1.1反比例函数的定义

合集下载

反比例函数复习课教案

反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义与性质1.1 反比例函数的定义1.2 反比例函数的性质1.3 反比例函数的图像第二章:反比例函数的图像与性质2.1 反比例函数的图像特点2.2 反比例函数的性质解析2.3 反比例函数的图像与性质综合应用第三章:反比例函数的解法与应用3.1 反比例函数的解法3.2 反比例函数的应用案例3.3 反比例函数解法与应用的拓展第四章:反比例函数与一元二次方程4.1 反比例函数与一元二次方程的关系4.2 反比例函数在一元二次方程中的应用4.3 反比例函数与一元二次方程的综合问题第五章:反比例函数的综合练习5.1 反比例函数的基本概念练习5.2 反比例函数的图像与性质练习5.3 反比例函数的解法与应用练习第六章:反比例函数与几何图形6.1 反比例函数与圆的关系6.2 反比例函数与双曲线的联系6.3 反比例函数在其他几何图形中的应用第七章:反比例函数与实际问题7.1 反比例函数在实际问题中的应用概述7.2 反比例函数在面积问题中的应用7.3 反比例函数在其他实际问题中的应用第八章:反比例函数的变换与性质8.1 反比例函数的平移变换8.2 反比例函数的缩放变换8.3 反比例函数的性质在变换中的应用第九章:反比例函数的专题讨论9.1 反比例函数的奇偶性9.2 反比例函数的周期性9.3 反比例函数与指数函数、对数函数的关系第十章:反比例函数的综合训练与拓展10.1 反比例函数的综合训练题10.2 反比例函数的拓展问题10.3 反比例函数在不同学科领域的应用探讨重点和难点解析重点一:反比例函数的定义与性质解析:反比例函数的定义容易理解,但要让学生深刻理解其性质,特别是图像的特点,需要通过大量的示例和练习来巩固。

