及其加减单元测试(一)(北师版)一、单选题(共12道,每道8分)1.在式子,,,,中,符合代数式书写规范的有( )A.1个B.2个C.3个D.4个答案:B解题思路:试题难度:三颗星知识点:代数式书写规范2.在下列表述中,不能表示代数式“4a”的意义的是( )A.4的a倍B.a的4倍C.4个a相加D.4个a相乘答案:D解题思路:试题难度:三颗星知识点:代数式3.下列关于代数式“-x+1”所表示的意义的说法中正确的是( )A.x的相反数与1的和B.x与1的和的相反数C.-x与1的差D.x与1的相反数的和答案:A解题思路:试题难度:三颗星知识点:代数式4.下列说法错误的是( )A.与的平方差是B.减去的2倍所得的差是C.与和的平方是D.与和的平方的2倍是答案:C解题思路:试题难度:三颗星知识点:列代数式5.下列各式:1,,,,,,,其中属于代数式的有( )A.3个B.4个C.5个D.6个答案:C解题思路:试题难度:三颗星知识点:代数式的定义6.下列各式:,,,-3,,,其中属于单项式的有( )A.2个B.3个C.4个D.5个答案:C解题思路:试题难度:三颗星知识点:单项式的概念7.下列关于单项式的说法中,正确的是( )A.系数是,次数是8B.系数是,次数是7C.系数是,次数是7D.系数是,次数是8答案:B解题思路:试题难度:三颗星知识点:单项式系数与次数8.若是关于的一个单项式,且系数是,次数是6,则的值分别为( )A.5,2B.-5,3C.-5,2D.5,3答案:B解题思路:试题难度:三颗星知识点:单项式系数与次数9.下列说法正确的是( )A.多项式中的系数是B.单项式的次数是1,系数是0C.多项式的项是和5D.是二次单项式答案:A解题思路:试题难度:三颗星知识点:多项式的项数10.代数式中最高次项的系数、次数分别为( )A.4,3B.7,5C.-7,5D.,6答案:C解题思路:试题难度:三颗星知识点:多项式的定义11.下列代数式中,值一定为正数的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:代数式求值12.已知,则代数式的值为( )A.-5B.-9C.5D.9答案:D解题思路:试题难度:三颗星知识点:整体代入。
北师大版七年级数学上册《整式及其加减》单元测试卷及答案解析

北师大版七年级数学上册《整式及其加减》单元测试卷一、选择题1、下列说法正确的是:().A.单项式m的次数是0 B.单项式5×105t的系数是5C.单项式的系数是D.-2 010是单项式2、下面选项中符合代数式书写要求的是()A.ay·3 B.C.D.a×b÷c3、(3m-2)x2y n+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是()A.1,4 B.1,2 C.0,5 D.1,14、若与是同类项,则m+n=()A.﹣2 B.2 C.1 D.﹣15、公路全长P米,骑车n小时可到,如想提前一小时到,则需每小时走_______米.()A.+1 B.C.D.6、下列各式:-x+1,π+3,9>2,,,其中代数式的个数是()A.5 B.4 C.3 D.27、若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为( )A.1 B.4 C.-7 D.118、多项式是关于的二次三项式,则n的值是()A.B.C.或D.9、关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,则常数m的值为( )A.2 B.-4 C.-2 D.-810、一组按规律排列的式子:a2,,,,…,则第2 017个式子是()A.B.C.D.二、填空题11、单项式的系数是______,次数是______.12、观察下列单项式:x,-3x2,5x3,-7x4,9x5……按此规律可以得到第20个单项式是_____________.13、如果关于x,y的多项式ax2+x﹣1和﹣3x2﹣2x+1的差中不含x2项,则a=_____.14、若a,b互为倒数,c,d互为相反数,则﹣c﹣d=________.15、观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是________.16、一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-,则这个二次三项式为________________________.17、一个梯形,上底为3 cm,下底为5 cm,高为h cm,则它的面积是_______cm2.18、规定符号的意义为:,那么=_________.19、当x=2时,多项式ax3+bx+3的值为5,则当x=-2时,ax3+bx+3的值为____.20、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为_______元.三、计算题21、化简求值:(1)4x2﹣(2x2+x﹣1)+(2﹣x2﹣3x),其中x=﹣;(2)5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=,y=﹣1.22、先化简再求值:,其中a、b满足.四、解答题23、已知代数式.(1)求;(2)若的值与的取值无关,求的值.24、某校七年级四个班级的学生义务为校植树.一班植树x棵,二班植树的棵树比一班的2倍少40棵,三班植树的棵数比二班的一半多30棵,四班植树的棵数比三班的一半多20棵.(1)求四个班共植树多少棵?(用含x的式子表示)(2)若三班和四班植树一样多,那么植树最多的班级比植树最少的班级多植树多少棵?25、一个长80cm,宽60cm的铁皮,将四个角各裁去边长为bcm的正方形,•做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积.26、为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:请根据上表的内容解答下列问题:(1)若某户居民2月份用水5立方米,则应收水费多少元?