反比例函数课件(公开课) PPT
合集下载
反比例函数-ppt课件

解
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
反比例函数ppt课件免费课件ppt课件

反比例函数的性质
反比例函数具有无限递减或无限递增的性质,即随着$x$的增大或减小,$f(x)$的值 会无限接近于0但永远不会等于0。
反比例函数在自变量$x$等于0时没有定义,因为分母不能为0。
反比例函数具有对称性,即当$x$取正值时和取负值时的函数值是相等的。
02
反比例函数的应用
反比例函数在生活中的应用
反比例函数与正比例函数的比较
定义域
正比例函数和反比例函数的定义 域均为$x in R$,即实数集。
函数图像
正比例函数图像是一条过原点的直 线,而反比例函数的图像是双曲线 。
增减性
正比例函数随着$x$的增大而增大或 减小,而反比例函数在$x>0$时, 随着$x$的增大而减小,在$x<0$时 ,随着$x$的增大而增大。
反比例函数与其他数学知识的结合
与一次函数的结合
反比例函数与一次函数的结合可 以用于解决一些复杂的数学问题 ,例如求解方程的根。
与指数函数的结合
反比例函数与指数函数的结合可 以用于描述一些复杂的数学关系 ,例如人口增长与时间的关系。
03
反比例函数的解析式
反比例函数的解析式
反比例函数的一般形式为 $f(x) = frac{k}{x}$,其中 $k$ 是常数且 $k neq 0$。
反比例函数在数学问题中的应用01Fra bibliotek0203
解决几何问题
在几何问题中,反比例函 数可以用于描述两个点之 间的距离与它们之间的角 度之间的关系。
解决物理问题
在物理问题中,反比例函 数可以用于描述物体的运 动规律,例如物体的加速 度与时间之间的关系。
解决概率问题
在概率问题中,反比例函 数可以用于描述事件的概 率与样本空间的大小之间 的关系。
2 .1反比例函数的图象(公开课课件)

22200
值为________.
-1
随堂练习
−
4. 反比例函数 =
(a,b为常数, < )的大致图象是 ( B )
5. 反比例函数 =
的图象两支分布在第二、四象限,则
点(m,m-2)在( C ) .
A. 第一象限
22200
B. 第二象限
C. 第三象限
D. 第四象限
合作探究二
22200
x错误:没有延伸源自 知识讲解合作探究1.列表时,自变量x的值可以选取一些互
为相反数的值这样既可简化计算,又便于
对称性描点。
2.描点时,要尽量多取一些数值,多描一些点,这
样既可以方便连线,又较准确地表达函数的
变化趋势。
3.连线时,按横坐标从小到大的顺序顺次用光
22200
滑的曲线依次连接各点,不能用折线连接.
随堂练习
拓展提升
1. 在同一平面直角坐标系中,一次函数y=kx+k与反比例函数
y= 的图象可能是(
A
22200
)
B
C
D
随堂练习
拓展提升
2.
如图,是三个反比例函数y= ,y= ,y= 在x轴上方的图象,由
此观察得到k1、k2、k3的大小关系为________(用“>”排列)
学习目标
形状: 反比例函数
的图象由两支曲线组成,
因此称反比例函数
的图象为双曲线.
位置:由k决定:
当k>0时,两支曲线分别位于_______________内;
第一、三象限
当k<0时,两支曲线分别位于_______________内.
值为________.
-1
随堂练习
−
4. 反比例函数 =
(a,b为常数, < )的大致图象是 ( B )
5. 反比例函数 =
的图象两支分布在第二、四象限,则
点(m,m-2)在( C ) .
A. 第一象限
22200
B. 第二象限
C. 第三象限
D. 第四象限
合作探究二
22200
x错误:没有延伸源自 知识讲解合作探究1.列表时,自变量x的值可以选取一些互
为相反数的值这样既可简化计算,又便于
对称性描点。
2.描点时,要尽量多取一些数值,多描一些点,这
样既可以方便连线,又较准确地表达函数的
变化趋势。
3.连线时,按横坐标从小到大的顺序顺次用光
22200
滑的曲线依次连接各点,不能用折线连接.