重点二:反比例函数的图像与性质解析:反比例函数的图像是一条通过原点的直线,但其性质在不同的象限中有所不同,需要学生通过绘制图像和分析性质来掌握。

重点三:反比例函数的解法与应用解析:反比例函数的解法涉及到的数学运算较为复杂,需要学生熟练掌握。

反比例函数知识点

反比例函数知识点

反比例函数知识点反比例函数是一种特殊的函数形式,它描述了两个变量之间的关系。

其特点是当一个变量的值增加时,另一个变量的值会减小,反之亦然。

在数学中,反比例函数通常用一个方程表示,形式为y=k/x,其中k是一个常数。

在本文中,我们将探讨一些与反比例函数相关的知识点。

一、反比例函数的定义反比例函数是一种形如y=k/x的函数形式。

其中,k是一个常数,被称为反比例函数的比例常数。

在反比例函数中,变量x和y的变化满足如下关系:当x增加时,y减小;当x减小时,y增加。

二、反比例函数的图像和性质反比例函数的图像是一条直线,经过原点(0,0)。

该函数的图像与坐标轴都有一个渐近线,与x轴共轭于y轴,与y轴共轭于x轴。

同时,反比例函数的图像在第一象限和第三象限中是上升的,即从左下到右上。

三、反比例函数的图像和实际应用反比例函数的图像常常出现在实际问题中,如物理、经济等领域。

例如,某物体的速度与其所受的力成反比,即速度越大,所受的力越小,反之亦然。

又如,在某种化学反应中,反应速率与溶液中的浓度成反比。

这些实际问题可以通过反比例函数来表示和解决。

四、反比例函数的性质和应用由于反比例函数的性质和图像特点,反比例函数在实际问题中有许多应用。

首先,反比例函数可以用来描述两个变量之间的关系,例如速度和力的关系、反应速率和浓度的关系等。

其次,反比例函数可以用来解决一些实际问题,例如求解未知变量的值或优化问题。

五、反比例函数的变形除了常见形式的反比例函数y=k/x,还有其他形式的反比例函数。

例如,y=k/(x-a)、y=(k+x)/(k-x)等。

这些变形形式的反比例函数在实际问题中也有广泛应用,例如电路中的电阻和电流的关系等。

六、反比例函数的应用举例反比例函数的应用非常广泛。

下面以几个具体的实例来说明。

例1:某车辆以恒定的速度行驶,当行驶时间增加时,其行驶距离减小。

这个问题可以用反比例函数来描述,行驶距离与行驶时间成反比。

例2:某工厂的生产成本与产量成反比,即产量越大,生产成本越低,反之亦然。

反比例函数知识点梳理

反比例函数知识点梳理

反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。

通常我们把它写成y = k/x+b,其中 b 为常数。

2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。

当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。

例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。

当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。

反比例函数也不具有最大值或最小值。

4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。

例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。

5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。

这可以通过已知的点对、图像或其他信息来确定。

以上是反比例函数的知识点梳理,希望对您有所帮助。

湘教版数学九年级上册1.1反比例函数课件

湘教版数学九年级上册1.1反比例函数课件

数.
知识点 2 确定反比例函数表达式
知2-讲
确定反比例函数表达式的方法是待定系数法,由于
在反比例函数 y k ( k ≠0 )中只有一个待定系数,因此 x
只需要一对 x , y 的对应值或图像上一个点的坐标,即可
求出 k 的值,从而确定其表达式.
知2-讲
例2 已知 y 是 x 的反比例函数,当 x = 3 时,y = 6. (1) 写出 y 关于 x 的函数表达式; (2) 当 x = -2 时,求 y 的值; (3) 若 y = 4.5,求 x 的值.
总结:当两个量的积是一个定值时,这两个量成反比例 关系,如 xy =m ( m 为一个定值 ),则 x 与 y 成反 比例.
知识点 1 反比例函数的定义
知1-导
下列问题中,变量间的对应关系可用怎样的函数式表
示? (1) 京沪线铁路全程为 1463 km,某次列车的平均速 度 v ( 单位:km/h ) 随此次列车的全程运行时间 t ( 单位:h ) 的变化而变化;
(2) 食堂存煤 15 000 kg , 试写出可使用的天数 t ( 天 ) 关于平均每天的用煤量 Q ( kg ) 的函数表达式, 并写出自变量的取值范围.
知3-讲
解题秘方:
(1) 根据矩形的面积公式写出函数表达式 ;
(2) 根据“ 可使用的天数 =
存煤量

平均每天的用煤量
写出函数表达式.
解: (1) y = 1 000(x>0). x
x
的反比例函数,其中 x 是自变量,常数 k ( k ≠ 0 ) 称
为反比例函数的比例系数.
知1-讲
2. 反比例函数的三种情势:
①y
k x,
② y=kx-1,

反比例函数概念与性质

反比例函数概念与性质

反比例函数概念与性质反比例函数的概念与性质一、反比例函数的概念1.反比例函数可以写成y=k/x的形式,其中自变量x的指数为-1.在解决有关自变量指数问题时,应特别注意系数。

2.反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。

3.反比例函数的自变量不能为0,故函数图象与x轴、y轴无交点。

二、反比例函数的图象1.在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)。

2.反比例函数的图象是双曲线。

随着k的增大,图象的弯曲度越小,曲线越平直;随着k的减小,图象的弯曲度越大。

3.反比例函数的图象与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。

当k>0时,图象的两支分别位于第一、第三象限内,在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于第二、第四象限内,在每个象限内,y随x的增大而增大。

4.反比例函数的图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。

5.反比例函数的k值的几何意义是:如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B 点,则矩形PBOA的面积是k;如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则三角形PQC的面积也是k。