(2)若某户居民3月份交水费36元,则用水量为多少立方米?(3)若某户居民4月份用水立方米(其中6<<10),请用含的代数式表示应收水费.(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水立方米,请用含的代数式表示该户居民5、6两个月共交水费多少元?参考答案1、D2、C3、B4、C5、B6、C7、D8、A9、B10、C11、-2, 12、-39x2013、﹣314、15、16、17、4h18、-1219、120、21、(1)原式=x2﹣4x+3,当x=﹣时,原式=5;(2)原式=12x2y ﹣6xy2,当x=,y=﹣1时,原式=﹣6.22、,.23、(1)=(2)24、(1);(2)植树最多的班级比植树最少的班级多植树20棵.25、4800-280b+4;2400.26、(1)10元;(2)11;(3)(4a-12)元;(4)(-6x+92)元或(-4x+80)元.【解析】1、A. 单项式m的次数是1,故A选项错误;B. 单项式5×105t的系数是5×105,故B选项错误;C. 单项式的系数是π,故C选项错误;D. -2 010是单项式,正确,故选D.2、选项A,数字需写前面3xy,A错.选项B,应该写成,B错.选项C,正确.选项D,应该写成.所以选C.3、由题意得:,解得.故选:B.4、由题意得:,,m+n=1.故选C.点睛:解决此类问题令相同字母对应的指数分别相等列方程求解即可.5、试题解析:公路全长P米,想要小时走完,每小时走米,所以本题应选B.6、用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子是代数式,所以代数式共有3个.故选C.7、∵,∴,∴.故选D.8、∵多项式是关于的二次三项式,∴,解得n=2.故选A.9、∵关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,∴2m+8=0,解得m=-4.故选B.点睛:两个多项式的和中不再含某个项,则合并后该项的系数为0,由此就可列出相应的方程求解了.10、试题解析:由题意,得分子式的次方,分母是第2017个式子是故选:C.点睛:多观察,分别观察分子和分母与系数的关系,找规律.11、的系数是,次数是.12、试题解析:观察所给的单项式得到的次数为单项式的序号数,系数的绝对值为单项式的序号数的2倍减1,并且序号为奇数时,系数为正数;序号为偶数时,系数为负数,按此规律可以得到第20个单项式是故答案为:13、试题解析:结果中不含项,解得:故答案为:14、∵a,b互为倒数,c,d互为相反数,∴ab=1,c+d=0,∴原式= ﹣0=,故答案为:.15、试题解析:根据题意得,这一组数的第个数为:故答案为:点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.16、根据题意,要求写一个关于字母x的二次三项式,其中二次项是x2,一次项是-x,常数项是1,所以再相加可得此二次三项式为.17、试题解析:梯形的面积为cm2 .点睛:梯形的面积=.18、∵,∴.19、∵当x=2时,多项式ax3+bx+3的值为5,∴8a+2b+3=5,∴8a+2b=2.当x=-2时,ax3+bx+3=-8a-2b+3=-(8a+2b)+3=-2+3=1.故答案为:120、设原价是x,则(1-20%)(x-m)=n, x=n+m.21、试题分析:(1)去括号后合并同类项化简,然后再代入求值即可;(2)去括号后合并同类项化简,然后再代入求值即可.试题解析:(1)原式=4x2﹣2x2﹣x+1+2﹣x2﹣3x=x2﹣4x+3,当x=﹣时,原式=(﹣)2﹣4×(﹣)+3,=﹣(﹣2)+3,=5;(2)原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=12×(﹣)2×(﹣1)﹣6××(﹣1)2=﹣3﹣3=﹣6.22、试题分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.试题解析:解:原式==;∵,∴a+1=0,b=0,∴a=﹣1,b=,则原式===.考点:1.整式的加减—化简求值;2.非负数的性质:绝对值;3.非负数的性质:偶次方.23、试题分析:(1)按要求直接整体代入,然后去括号,合并同类项化简即可;(2)先整体代入,然后合并同类项化简,再根据与x无关,可知其系数为0,求解方程即可.试题解析:(1)==(2)=当的值与的取值无关时,24、试题分析:(1)设一班植树棵数为x,则二班棵数为2x﹣40,三班棵数为,四班棵数为,将四个班植树棵数相加,计算即可;(2)根据三班和四班植树一样多列出方程,解方程求出x的值,进而求解即可.(1)一班植树棵数为x,二班棵数为2x﹣40,三班棵数为,四班棵数为.所以,四个班共植树棵数为:;(2)根据题意,得,解得x=30.当x=30时,一班植树30棵,二班植树20棵,三班植树40棵,四班植树40棵40﹣20=20.答:植树最多的班级比植树最少的班级多植树20棵.考点:一元一次方程的应用.25、试题分析:首先根据题意求出无盖盒子的长和宽,然后根据长方形的面积计算法则得出底面积,然后将b=10代入代数式进行计算.试题解析:根据题意得:底面的长为(80-2b)cm,宽为(60-2b)cm则S=(80-2b)(60-2b)=4800-280b+4将b=10代入可得:S=4800-2800+400=2400()考点:代数式的表示26、试题分析:(1)(2)利用用水量的范围确定单价算出结果即可;(3)36元一定用水量超出10立方米,分段计算即可;(4)分5月份不超过6m3时和5月份超过6m3时两种情况列式即可.试题解析:解:(1)2×5=10元答:应收水费10元;(2)10+(36-2×6-4×4)÷8=10+1=11立方米答:用水量为11立方米;(3)(4a-12)元;(4)当5月份不超过6m3时,水费为(-6x+92)元;当5月份超过6m3时,水费为(-4x+80)元.考点:列代数式.。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。