随堂练习
拓展提升
1. 在同一平面直角坐标系中,一次函数y=kx+k与反比例函数
y= 的图象可能是(
A
22200
)
B
C
D
随堂练习
拓展提升
2.
如图,是三个反比例函数y= ,y= ,y= 在x轴上方的图象,由
此观察得到k1、k2、k3的大小关系为________(用“>”排列)
学习目标
形状: 反比例函数
的图象由两支曲线组成,
因此称反比例函数
的图象为双曲线.
位置:由k决定:
当k>0时,两支曲线分别位于_______________内;
第一、三象限
当k<0时,两支曲线分别位于_______________内.
关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件
反比例函数的图像和性质ppt市公开课一等奖省赛课获奖PPT课件

y
0 x (B )
y
0 x (D )
y
0
(B x)
y
0
x
(D )
y 0x y 0x y 0x y 0x
第18页
一、复习:
函数 图象
• 正百分比在函每数个象• 反百分比函数
• y=kx 限内
y —xk
经点 (0,0) ,
关于 原点对
(1,k)直线
称双曲线
k>0
性
质 k<0
y随x增 大而增大
y随x增 大而减小
第14页
练一练 5
若点(-2,y1)、(-1,y2)、(2,y3)在
反百分比函数y 100 x
图象上,则( B )
A、y1>y2>y3
B、y2>y1>y3
C、y3>y1>y2
D、y3>y2>y1
第15页
练一练 6
已知圆柱侧面积是10πcm2,若圆柱底面半径为 rcm,高为hcm,则h与r函数图象大致是( )C.
反百分比函数图像和性质
第1页
回顾与思索1
挑战“记忆”
你还记得一次函数图象与性质吗?
一次函数y=kx+b(k≠0)图象是一条直线, 称直线y=kx+b.
当k>0时,
y
b>0
b=0
பைடு நூலகம்
o
x
b<0
当k<0时,
y
b<0
b=0
o
x
b<0
y随x增大而增大;
y随x增大而减小.
第2页
回顾与思索2
“预见性”,猜一猜
性 两个分支分别在第 两个分支分别在第
初三反比例函数ppt课件ppt

详细描述
根据反比例函数的定义和性质,利用已知条件建立方程式,通过解方程式得到函数解析式。
最大值和最小值的求解
总结词
求解反比例函数的最大值和最小 值
详细描述
根据反比例函数的性质,通过求 导或单调性等方法,求出函数的 最大值和最小值。
04 练习题
基础题
总结词
反比例函数的概念理解
详细描述
提供一些与反比例函数定义相关的简单题目, 例如求反比例函数的表达式等。
总结词
反比例函数的综合题
详细描述
提供一些涉及多个知识点,如 一次函数和反比例函数的综合
题目。
拓展题
总结词
反比例函数与其他知识的结合
详细描述
提供一些涉及其他知识点,如 一次函数、二次函数等与反比 例函数结合的题目。
总结词
实际生活中的反比例函数应用
详细描述
提供一些与实际生活相关的题 目,如电力消耗与时间的反比
感谢您的观看
$y = \frac{k}{x}$(k为常数,k≠0)
确定x的取值范围
x可以为任意实数,但为了方便作图,通常取x的取值范围为x≠0
绘制图像
通过描点法,在坐标系上绘制出反比例函数的图像
图像的平移和伸缩变换
平移
反比例函数的图像在坐标系上可以进行平移,当自变量x的值增加或减少时, 函数值y也会相应地增加或减少,因此可以将反比例函数的图像沿x轴或y轴平 移,使图像更加直观和易于理解
单调递减区间
当k<0时,函数在区间$(-\infty,0)$和 $(0,+\infty)$上单调递增
03 反比例函数的应用
实际问题的转化
总结词
将实际问题转化为数学模型
详细描述
根据反比例函数的定义和性质,利用已知条件建立方程式,通过解方程式得到函数解析式。
最大值和最小值的求解
总结词
求解反比例函数的最大值和最小 值
详细描述
根据反比例函数的性质,通过求 导或单调性等方法,求出函数的 最大值和最小值。
04 练习题
基础题
总结词
反比例函数的概念理解
详细描述
提供一些与反比例函数定义相关的简单题目, 例如求反比例函数的表达式等。
总结词
反比例函数的综合题
详细描述
提供一些涉及多个知识点,如 一次函数和反比例函数的综合
题目。
拓展题
总结词
反比例函数与其他知识的结合
详细描述