6.反比例函数的增减性需要将两个分支分别讨论,不能一概而论。

7.直线y=k与双曲线y=k/x的关系:当k>0时,两图象必有两个交点,且这两个交点关于原点成中心对称;当k=0时,两图象有一个公共点O;当k<0时,两图象没有交点。

8.反比例函数与一次函数的联系:当k=0时,反比例函数变为一次函数y=0.求反比例函数的解析式的方法主要有三种:待定系数法、反比例函数k的几何意义、实际问题。

四、反比例函数解析式的确定一、反比例函数的定义:反比例函数是指函数表达式为y=k/x的函数,其中k为非零常数。

初三反比例函数知识点

初三反比例函数知识点

初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。

二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。

2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。

3. 对称性:反比例函数的图象关于原点对称。

三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。

2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。

3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。

四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。

五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。

2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。

六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。

2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。

七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。

八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。

2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。

九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。

第1章 反比例函数 知识点清单 最新最全

第1章 反比例函数 知识点清单 最新最全

第1章反比例函数1.1反比例函数知识点1反比例函数的定义1.定义:一般地,如果两个变量y与x的关系可表示成y= k(k为常x数,k≠0)的形式,那么称y是x的反比例函数,其中x是自变量,常数k(k≠0)称为反比例函数的比例系数.2.反比例函数的三种形式:①y=kx②y= kx -1,③xy=k (其中k为常数,k≠0)三种基本形式要牢记,这是识别反比例函数的关键特别提醒:①形如y= 1+1,(x+1)y=3,y=(x+1)-1等的函数都不是y关于x的反x比例函数.②反比例函数的表达式y= k中无论变量x, y怎样变化,k的值始终x等于x与y的乘积.若k=0,则y= k=0恒成立,为常数函数,失去了x反比例函数x, y成反比例的意义,所以k≠0.知识点2 反比例关系与反比例函数的关系1.如果两个量x,y满足xy=k(k为常数,k≠0),那么x,y就成反比例关系,这里的x和y既可以代表单项式,也可以代表多项式;当x,y只代表一次单项式时,x,y这两个量才成反比例函数关系.2.成反比例关系不一定是反比例函数,但反比例函数中的两个变量必成反比例关系.示例:y= k(k为不等于0的常数),y与x²成反比例,x2但y不是关于x的反比例函数.3.反比例函数中有自变量和函数的区分,而反比例关系中的两个变量没有这种区分.