北师大版七年级数学上册《整式及其加减》单元测试卷及答案解析

北师大版七年级数学上册《整式及其加减》单元测试卷一、选择题1、下列说法正确的是:().A.单项式m的次数是0 B.单项式5×105t的系数是5C.单项式的系数是D.-2 010是单项式2、下面选项中符合代数式书写要求的是()A.ay·3 B.C.D.a×b÷c3、(3m-2)x2y n+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是()A.1,4 B.1,2 C.0,5 D.1,14、若与是同类项,则m+n=()A.﹣2 B.2 C.1 D.﹣15、公路全长P米,骑车n小时可到,如想提前一小时到,则需每小时走_______米.()A.+1 B.C.D.6、下列各式:-x+1,π+3,9>2,,,其中代数式的个数是()A.5 B.4 C.3 D.27、若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为( )A.1 B.4 C.-7 D.118、多项式是关于的二次三项式,则n的值是()A.B.C.或D.9、关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,则常数m的值为( )A.2 B.-4 C.-2 D.-810、一组按规律排列的式子:a2,,,,…,则第2 017个式子是()A.B.C.D.二、填空题11、单项式的系数是______,次数是______.12、观察下列单项式:x,-3x2,5x3,-7x4,9x5……按此规律可以得到第20个单项式是_____________.13、如果关于x,y的多项式ax2+x﹣1和﹣3x2﹣2x+1的差中不含x2项,则a=_____.14、若a,b互为倒数,c,d互为相反数,则﹣c﹣d=________.15、观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是________.16、一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-,则这个二次三项式为________________________.17、一个梯形,上底为3 cm,下底为5 cm,高为h cm,则它的面积是_______cm2.18、规定符号的意义为:,那么=_________.19、当x=2时,多项式ax3+bx+3的值为5,则当x=-2时,ax3+bx+3的值为____.20、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为_______元.三、计算题21、化简求值:(1)4x2﹣(2x2+x﹣1)+(2﹣x2﹣3x),其中x=﹣;(2)5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=,y=﹣1.22、先化简再求值:,其中a、b满足.四、解答题23、已知代数式.(1)求;(2)若的值与的取值无关,求的值.24、某校七年级四个班级的学生义务为校植树.一班植树x棵,二班植树的棵树比一班的2倍少40棵,三班植树的棵数比二班的一半多30棵,四班植树的棵数比三班的一半多20棵.(1)求四个班共植树多少棵?(用含x的式子表示)(2)若三班和四班植树一样多,那么植树最多的班级比植树最少的班级多植树多少棵?25、一个长80cm,宽60cm的铁皮,将四个角各裁去边长为bcm的正方形,•做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积.26、为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:请根据上表的内容解答下列问题:(1)若某户居民2月份用水5立方米,则应收水费多少元?(2)若某户居民3月份交水费36元,则用水量为多少立方米?(3)若某户居民4月份用水立方米(其中6<<10),请用含的代数式表示应收水费.(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水立方米,请用含的代数式表示该户居民5、6两个月共交水费多少元?参考答案1、D2、C3、B4、C5、B6、C7、D8、A9、B10、C11、-2, 12、-39x2013、﹣314、15、16、17、4h18、-1219、120、21、(1)原式=x2﹣4x+3,当x=﹣时,原式=5;(2)原式=12x2y ﹣6xy2,当x=,y=﹣1时,原式=﹣6.22、,.23、(1)=(2)24、(1);(2)植树最多的班级比植树最少的班级多植树20棵.25、4800-280b+4;2400.26、(1)10元;(2)11;(3)(4a-12)元;(4)(-6x+92)元或(-4x+80)元.【解析】1、A. 单项式m的次数是1,故A选项错误;B. 单项式5×105t的系数是5×105,故B选项错误;C. 单项式的系数是π,故C选项错误;D. -2 010是单项式,正确,故选D.2、选项A,数字需写前面3xy,A错.选项B,应该写成,B错.选项C,正确.选项D,应该写成.所以选C.3、由题意得:,解得.故选:B.4、由题意得:,,m+n=1.故选C.