提供一些涉及其他知识点,如 一次函数、二次函数等与反比 例函数结合的题目。
总结词
实际生活中的反比例函数应用
详细描述
提供一些与实际生活相关的题 目,如电力消耗与时间的反比
感谢您的观看
$y = \frac{k}{x}$(k为常数,k≠0)
确定x的取值范围
x可以为任意实数,但为了方便作图,通常取x的取值范围为x≠0
绘制图像
通过描点法,在坐标系上绘制出反比例函数的图像
图像的平移和伸缩变换
平移
反比例函数的图像在坐标系上可以进行平移,当自变量x的值增加或减少时, 函数值y也会相应地增加或减少,因此可以将反比例函数的图像沿x轴或y轴平 移,使图像更加直观和易于理解
单调递减区间
当k<0时,函数在区间$(-\infty,0)$和 $(0,+\infty)$上单调递增
03 反比例函数的应用
实际问题的转化
总结词
将实际问题转化为数学模型
详细描述
初中数学反比例函数ppt课件ppt课件

深化对反比例函数的理解和应用
详细描述
在基础练习题的基础上,设计一些难度稍高的练习题,如计算题、作图题等,引导学生运用反比例函 数解决实际问题,提高解题能力和思维灵活性。
综合练习题
总结词
全面考察学生对反比例函数的掌握程度 和应用能力
VS
详细描述
设计一些综合性的练习题,涉及反比例函 数的多个知识点,要求学生综合运用所学 知识解决问题。通过这类题目,可以检验 学生对反比例函数的整体理解和应用水平 。
反比例函数在实际问题中的拓展应用
经济领域
在经济学中,反比例函数可以用于描 述一些经济现象,如供需关系、边际 效用等。
物理领域
在物理学中,反比例函数可以用于描 述一些物理量之间的关系,如电荷与 电场、电流与电阻等。
反比例函数与其他数学领域的联系
与几何学的联系
反比例函数的图像是双曲线,双曲线 在平面几何中有重要的应用,如面积 计算、角度计算等。
通过观察图像的形状、趋势和 特点,可以直观地理解函数的 性质和特点,从而快速找到解 决问题的方法。
图象法适用于解决一些较为复 杂的问题,例如求函数的极值 、判断函数的奇偶性等。
反比例函数的代数法
代数法是通过代数运算和方程求解来解决问题的方法。
在解题过程中,需要熟练掌握代数运算的规则和方法,能够根据问题的具体情况建 立方程并求解。
与一次函数的结合
反比例函数与一次函数常 常一起出现在问题中,例 如在研究速度与距离的关 系时。
与二次函数的结合
在解决一些实际问题时, 反比例函数可能会与二次 函数一起出现,例如在研 究物体的运动轨迹时。
与三角函数的结合
在物理学和工程学中,反 比例函数可能会与三角函 数一起出现,例如在研究 振动和波动时。
详细描述
在基础练习题的基础上,设计一些难度稍高的练习题,如计算题、作图题等,引导学生运用反比例函 数解决实际问题,提高解题能力和思维灵活性。
综合练习题
总结词
全面考察学生对反比例函数的掌握程度 和应用能力
VS
详细描述
设计一些综合性的练习题,涉及反比例函 数的多个知识点,要求学生综合运用所学 知识解决问题。通过这类题目,可以检验 学生对反比例函数的整体理解和应用水平 。
反比例函数在实际问题中的拓展应用
经济领域
在经济学中,反比例函数可以用于描 述一些经济现象,如供需关系、边际 效用等。
物理领域
在物理学中,反比例函数可以用于描 述一些物理量之间的关系,如电荷与 电场、电流与电阻等。
反比例函数与其他数学领域的联系
与几何学的联系
反比例函数的图像是双曲线,双曲线 在平面几何中有重要的应用,如面积 计算、角度计算等。
通过观察图像的形状、趋势和 特点,可以直观地理解函数的 性质和特点,从而快速找到解 决问题的方法。
图象法适用于解决一些较为复 杂的问题,例如求函数的极值 、判断函数的奇偶性等。
反比例函数的代数法
代数法是通过代数运算和方程求解来解决问题的方法。
在解题过程中,需要熟练掌握代数运算的规则和方法,能够根据问题的具体情况建 立方程并求解。
与一次函数的结合
反比例函数与一次函数常 常一起出现在问题中,例 如在研究速度与距离的关 系时。
与二次函数的结合
在解决一些实际问题时, 反比例函数可能会与二次 函数一起出现,例如在研 究物体的运动轨迹时。
与三角函数的结合
在物理学和工程学中,反 比例函数可能会与三角函 数一起出现,例如在研究 振动和波动时。
《反比例函数》PPT课件

些这样的实际例子吗?
