第三篇水环境化学无机污染物迁移

合集下载

环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化知识交流

环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化知识交流

之,pE越大,电子浓度越低,体系接受电子的倾向就越强。
(2)氧化还原电位E和pE的关系
Ox +ne→Red
(1)
根据Nernst方程
E=E0-(2.303RT/nF)lg[Red]/[Ox] (2) 当反应达平衡时,定义
E0=(2.303RT/nF) lgK
(3)
从上述化学方程式(1),可写出
K= [Red]/{[Ox][e]n }
如果考虑到羟基配合作用,那么金属氧化物或氢氧化物的 溶解度(MeT)表征为:
MeT = [ Mez+ ] +∑[ Me(OH)nz-n ]
固体的氧化物和氢氧化物具有两性的特征,它们和质子或 羟基离子都发生反应,存在一个pH值,在该值下溶解度为最 小值。在碱性或酸性更强的pH值区域内,溶解度都会变得更 大。
因此,在 H2S 和硫化物均达到饱和的溶液中,溶液重金属离子 的饱和浓度为: [Me2+]=Ksp/[S2-]=Ksp [H+]2/Ksp´ =Ksp [H+]2/(0.1K1K2)
3、碳酸盐
——多相平衡,pH通过控制碳酸根浓度影响沉淀平衡
封闭体系: 只考虑固相和液相,把 H2CO3* 当作不挥发酸类处理。
吸附量随粒度增大而减少,并且当溶质浓度范围固定 时,吸附量随颗粒物浓度增大而减少。
温度变化、几种离子共存(竞争作用)等。
3、沉积物中重金属的释放——属于二次污染问题
诱发释放的主要因素有: (1)盐浓度升高:碱金属和碱土金属阳离子可将被吸附在固体颗
粒上的金属离子交换出来。
(2)氧化还原条件的变化:有机物增多,产生厌氧环境、铁锰氧 化物还原溶解,使结合在其中的金属释放出来。
2、它在中性表面甚至在与吸附离子带相同电荷符号的表面 也能进行吸附作用。

环境化学第3章水环境化学-2-无机污染物的迁移转化

环境化学第3章水环境化学-2-无机污染物的迁移转化

随pH值的变化而改变。铝可发生聚合反应,最终生成
[Al(OH)3]∞的无定形沉淀物。 ②铁:铁是丰量元素,水解反应和形态与铝类似。 ③锰:锰与铁类似,其丰度不如铁,但溶解度比铁高。 ④硅:硅酸能生成聚合物,并可生成胶体以至沉淀物。
2Si(OH)4 H6SiO7 + H2O
(SinO2n-m(OH)2m )
属污染物在水环境中迁移转化的基本原理。
思考题
1. 叙述天然水体中存在哪几类颗粒物?
2. 什么是表面吸附作用、离子交换吸附作用和专属吸附
作用?
3. 根据腐殖质在溶液中的溶解度不同划分为哪几类?
4. 叙述水中颗粒物以哪些方式进行聚集?
2.1颗粒物与水之间的迁移
★2.1.1水中颗粒物的类别 矿物微粒和黏土矿物 金属水合氧化物
吸 引
吸 引
(1)水中离子浓度高
天然水环境和水处理过程中所遇到的颗粒聚集方式: (1)压缩双电层凝聚:
由于水中电解质浓度增大而离子强度升高,压缩扩散
层,使颗粒相互吸引结合凝聚。 实质:电解质加入--与反离子同电荷离子↑--压缩双 电层--ξ电位↓--凝聚
对于水中的负电荷胶体,投入的电解质——混凝剂应是正 电荷或聚合离子,如Na+、Ca2+、Al3+等,其作用是压缩 胶体双电层。
2.2水中颗粒物的聚集
凝聚(Coagulation):由电介质促成的聚集; 絮凝(Flocculation):由聚合物促成的聚集
电位离子 反离子
滑动面
胶团边界
胶核
吸附层 扩散层
胶粒
ξ电位
Ψ电位
胶体的双电层结构
– 胶体的结构:
按照以上的描述胶体粒子的结构式可写为:

环境化学第3.2章水环境化学水中无机污染物的溶解和沉淀课件

环境化学第3.2章水环境化学水中无机污染物的溶解和沉淀课件
纯水封闭体系中金属碳酸盐的溶解度
20
第三章/第二节/2.3 溶解和沉淀
2.3.4 碳酸盐 四、碳酸盐在开放体系的溶解度(二价金属)
[H2CO3*] = KHpCO2 [CO32-] = K1K2KHpCO2/[H+]2
pH>pK2(10.33) pK1<pH<pK2 (6.35~10.33) [Me2+] ≈ Ksp[H+]2/K1K2KHpCO2 pH<pK1(6.35)
第三章/第二节 水中无机污染物的迁移转化
2.3 溶解和沉淀
溶解/沉淀对迁移过程的影响
溶解/沉淀影响金属化合物溶解度,溶解度决定随水迁移能力 溶解度大,迁移能力大;溶解度小,迁移能力小
溶解/沉淀理论
溶解/沉淀受反应平衡和反应速率控制(化学热力学和动力学控制) 固-液平衡体系中,用溶度积来表征溶解度
第三章/第二节/2.3 溶解和沉淀
2.3.3 硫化物
二、金属硫化物的溶解度(以二价金属为例)
1. 金属硫化物的沉淀-溶解平衡
MeS (s) ⇌ Me2+ + S2-
[Me2+] = Ksp/[S2-]
2. H2S的电离平衡
H2S ⇌ H+ + HS- K1 = 8.9×10-8
HS- ⇌ H+ + S2-
= 2.532×10-3 mol/L
15
第三章/第二节/2.3 溶解和沉淀
2.3.4 碳酸盐
一、碳酸盐的沉淀-溶解平衡(以二价金属为例)
MeCO3 ⇌ Me2+ + CO32[Me2+] = Ksp/[CO32-] = Ksp/(CTα2)
H2CO3* ⇌ HCO3- + H+

【环境化学】第3.2章 水环境化学——第二节 水中无机污染物的迁移转化

【环境化学】第3.2章 水环境化学——第二节  水中无机污染物的迁移转化
影响因素:表面积越大,吸附作用越强 特点:表面吸附属于物理吸附
22
吸附等温线和等温式
吸附等温线: 在固定的温度下,当吸附达到平衡时, 颗粒物表面上的吸附量(G)与溶液中溶质平衡浓度 (C)之间的关系,可用吸附等温线来表示。
吸附等温线类型:
Henry型(H型) Freundlich型(F型) Langmuir型(L型)
腐植质分子与金属络合的机理★
Hum
COO OH
-
+[Fe(OH)(H2O)x-1]2+
低pH
Hum
COO O
Fe
OH (O) x-1
+ H+
在低pH时,从腐植质的酸性基团中置换出一个质子
Hum COOHO-+ [Fe(OH)(H2O)x-1]2+
高pH
[ Hum
COO O
Fe
OOHH(H2O)x-2]-+2H+
23
H型等温式为: G = kc
k: 分配系数;等温线为直线型
F型等温式为:G = kc(1/n)
1)k 是c=1的吸附量,大致表示 吸附能力的强弱; 2)1/n为斜率,表示吸附量随 浓度增长的强度; 3)该等温线不能给出饱和吸附 量。
L型等温式: G = G0c/(A+c)
G0—单位面积上达到饱和时的 最大吸附量; A—常数。
胶体表面的化学反应(见下页胶片)
25
胶体表面的化学反应
是氢氧化物和氧化物的典型行为 与pH值有关
在酸性介质中 M(OH)n (s) + H+ → M(OH)n-1(H2O)+(s) 粒子带净正电荷
在碱性介质中 M(OH)n (s) → MO(OH)n-1-(s) + H+ 粒子带净负电荷