点睛:解决此类问题令相同字母对应的指数分别相等列方程求解即可.5、试题解析:公路全长P米,想要小时走完,每小时走米,所以本题应选B.6、用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子是代数式,所以代数式共有3个.故选C.7、∵,∴,∴.故选D.8、∵多项式是关于的二次三项式,∴,解得n=2.故选A.9、∵关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,∴2m+8=0,解得m=-4.故选B.点睛:两个多项式的和中不再含某个项,则合并后该项的系数为0,由此就可列出相应的方程求解了.10、试题解析:由题意,得分子式的次方,分母是第2017个式子是故选:C.点睛:多观察,分别观察分子和分母与系数的关系,找规律.11、的系数是,次数是.12、试题解析:观察所给的单项式得到的次数为单项式的序号数,系数的绝对值为单项式的序号数的2倍减1,并且序号为奇数时,系数为正数;序号为偶数时,系数为负数,按此规律可以得到第20个单项式是故答案为:13、试题解析:结果中不含项,解得:故答案为:14、∵a,b互为倒数,c,d互为相反数,∴ab=1,c+d=0,∴原式= ﹣0=,故答案为:.15、试题解析:根据题意得,这一组数的第个数为:故答案为:点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.16、根据题意,要求写一个关于字母x的二次三项式,其中二次项是x2,一次项是-x,常数项是1,所以再相加可得此二次三项式为.17、试题解析:梯形的面积为cm2 .点睛:梯形的面积=.18、∵,∴.19、∵当x=2时,多项式ax3+bx+3的值为5,∴8a+2b+3=5,∴8a+2b=2.当x=-2时,ax3+bx+3=-8a-2b+3=-(8a+2b)+3=-2+3=1.故答案为:120、设原价是x,则(1-20%)(x-m)=n, x=n+m.21、试题分析:(1)去括号后合并同类项化简,然后再代入求值即可;(2)去括号后合并同类项化简,然后再代入求值即可.试题解析:(1)原式=4x2﹣2x2﹣x+1+2﹣x2﹣3x=x2﹣4x+3,当x=﹣时,原式=(﹣)2﹣4×(﹣)+3,=﹣(﹣2)+3,=5;(2)原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=12×(﹣)2×(﹣1)﹣6××(﹣1)2=﹣3﹣3=﹣6.22、试题分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.试题解析:解:原式==;∵,∴a+1=0,b=0,∴a=﹣1,b=,则原式===.考点:1.整式的加减—化简求值;2.非负数的性质:绝对值;3.非负数的性质:偶次方.23、试题分析:(1)按要求直接整体代入,然后去括号,合并同类项化简即可;(2)先整体代入,然后合并同类项化简,再根据与x无关,可知其系数为0,求解方程即可.试题解析:(1)==(2)=当的值与的取值无关时,24、试题分析:(1)设一班植树棵数为x,则二班棵数为2x﹣40,三班棵数为,四班棵数为,将四个班植树棵数相加,计算即可;(2)根据三班和四班植树一样多列出方程,解方程求出x的值,进而求解即可.(1)一班植树棵数为x,二班棵数为2x﹣40,三班棵数为,四班棵数为.所以,四个班共植树棵数为:;(2)根据题意,得,解得x=30.当x=30时,一班植树30棵,二班植树20棵,三班植树40棵,四班植树40棵40﹣20=20.答:植树最多的班级比植树最少的班级多植树20棵.考点:一元一次方程的应用.25、试题分析:首先根据题意求出无盖盒子的长和宽,然后根据长方形的面积计算法则得出底面积,然后将b=10代入代数式进行计算.试题解析:根据题意得:底面的长为(80-2b)cm,宽为(60-2b)cm则S=(80-2b)(60-2b)=4800-280b+4将b=10代入可得:S=4800-2800+400=2400()考点:代数式的表示26、试题分析:(1)(2)利用用水量的范围确定单价算出结果即可;(3)36元一定用水量超出10立方米,分段计算即可;(4)分5月份不超过6m3时和5月份超过6m3时两种情况列式即可.试题解析:解:(1)2×5=10元答:应收水费10元;(2)10+(36-2×6-4×4)÷8=10+1=11立方米答:用水量为11立方米;(3)(4a-12)元;(4)当5月份不超过6m3时,水费为(-6x+92)元;当5月份超过6m3时,水费为(-4x+80)元.考点:列代数式.。
北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案一、单选题 1.按照如图所示的运算程序,能使输出y 的值为5的是( )A .m =1,n =4B .2,5m n ==C .m =5,n =3D .m =2,n =2 2.关于代数式353a +,下列说法中正确的是( ) A .它的一次项系数是1B .它的常数项是5C .它是一个单项式D .它的次数是33.下列各组代数式:(1)a b -与a b --;(2)a b +与a b --;(3)1a +与1a -;(4)a b -+与a b -,其中互为相反数的有( )A .(2)(4)B .(1)(2)C .(1)(3)D .(3)(4)4.下列说法中正确的是( )A .a -表示负数;B .若x x =,则x 为正数C .单项式22xy 9-的系数为2- D .多项式2223a b 7a b 2ab 1-+-+的次数是45.若单项式3a m+1b 与-b n -1a 2m -2的和仍是单项式,则m ,n 的值分别为( )A .1,0B .3,0C .3,2D .1,26.下列从左到右的变形是因式分解的是( )A .B .C .D .7.1x 与2x ,3x …202x 是202个由1和1-组成的数,且满足12320222x x x x +++⋅⋅⋅+=,则()()()()22221232021111x x x x -+-+-+⋅⋅⋅+-的值为( ) A .408 B .462 C .360 D .3688.