问题4:
若y =(m + 1)xm 2-2 是关于x的反比例
函数,确定m的值,并求其函数关系式。
说说收获
1.通过本节课的学习,你有哪些收获? 2.你还存在什么疑问?
课后作业
1.课本:习题1,2,3,4 2.举两个生活中有关反比例函数
的例子。Biblioteka 问题4: 一个面积为6400㎡的长方形,那么花坛
的长a(m)与宽b(m)之间的关系式为
问题5:京沪高速公路长1262km,汽车沿京沪 高速公路从上海驶往北京,汽车行完
全程所需的时间t(h)与行驶的平均
速度v(km/h)之间的函数关系式为
反比例函数的定义
成一般地y ,=如xk(果k两为个常变数量,xk,≠y之0)间的的形关式系,可那以么表示
物理中的数学
例1:电流I、电阻R、电压U之间满足关系式
U=IR。在照明电路中,正常电压U=220V。
(1)求I与R之间的函数关系式 ? (2)变量I是R的反比例函数吗? (3)利用写出的关系式完成下表:
R(Ώ)
20
60
I(A)
2.2
例2:在某一电路中,保持电压U(伏)不变, 电流I(安)是电阻R(欧)的反比例函 数,当电阻R=5欧时,电流I=2安。
称y是x的反比例函数。
注意:变量x,y都不能等于0.
基础练习
下列函数表达式中,x表示自变量,哪些是反比 例函数?若是,请指出相应的k值。
(1)y
=
4
x
(2)
y
=
-
1
2x
(3)
y
=
1-x
(4)xy = 1
(5)y
=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
31
x1
(2) 当 x = 7 时, y 16 2. 7 1
练一练
3. 填空 (1) 若 y m 1 是反比例函数,则 m 的取值范围
x
是 m ≠ 1.
(2) 若 y mm 2 是反比例函数,则m的取值范
x
围是 m ≠ 0 且 m ≠ -2.
(3) 若
y
m2 x m 2 m 1
是反比例函数,则m的取值范围
y 1000 . x
(3) 已知北京市的总面积为1.68×104 km2 ,人均占 有面积 S (km2/人) 随全市总人口 n (单位:人) 的 变化而变化.
1.68 104
S
.
n
问题: 观察以上三个解析式,你觉得它们有什么共 同特点?
v 1463, t
y 1000, x
S 1.68 104 . n
则
yk1x1
k2. x1
∵ x = 0 时,y =-3;x =1 时,y = -1,
∴ -3=-k1+k2 ,
1
1 2
k2
,
∴k1=1,k2=-2.
∴ y x 1 2 . x 1
(2) 当 x =
1 2
时,y 的值.
解:把 x = 1 代入 (1) 中函数关系式,得 y = 1 1 .
2
Байду номын сангаас
2
为什么?
合作探究
下列问题中,变量间具有函数关系吗?如果有, 请写出它们的解析式.