第三章 水环境化学水中无机污染物的迁移转化汇总

第三章  水环境化学水中无机污染物的迁移转化汇总

20
1. 胶体颗粒凝聚的基本原理和方式

1) 带电胶粒稳定性的经典理论--DLVO理论 带电胶粒的两种相互作用力

双电层重叠时的静电排斥力 粒子间的长程范德华吸引力


DLVO理论认为,当吸引力占优势时,溶胶发生聚 沉; 当排斥力占优势,并大到足以阻碍胶粒由于 布朗运动而发生聚沉时,则胶体处于稳定状态。 颗粒在相互接近时两种力相互作用的总位能随相 隔距离的变化而变化: 总位能 VT=VR+VA 式中:VA——由范德华力所产生的位能; VR——由静电排斥力所产生的位能。
4
一 、 颗粒物与水之间的迁移
2、水环境中颗粒物的吸附作用
专属吸附是指吸附过程中,除了化学键的作
用外,尚有加强的憎水键和范德华力或氢键在 起作用。
专属吸附作用不但可使表面电荷改变符号, 而且可使离子化合物吸附在同号电荷的表面上。
5
表3-8水合氧化物对金属离子的专属吸附 与非专属吸附的区别
项目 非专属吸附 专属吸附 发生吸附的表面净电荷的符号 - -、0、+ 金属离子所起的作用 反离子 配位离子 吸附时发生的反应 阳离子交换 配位体交换 发生吸附时体系的PH值 >零电位点 任意值 吸附发生的位置 扩散层 内层 对表面电荷的影响 无 负电荷减少, 正电荷增多 注:本表摘自陈静生主编,1987。
(4)水体悬浮沉积物
悬浮沉积物是以矿物微粒,特别是粘土矿物 为核心骨架,有机物和金属水合氧化物结合在矿 物微粒表面上,成为各微粒间的粘附架桥物质, 把若干微粒组合成絮状聚集体(聚集体在水体中 的悬浮颗粒粒度一般在数十微米以下),经絮凝 成为较粗颗粒而沉积到水体底部。
(5)其他
3
一、 颗粒物与水之间的迁移

环境化学-第三章-第2节-水中无机污染物的迁移转化概述

环境化学-第三章-第2节-水中无机污染物的迁移转化概述
1/ G 1/ G0 ( A / G0 )(1/ C)
G0—单位表面上达到饱和时的最大吸量
A—常数
(p122 图3-4)
2021/3/25
15
4 沉积物中重金属的释放(p125)
沉积物中的重金属可能重新进入水体,这 是产生二次污染的主要原因。
碱金属和碱土金属离子可将吸附在颗粒 物表面的重金属离子置换出来,这是重金属 从颗粒物表面解吸的重要途径之一。
氧化还原条件的变化,使金属以水合离 子解吸。
2021/3/25
16
4 沉积物中重金属的释放(p125)
水环境pH值的降低,导致硫酸盐和氢 氧化物的溶解
废水中配合剂的含量增加,和重金属 形成稳定的可溶性配合物,使重金属 重新进入水体,以上几种途径都有可 能构成环境水体重金属的二次污染
2021/3/25
聚多胺,聚丙烯酰胺,阳离子型 (淀粉-二甲基二烯丙基氯化铵接枝 共聚物), 两性絮凝剂等。
复合型絮凝剂
2021/3/25
24
三、沉淀和溶解
1. 金属氧化物和氢氧化物
M (OH )n (S ) M n nOH
KSP [M n ][OH ]n
[M
n
]
K SP [OH
]n
2021/3/25
25
将[Fe(OH)+] = 1.0×10-7 mol/L代入,
pH = 11.6
(2)
2021/3/25
49
pE – pH 图
Fe(OH)3(S) Fe2+的边界 Fe(OH)3(S) + 3H+ + e = Fe2+ + 3H2O
K
Re d Ox en