下列各组代数式中是同类项的是( )A .234a b -34ab -B .232x y -与323x yC .3512m n -与537n m - D .a 与c 9.某服装店出售一件衣服,标价为m 元,由于市场行情的变化,服装店进行了一次调价,在此基础上又进行了第二次调价,下列四种方案中,两次调价后售价最低的是( )A .第一次打八折,第二次打八折B .第一次提价30%,第二次打六折C .第一次提价50%,第二次降价50%D .第一次提价20%,第二次降价30%10.观察下列等式:133= 239= 3327= 4381= 53243= 63729= 732187=…解答下列问题:234202333333++++的末位数字是( )A .0B .2C .3D .9二、填空题11.观察2,﹣3,4,﹣5,6,﹣7,…这一列数,你能发现它们排列的规律吗?请根据你发现的规律,试写出第)21x ++=322221+-+-+23,12-…第10个数字是的值是、d 互为倒数,m 的绝对值等于.已知一个两位数,它的个位数字是x ,十位数字是三、解答题19.如图:(1)用含字母的式子表示阴影部分的面积;(2)当5a =,3b =时,阴影部分的面积是多少?20.观察下列按一定规律排列的三行数:第一行:﹣2,4,﹣8,16,﹣32,64,﹣128…第二行:3,9,﹣3,21,﹣27,69,﹣123…第三行:4,﹣2,10,﹣14,34,﹣62,130…(1)第一行数中的第11个数是 ;(2)第三行数中的第n 个数是 (用含n 的式子表示);(3)取每行数中的第m 个数,是否存在m 的值,使这三个数的和等于255?若存在,求出m 的值,若不存在,说明理由.21.已知:有理数a 、b 、c 在数轴上的位置如图所示,且c a >.(1)填空:a =___________;c =___________;ac =___________(2)化简:b c a c a b -++--22.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为m r ,广场长为m a ,宽为m b .(m 为单位米)(1)列式表示广场空地的面积;参考答案: 1.D2.A3.A4.D5.C6.D7.C8.C9.A10.D11.﹣10112.113.1或3-/3-或1 14. 11n x +-/11n x +-+ 21213+ 15.15- 16.1617.13或7 18.11x +11y/11y+11x 19.(1)阴影部分面积为()2244a b a a b ππ+--;(2)阴影部分面积为17402π- 20.(1)-2048;(2)()22n --+;(3)不存在21.(1),,a c ac --(2)2c -22.(1)()22m ab r π-(2)()220000100m π- 23.(1)968-;(2)252ab -24.(1)666x y xy +-(2)9(3)6。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案(时间:120分钟满分:120分)班级: 姓名: 成绩:一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−15.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m26.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 17.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.12.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.13.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________.15.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2 024个数是____.三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−1.218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值;(2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3.所以2m=37−3,即m=37−32.所以31+32+33+34+35+36=37−32.以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项【答案】B2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商【答案】C3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm 【答案】D4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−1【答案】B5.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m2【答案】D6.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B7.