示例解读( k为常数,k≠0);若y+2与x - 5成反比例,则y+2=kx − 5若y与x2成反比例,则y = k( k为常数, k≠0).x2知识点3求反比例函数表达式1.确定反比例函数表达式的方法是待定系数法,由于在反比例函数y=k(k≠0)中只有一个待定系数,因此只需要一对x,y的对应值或图×象上一个点的坐标,即可求出k的值,从而确定其表达式.2 用待定系数法求反比例函数表达式的一般步骤特别解读1.用待定系数法求反比例函数的表达式的实质是代入一对对应值,解一元一次方程.2.当题目中已经明确“y是x的反比例函数”或“y与x成反比例关(k为常数,k≠0).系”时,可直接设函数的表达式为y= kx1.2反比例函数的图象与性质知识点1 反比例函数的图象1.图象的画法(描点法):画实际问题中的反比例函数的图象时,要考虑自变量的取值范围,一般地,实际问题的图象是反比例函数图象,在第一象限内的一支或其中一部分.(1)列表:先取一些自变量的值,在原点的两边取三对或三对以上互为相反数的值,如1和-1,2和-2,3和-3等. 求y值时,只需计算原点一侧的函数值,另一侧的函数值可以随之得出.(2)描点:根据表中提供的数据,即点的坐标,在平面直角坐标系中描出对应的点.(3)连线:用平滑的曲线顺次把这些点连接起来并延伸,注意双曲线的两支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交.2.图象的特点:(1)反比例函数y= k(k为常数,k≠0)的图象是双曲线.x(2)反比例函数图象的两支分别位于第一、三象限或第二、四象限.(3)双曲线的两支都无限接近坐标轴,但永远不与坐标轴相交.(4)双曲线既是中心对称图形(对称中心是原点),又是轴对称图形(对称轴是直线y=x和直线y=-x).示意图(如图1.2-1).y知识点2 反比例函数的性质反比例函数的性质主要研究它的图象的位置和函数值的增减情况,如下表所示.特别提醒在描述反比例函数的增减性时,必须指明"在每个象限内"因为当k> 0(k<0)时,整个函数不是y随x的增大而减小(增大)的,而是函数在每个象限内,y随x的增大而减小(增大).知识点3 反比例函数y= kx(k≠0)中k 的几何性质1.矩形的面积如图所示,过双曲线y= kx(k≠0)上任意一点p(x,y)分别作x轴,y轴的垂线PM,PN ,所得得矩形PMON得面积为S=PM ·PN =I y I·I x I,因为y= kx, 所以xy= k ,所以S =y=I k I,即过双曲线y= kx(k≠0)上任意一点作x轴,y轴的垂线,所得得矩形面积为I k I.2.三角形的面积:如图1.2-3, 过双曲线y= kx(k≠0)上的任意一点E作EF垂直于y轴,垂足为F,连接EO,则S▲EOF= I k I2, 即过双曲线y= kx任意一点作一坐标轴的垂线,连接该点与原点,所得三角形的面积为I k I 2.因为y= kx( k≠0)中只有正、负之分,所以在利用函数表达式求矩形或三角形面积时,都要加上绝对值符号.1.3反比例函数的应用知识点1 建立反比例函数模型解实际问题1.在生活与生产中,如果某些问题的两个量成反比例关系,那么可以根据这种关系建立反比例函数模型,再利用反比例函数的有关知识解决实际问题.运用反比例函数解决实际问题时常用的两种思路:(1)通过问题提供的信息,明确变量之间的函数关系,设出相应的函数表达式,再根据题目条件确定函数表达式中待定系数的值;(2)已知反比例函数模型的表达式,运用反比例函数的图象及性质解决问题.2.建立反比例函数表达式常用的两种方法:(1)待定系数法:若题目提供的信息中明确此函数是反比例函数,则设函数表达式为y=k,( k为常数,k≠0),再求出k的值;x(2)列方程法:若题目所给的信息中两个变量之间的函数关系不明确,通常列出关于两个变量的方程,通过变形得到反比例函数表达式 .3.用反比例函数解决实际问题的一般步骤:(1)审:审清题意,找出题目中的常量、变量;(2)设:根据常量、变量间的关系,设出函数表达式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:用函数的图象和性质去解决实际问题.。