第三章 第二节 水中无机污染物的迁移转化要点

第三章 第二节 水中无机污染物的迁移转化要点
吸附:指溶液中的溶质在界面层浓度升高的现象。
常见的吸附等温线
G G
n是一个经验 值,不是由一个 过程控制,一般 适用于有机物 lgG
lgK
H型
G0/2
单分子吸附 适用于金属
L型 c
L型 1/c
0 A
当溶质浓度甚低时,可能在初始阶段呈现 H 型,当浓度较 高时,可能表现为 F 型,但统一起来仍属于 L 型的不同区段。
2、异体凝聚理论
(1)适用条件:适用于物质本性不同、粒径不等、电荷符
号不同、电位高低不等的分散体系。 (2)主要论点: A、电荷符号相异的胶体微粒接近时,吸引力总是占优势; B、电荷符号相同但电性强弱不等,则位能曲线上的能峰高 度总是决定于荷电较弱而电位较低的一方。
因此异体凝聚时,只要有一种胶体的稳定性甚低而电位
纯饱和溶液中 [S2-]= Ksp/ [H+]2 = 1.16×10-23 / 8.9×10-9 = 1.3×10-15mol/L 任意水体中 [S2-]= 1.16×10-23 / [H+]2 [Me2+] [S2-]=Ksp 因此,在 H2S 和硫化物均达到饱和的溶液中,溶液重金属离子
的饱和浓度为:
2、硫化物
H2S H++ HSK1 = 8.9×10-8 HSH++ S2K2 = 1.3×10-15 两者相加可得: H2S 2H+ + S2K12 = K1·K2 = 1.16×10-22
在饱和水溶液中,H2S 浓度总是保持在 0.1mol/L,因此可认
为饱和溶液中 H2S 分子浓度也保持在 0.1mol/L,得: [H+]2[S2-] =1.16×10-22×0.1 = 1.16×10-23 = Ksp´

环境化学教案 第三节水中无机污染物的迁移转化(氧化还原2)

环境化学教案 第三节水中无机污染物的迁移转化(氧化还原2)
水中有机物可以通过微生物的作用,而逐渐降解转化为无机物。在有机物进入水体后,微生物利用不中的溶解氧对有机物进行有氧降解。其反应式中表示为
由此反应可知,当有机物进入天然水后,水体中溶解氧的含量会迅速降低。如果有机物的数量非常多的话,可以使水体中溶解氧全部被消耗掉,甚至可以使水体转换成为沼泽。在水中,NH4+只有被氧化成NO3-后,氮才能被藻类利用。
例2求被大气氧所饱合的中性天然水的pE值。
解:该体系溶解氧起决定电势作用,溶解氧的氧化还原反应为:
pE=pE0+ [H+]
已知:pE0=20.75
pH=7 [H+]=10-7
将已知条件代入pE的表达式,得:pE=13.58。该体系pE值较高,是一个氧化性体系。
例3求微生物作用产生甲烷的中性厌氧水的pE值及溶解氧的分压
天然水是一个非常复杂的混合体系,其中存在着众多的氧化剂和还原剂。其中常见的氧化剂包括溶解氧、Mn(IV)、Fe(III)、和S(VI),常见的还原剂包括有机物、Mn(II)、Fe(II)、S(-II)。当我们要求得某种天然水的pE值时,首先需要确定哪种物质起决定电势作用,然后根据起决定电势作用物质的氧化还原反应,求得体系的pE值。一般的天然水体中起决定电势作用的物质是溶解氧,当有机物含量非常高时,则有机物起决定电势作用。铁和锰起决定电势作用的情况则比较少见。下面我们来看两种极端情况下体系的pE值。
pE=-4.13
将已知条件代入pE的表达式,得: =3.0×10-72atm。
由此可见该体系中溶解氧的分压非常低,一般水体中的溶解氧的分压均超过此值。由于天然水的pE值随水中溶解氧的减少而降低,因此表层水pE值较高,底层水pE值较低。
例3:从湖水中取出深层水,其PH=7.0,含溶解氧浓度0.32mg/L,请计算PE和Eh。(KH=1.26*10-8[mol/(L·Pa)]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档