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关【答案】D8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m【答案】C9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元【答案】A10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32【答案】A二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.【答案】5 −2+512.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.【答案】513.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.【答案】(5m−6)14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________. 【答案】−4m2+2m+415.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2024个数是____.【答案】676三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.【答案】(1)解:−3m2m+3mm2−2mm2+2m2m=(−3m2m+2m2m)+(3mm2−2mm2)=−m2m+mm2.(2)解:2m2−5m+m2+6+4m−3m2=(2m2+m2−3m2)+(4m−5m)+6=−m+6..17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−12解:原式=3m2−4mm−4m2−4m2+4mm−8m2=−m2−12m2当m=2,m=−1时2)2=−4−3=−7.原式=−22−12×(−1218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.解:设原来的整式为m,则m−(5mm−3mm+2mm)=2mm−6mm+mm得m=7mm−9mm+3mmm+(5mm−3mm+2mm)=7mm−9mm+3mm+(5mm−3mm+2mm)=12mm−12mm+5mm.∴原题的正确答案为12mm−12mm+5mm.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?【答案】(1)解:轮船共航行的路程为(m+m)×3+(m−m)×2=(5m+m)(千米).(2)把m=80,m=3代入(1)中的式子,得5×80+3=403(千米).答:轮船共航行403千米.20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?【答案】(1)解:小明家9月份应交的水费为2×15+2.5(m−15)=(2.5m−7.5)(元);(2)当m=20时,2.5×20−7.5=42.5(元),所以小明家9月份应交水费42.5元. 21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)【答案】(1)解:由题意可知窗户的面积可表示为m(m+m2+m2)=2mm装饰物的面积可表示为π⋅(m2)2=π4m2所以窗户中能射进阳光的部分的面积是2mm−π4m2.(2)将m=5m,m=2m代入(1)中的代数式可得2mm−π4m2=2×5×2−π4×22=(20−π)(m2)所以窗户中能射进阳光的部分的面积是(20−π)m2.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值; (2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.【答案】(1)解:∵m=3时,多项式mm3−mm+5的值是1∴27m−3m+5=1∴27m−3m=−4∴m=−3时−27m+3m+5=4+5=9.(2)−3m2+mm+mm2−m+3=(−3+m)m2+(m−1)m+3∵关于字母m的二次多项式的值与m的取值无关∴−3+m=0m−1=0解得m=3m=1代入(m+m)(m−m)得(1+3)×(1−3)=4×(−2)=−8.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3. 所以2m=37−3,即m=37−3.2.所以31+32+33+34+35+36=37−32以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.【答案】(1)263(2)解:设m=20+21+⋯+263①则2m=21+22+23+⋯+263+264②②−①得2m−m=21+22+⋯+264−20−21−22−⋯−263=264−20=264−1即m= 264−1.【解析】(1)国际象棋共有64个格子,则在第64格中应放263粒米.故答案为263.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式的加减》单元测试卷
班级 ________________ 姓名 ___________ 座号 ________
8 .已知—63严与2x 是同类项,贝U mn 的值是(
5
B . 3
1.在代数式x 2
5, 1,x 2 3x 2,
, —, x 2
1
中,整式有
x x 1
A. 3个
B. 4个
C.5个
) D. 6个
A. — 3, 5
B. — 1, 6
3•下面计算正确的是(
C. — 3 n, 6
D. — 3, 7
A . 3x 2 x 2 3 B. 3a 2 2a 3
5a 5
4.多项式: x 2 1
-x 1的各项分别是 (
2
A 2 1 A. x ,— x,1
B 2 1
B. x , x, 1
2 2
5.下列去括- 号正 确的是(
)
A. 2x
5 2x 5
C. 1
2m 3n
2 m n D.