(1) 京沪线铁路全程为1463 km,某次列车的平均速 度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;
v 1463 . t
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草 坪,草坪的长 y (单位:m) 随宽 x (单位:m)的 变化而变化;
人教版 九年义务教育 数学九年级(下)
26.1.1 反比例函数
授课人:宋勇平
学习目标
• 1、理解并掌握反比例函数的概念; • 2、会判断一个函数是否是反比例函数。 • 3、会用待定系数法求反比例函数解析式。
情境导入
当杂技演员表演滚钉板的节目时,观众们看到密 密麻麻的钉子,都为他们捏一把汗,但有人却说钉子 越多,演员越安全,钉子越少反而越危险,你认同吗?
大家有疑问的,可以询问和交流 可以互相讨论下,但要小声
9
练一练
下列函数是不是反比例函数?若是,请指出 k 的值.
y 3x1 yx
3 y 1
11x
是,k = 3 不是 是,k 1
11
y 3x1
y
1 x2
不是 不是
讨论交流
请写出2个反比例函数关系式, 并指出每个反比例函数关系式
中相应的k 值是多少?与同伴
x
x
解得 x =-2.
练一练
2、已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
(1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值.
解:(1) 设 y k ,因为当 x = 3 时,y =4 , x1
所以有4 k ,解得 k =16,因此 y 1 6 .
k 2
.
x
方法总结
用待定系数法求反比例函数解析式的一般步骤:
①设出含有待定系数的反比例函数解析式, ②将已知条件(自变量与函数的对应值)代入解析
式,得到关于待定系数的方程;
③解方程,求出待定系数; ④写出反比例函数解析式.
练一练
1、已知变量 y 与 x 成反比例,且当 x = 3时,y =-4.
小 结:谈谈你的收获
一、知识点 定义:
三种表达方式:
二、方法 待定系数法
1.设
2.代
3. 解
4.写
学习数学 享受数学 谢谢大家!
是 m = -. 1
能力提升
4. 已知 y = y1+y2,y1与 (x-1) 成正比例,y2 与 (x + 1) 成 反比例,当 x=0 时,y =-3;当 x =1 时,y = -1,求:
(1) y 关于 x 的关系式;
解:设 y1 = k1(x-1) (k1≠0), y 2
k2 x
1
(k2≠0),
都具有分式 的形式,其中分子 是常数.
一般地,形如
y
k x
(k为常数,k ≠ 0) 的函数,
叫做反比例函数,其中 x 是自变量,y 是函数.
议一议 对于反比例函数 y 1000 x
①当x=50时,y=_2_0_ ②当x=-100时,y=-__1_0_
③反比例函数自变量X取值范围是什么?为什么?
函数y
交流。
典例精析
例1、 已知函数 y2 m 2m 1x2m 2 3m 3是反比例函
数,求 m 的值.
解:因为 y2 m 2m 1x2m 2 3m 3 是反比例函数,
所以
2m2 + 3m-3=-1, 2m2 + m-1≠0.
解得 m =-2.
方法总结:已知某个函数为反比例函数,只需要根 据反比例函数的定义列出方程(组)求解即可,如本 题中 x 的次数为-1,且系数不等于0.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 y=6 时,求 x 的值.
解:(1) 设 y k . 因为当 x = 3时,y =-4, x
所以有 4 k . 解得 k =-12.
3
因此,y 关于 x 的函数解析式为
y
12 x
.
(2) 把 y=6 代入 y 1 2 ,得 6 1 2 .
练一练
1. 当m= ±1 时,y 2xm2 是反比例函数.
2. 已知函数 y (k2)(k1) 是反比例函数, x
则 k 必须满足 k≠2 且 k≠-1.
典例精析
例2、已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
y 12 x
提把示解x:=:(解22因设和):解为当y把y得=yx6x是kx==代k44.=x因入代时1的2为上入.,反当式比求y ,x例=因y1就2x2函时此的可,数,值求y得,y出.=y所16常2,以.1数4所2设k以y3的有. 值kx6 ..
k x (k≠0)中,自变量x的取值范围是不为0的一切实数。
④反比例函数函数值y能不能取0?为什么?
想一想 反比例函数除了可以用 y k (k ≠ 0)
x
的形式表示,还有没有其他表达方式?
反比例函数的三种表达方式:(注意 k ≠ 0)
y k, x
y kx 1,
xy k.
y与x成反比例
记住这三种形式