反比例函数的应用PPT课件

合集下载

反比例函数的应用 课件ppt(24张PPT)学案

反比例函数的应用 课件ppt(24张PPT)学案

拓展提高
解:(1)y= 180(x>0). x
(2)当x=10时,y= 180 =18(分). 10
(3)当0<y≤60时,x≥3(升).
中考链接
5.(2019•兴安盟)如图,反比例函数y= 2 的图象经过矩形OABC
x
的边AB的中点D,则矩形OABC的面积为( C ) A.1 B.2 C.4 D.8
中考链接
6.(2019•阜新)如图,点A在反比例函数y= 3 (x>0)的图象
x
上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面
积为( C )
A.3
B.2 C.32 D.1
课堂总结
通过本节课的学习,你有哪些收获? 1.利用反比例函数解决实际问题的关键:建立反比例函数模型.
2.体会反比例函数是现实生活中的重要数学模型. 认识数学在生活实践中意义.
变化趋势 双曲线无限接近于x、y轴,但永远不会与坐标轴相交
对称性
双曲线既是轴对称图形又是中心对称图形.
新知导入
设1根火柴的长度为1,能否用若干根火柴首尾相接摆出一个面积为 12的矩形?面积为12的正方形呢?
在现实世界中,成反比例的量广泛存在着. 用反比例函数的表达式和图象表示问题情境中成反比例的量之间的关 系,能帮助我们分析和判断问题情境中的有关过程和结果,确定变量 在一定条件下的特殊值或特定的范围,了解变量的变化规律.
板书设计
6.3 反置
课本 P154 练习题
【总结归纳】
解决实际问题需注意以下几个问题: 一是画出函数图像的三个步骤, 二是画出的函数应符合实际问题的实际意义,也就是列表时应注意自 变量的取值范围,并可根据图像的性质回答相关的问题。强调数形结 合思想。

反比例函数的应用PPT课件

反比例函数的应用PPT课件

学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关

反比例函数应用ppt课件ppt

反比例函数应用ppt课件ppt

经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。

反比例函数的应用ppt课件

反比例函数的应用ppt课件
如图,一辆汽车匀速通过某段公路,所需时间


解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]





设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]


∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内

混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2

析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质






k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质

解题通法

解决此类问题需要读懂题目,准确分析出各个量之间的


突 关系,将需要求的量根据等量关系表示出来.

反比例函数应用课件ppt课件

反比例函数应用课件ppt课件
反比例函数应用课 件ppt课件
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。

反比例ppt课件

反比例ppt课件

实例应用分析
日常生活中的反比例现象
在日常生活中,反比例现象非常普遍。 例如,当一个物体从高空下落时,下落 速度与下落时间成反比关系;当汽车以 恒定速度行驶时,行驶距离与行驶时间 成反比关系等。
VS
实际应用中的反比例关系
在许多实际应用领域中,如物理学、工程 学、经济学等,都存在反比例关系。掌握 反比例函数的变化趋势和影响因素对于解 决实际问题具有重要意义。例如,在物理 学中,当两个带电体之间的距离增大时, 它们之间的库仑力会减小;在经济学中, 当商品的价格上涨时,其需求量会减少等 。
课件
目 录
• 反比例的定义 • 反比例的应用 • 反比例的图像表示 • 反比例的变化趋势及影响因素 • 反比例的实践与探索
CHAPTER 01
反比例的定一个常数, 那么它们成反比例。
表达式
假设有两个量x和y,它们的乘积 为k,即x×y=k,那么我们称x和y 成反比例,k为它们的比例常数。
在生理学中,反比例关系可以用 来描述心率与血压之间的关系, 以及血糖水平与胰岛素浓度之间
的关系等。
THANKS FOR WATCHING
感谢您的观看
率与传动比的关系等。
在电力工程中,反比例关系可以用来描 述电压与电流之间的关系,以及功率与
电阻之间的关系等。
反比例在医学中的应用
在医学领域,反比例关系也有着 广泛的应用。例如,在药物治疗 中,药物的疗效与剂量之间存在
着反比例关系。
在疾病诊断中,某些病症的表现 症状与病情的严重程度之间也存
在着反比例关系。
CHAPTER 04
反比例的变化趋势及影响因 素
变化趋势分析
反比例函数的变化趋势
反比例函数是一种具有特殊性质的函数,其图像表现为双曲 线。在反比例函数中,当一个变量增加时,另一个变量会减 少,反之亦然。这种变化趋势在数学中具有重要的应用价值 。