3
3
C. 3 x 3x
D. 0.25ab 丄ab
4
)
C. x 2」x,1
D. x 2, -x, 1
2
2
B. 1 4x
2
2x 2
2
2 小 2
m 2x m 2x
3
3
7.如果 m n
1
一,那么-3 n
m 的值是
5
3 c 5
3 A .-
B.-
C.-
5
3 5
D.—
15
.选择题(每小题3分,共24 分) 2.单项式3 xy 2z 3
的系数和次数分别是(
6.下列各组中的两个单项式能合并的是( )
A . 4 和 4x
B . 3x 2
y 3
和 y 2
x 3
C . 2ab 2和 100ab 2c
二.填空题(每小题3分,共18分)
9. 任写两个与-a2b是同类项的单项式:;
2
10. 多项式3xy 5x3y 2x2y3 5的次数是 ____________________ ,最高次项系数是
11. 多项式3x 2y与多项式4x 2y的差是 _______________ . ________
12. 张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔
每支m元,橡皮每块n元,若给每名同学买3支铅笔和4块橡皮,则一共需付款元.
2
13. 已知单项式3 a m b2与一—a4b n 3 4的和是单项式,那么m = ,n
3
2
14. 观察下列算式:
4202 1 0 1; 2212 2 1 3 ; 3222 3 2 5;
4232 4 3 7 ; 5242 5 4 9 ; ……
若字母n表示自然数,请把你观察到的规律用含n的式子表示出来:.
三.解答题(共58分)
15. 计算(每题4分共16分)
(1) 4a2b 3a2b 1a2b (2)(x—3y) — ( y—2x)
11 1
(3) 8a4 5b 5ab2 2 3a2b 4ab2(4) 一a2—[-( ab—a2) 4ab]— ab
2 2 2
16. 先化简,后求值(每题6分共12分)
(1) 5a3 3b2 5a3 4b2 2ab,其中a 1 b 丄,2
4
(2) 4x2y—[6xy —2(4xy —2)—x2y] 1 ,其中x —- , y 1.
17.(7分)已知某船顺水航行2 小时,逆水航行3 小时,
(1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少千米?
(2)轮船在静水中前进的速度是60 千米/时,水流的速度是5千米/时,则轮船共航行多少千米?
18.(7分)有这样一道题:“当a=2010, b=-2011时,求多项式
5a3-8a3b 2a2b 4a3 8a3b-2a2b-9a3 2012 的值.”
小颖说:本题中a=2009, b=—2010是多余的条件;小彤马上反对说:这不
可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?
你同意哪名同学的观点?请说明理由.
参考答案
第二章《整式的加减》单元测试卷一.选择题
1.B
2.C
二.填空题
2 2
9. a b , 2a b
12. 30m 40n
三.解答题
15. (1) 3a2b
2
16. (1)化简得
17. (1) 5x —y 2012,所以值与3.D 4.B 5.A 6.D 7.C 8.A
(答案不唯一) 10. 5, -2 11. —x
13. 4, 3 14. (n 1)2—n2 2n 1
(2) 3x—4y
b2 2ab,值=—3
4 (2) 295千米(3) 2a2b 3ab2(4) a2—5ab
(2)化简得5x2y 2xy—3,值=—-
4
18.同意小颖的观点,因为该式化简得
a,b无关.。