反比例函数的图象与性质教案范文

反比例函数的图象与性质教案范文

反比例函数的图象与性质教案范文第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。

通过实际例子,让学生理解反比例函数的意义。

1.2 反比例函数的表达式介绍反比例函数的一般形式y = k/x (k 为常数,k ≠0)。

解释反比例函数中x 和y 的关系,强调它们成反比例关系。

第二章:反比例函数的图象2.1 反比例函数图象的形状引导学生观察反比例函数图象的特点,如双曲线形状。

解释反比例函数图象的渐近线及其意义。

2.2 反比例函数图象的截距分析反比例函数图象在x 轴和y 轴上的截距。

引导学生理解反比例函数图象与坐标轴的交点。

第三章:反比例函数的性质3.1 反比例函数的单调性探讨反比例函数在不同区间的单调性,即在每个象限内的增减性。

通过实例和图形,解释反比例函数单调性的原因。

3.2 反比例函数的奇偶性证明反比例函数是奇函数,即f(-x) = -f(x)。

引导学生理解奇函数性质在反比例函数上的体现。

第四章:反比例函数的渐近线4.1 反比例函数的渐近线方程推导反比例函数的渐近线方程y = x 和y = -x。

解释渐近线在反比例函数图象中的位置和意义。

4.2 反比例函数图象与渐近线的关系分析反比例函数图象与渐近线的交点及其性质。

通过实例,让学生理解反比例函数图象在渐近线附近的特征。

第五章:反比例函数的应用5.1 反比例函数在实际问题中的应用提供实际问题,让学生利用反比例函数解决问题。

引导学生将反比例函数的应用与现实生活联系起来。

5.2 反比例函数的综合练习设计综合练习题,涵盖反比例函数的定义、图象、性质和应用。

引导学生通过练习题加深对反比例函数的理解和运用能力。

第六章:反比例函数的斜率6.1 反比例函数的斜率概念解释在反比例函数图象上任意两点的斜率公式。

引导学生理解斜率在反比例函数图象上的变化规律。

6.2 反比例函数斜率的计算提供具体例子,演示如何计算反比例函数图象上点的斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1反比例函数的定义 教学目标 知识与技能 1.学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系
数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会
函数的模型思想
过程与方法 经历抽象反比例函数概念的进程,领会反比例函数的意义,理解
反比例函数的概念以及意义。

情感态度与价值观
培养观察、推理、分析能力,体验数形结合的数学思想,认识反
比例函数的应用价值。

重点 理解反比例函数的概念,能根据已知条件写出函数解析式
难点 理解反比例函数的概念
教学过程 教学设计 与 师生互动 备 注
一、创设情境、导入新课 1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样
的?
问题提出:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,
(1)你能用含有R 的代数式表示I 吗?
(2)利用写出的关系式完成下表:
R/Ω 20 40 60 80 100
I/A
当R 越来越大时,I 怎样变化?当R 越来越小呢?
(3)变量I 是R 的函数吗?为什么?
学生小组合作讨论。

概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k x
k y 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。

学生探究反比例函数变量的相依关系,领会其概念。

二、联系生活、丰富联想
做一做
1.一个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。

那么变量y 是变量x 的函数吗?为什么?
学生先独立思考,再进行全班交流。

2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕
地面积m (公顷/人)是全村人口数n 的函数吗?为什么?
学生先独立思考,再同桌交流,而后大组发言。

3.y 是x 的反比例函数,下表给出了x 与y 的一些值:
x
-2 -1 21- 21 1 3 … y 32 2
-1 …

(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表。

学生先独立练习,而后再同桌交流,上讲台演示。

三、举例应用 创新提高:
例1.(补充)下列等式中,哪些是反比例函数?请指出反比例函数中相应
的K 值。

(1)3x y =
(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=x
y (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成x
k y =
(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)
改写后是x
x y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式 例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数?
分析:反比例函数x
k y =
(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2
=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。

解得m =-2
例3.(补充)已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且
当x =1时,y =4;当x =2时,y =5
(1) 求y 与x 的函数关系式
(2) 当x =-2时,求函数y 的值
分析:此题函数y 是由y 1和y 2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y 1、 y 2与x 的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。

这里要注意y 1与x 和y 2与x 的函数关系中的比例系数不一定相同,故不能都设为k ,要用不同的字母表示。

略解:设y 1=k 1x (k 1≠0),x k y 22=(k 2≠0),则x
k x k y 21+=,代入数值求得k 1=2,k 2=2,则x
x y 22+=,当x =-2时,y =-5 四、随堂练习
1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式

2.若函数2
8)3(m x m y -+=是反比例函数,则m 的取值是
3.矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析
式为
4.已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式
是 ,当x =-3时,y =
5.函数2
1+-=x y 中自变量x 的取值范围是 五、课后练习
已知函数y =y 1+y 2,y 1与x +1成正比例,y 2与x 成反比例,且当x =1时,
y =0;当x =4时,y =9,求当x =-1时y 的值 答案:y =4
课堂总结与反思:
反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。

相关文档
最新文档