反比例函数的图象与性质ppt

反比例函数的图象与性质ppt

反比例函数的周期性
总结词
反比例函数不具有周期性,但可以表现出准周期性。
详细描述
与正比例函数和余弦函数等具有明确周期的函数不同,反比例函数不具有周期性。然而,当自变量x取值范围 较大时,函数值会重复出现,这种重复现象被视为准周期性。这意味着在一定条件下,函数的值会以某种周期 性的方式重复出现。
04
优化方案设计
在工程、设计和科研等领域,反比例函数的图象可以帮助优化方案设计,如最优投入产出 比、最佳设计方案等。
用反比例函数的图象进行数学建模
01 02
建立数学模型
反比例函数是一种重要的数学模型,可以用来描述和解释许多自然和 社会现象,如物体运动的速度与时间的关系、药物在体内代谢的过程 等。
求解方程
坐标轴上的表现
详细描述
在坐标系中,反比例函数的图象会无限接近坐标轴,但永 远不会与坐标轴相交。也就是说,无论k取何值,y轴上的 截距始终为0。
数学模型
y = k/x (k ≠ 0)
图形特点
双曲线无限接近坐标轴,但永远不会与坐标轴相交。
反比例函数的图象的变化趋势
总结词:变化趋势 数学模型:y = k/x (k ≠ 0)
投资回报
在投资学中,反比例函数可以用于描述投资回报与投资金额之间的关系。当投资 金额增加时,回报率会降低;当投资金额减少时,回报率会增加。

THANKS
谢谢您的观看
《反比例函数的图象与性质ppt 》
xx年xx月xx日
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的图象的应用 • 反比例函数的应用拓展
01
反比例函数概述
反比例函数定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
4
练一练
1、你吃过拉面吗。一定体积的面团做成拉面,面条的总长度y(m) 是面条粗细(横截面积) S(mm2)的反比例函数.其图象如图所 示,则当面条粗1.6mm2时,面条的总长度是多少米?
y(m)
P(4,32) O S(mm2)
.
5
练一练
2、 蓄电池的电压为定值.使用此电源时,用电器的额电流 I(A)与电阻R(Ω)之间的函数关系如下图所示. (1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
.
11
随堂即练
4.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的 时间t(h)之间的函数关系图象.
(1)请你根据图象提供的信息求出此蓄பைடு நூலகம்池的蓄水量; (2)写出此函数的表达式; (3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?
.
12
过一片烂泥湿地,你能解释他们这样做的道理吗?
当人和木板对湿地的压力一定时,随着木板面积S(m2)的变
化,人和木板对地面的压强p (Pa)将如何变化?
如果人和木板对湿地地面的压力合计600N,
那么
(1)用含S的代数式表示p,p是S的反比例
函数吗?为什么?
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板面积
.
7
方法归纳
说一说反比例函数应用的常用解题思路
(1)根据题意确定反比例函数关系式:(2)由反 比例关系式及题中条件去解决实际问题.
.
8
随堂即练
1.已知矩形的面积为24cm2,则它的长y与宽x之间的 关系用图象大致可表示为( )
(1)当矩形的长为12cm时,宽为
其长为
.
,当矩形的宽为4cm,
(2) 如果要求矩形的长不小于8cm,其宽
(2)如果以此蓄电池为电源的 用电器限制电流不得超过10A, 那么用电器的可变电阻应控制 在什么范围内?
.
6
练一练
3.如图,正比例函数
y
k1x 的图象与反比例函数 y
k2 x
的图象
相交于A,B两点,其中点A的坐标为 ( 3,2 3 )
(1)分别写出这两个函数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴交流?
.
.
9
随堂即练
2.码头工人以每天30吨的速度往一艘轮船上装载货物,把货 物装载完毕恰好用了8天时间.货物到达目的地后开始卸货. (1)卸货速度v(吨/天)与卸货时间t(天)之间有怎样的函数关 系? (2)由于遇到紧急情况,船上的货物必须不超过5日卸载完 毕,那么平均每天至少要卸多少吨货物?
.
10
随堂即练
3、我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在
自然光照且温度为18 ℃的条件下生长最快的新品种.下图是某天恒温系统
从开启到关闭及关闭后大棚内温度y(℃)随时间x(h)变化的函数图象,其中
BC段是双曲y 线
k x
的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度为 18℃的时间有多少小时? (2)求k的值; (3)当x=16时,大棚内的温度约为多少摄 氏度?
至少要多大?
.
3
新课讲解
(4) 在直角坐标系中,画出相应的函数图象. (5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.
【(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa, 木板面积至少要多大?】
p/Pa
6000
5000
4000
3000
2000
1000 O 0.1 0.2 0.3 0.40.5 0.6 S/ m 2
第六章 反比例函数
6.3 反比例函数的应用
.
1
新课引入
问题:使劲踩气球时,气球为什么会爆炸? 在温度不变的情况下,气球 内气体的压强p与它的体积V 的乘积是一个常数F. 即 pV=F(F为常数,F>0).
.
2
反比例函数在实际生活中的应用
新课讲解
例11 某校科技小组进行野外考察,利用铺垫木板的方式通
相关文档
最新文档