水体中有机污染物的迁移转化
水体内污染物的迁移与转化

水体内污染物的迁移与转化随着人类经济社会的发展,大量的污染物排放到水体中,其中包括无机物和有机物等,这些污染物不仅对水体本身的生态环境造成了极大的破坏,而且还会对人类的健康产生巨大的威胁。
因此,进行水体内污染物的迁移与转化的研究具有非常重要的现实意义。
一、水体内污染物的迁移机制1. 全球水循环过程中的污染物迁移全球水循环是地球大气圈、水圈和陆地生物圈等部分组成的整体系统,在这个系统中,污染物会通过全球水循环向各地的水体中传输。
例如,空气中的污染物(如氧化氮与二氧化硫)在大气中形成酸雨,然后通过雨水向地面水体中传输,进而加剧了水体中的酸性。
2. 水体内不同环境的污染物迁移水体内污染物的迁移机制是多种多样的,因为水环境中的温度、水流速度、离子环境、生物区系等环境因素均会对污染物的迁移方式产生影响。
在静水环境中,污染物多集中分布于底部或者水面附近,而在水流速度较快的河流或者海域中,污染物则随着水流向下游或者海底迁移。
此外,污染物的溶解度、分子质量、分子形式等也会对污染物的迁移方式产生一定的影响。
二、水体内污染物的转化机制1. 水体内生物作用的污染物转化生物是水体内最重要的组成部分之一,因为水体中存在着大量的细菌、藻类、浮游生物等微生物群体,它们可以通过吃掉周围的有机物而将污染物降解为水体生态环境所必需的无害物质,从而起到了水体净化的作用。
例如,强氧化剂过氧化氢可以被水体内的微生物降解为H2O和O2,香料中的L-薄荷烯等芳香类污染物可以被水体内的藻类通过吸收转化为二氧化碳和水,并且藻类中的一些细胞壁也含有丰富的吸附有机物的活性部位,可以吸附水体中的污染物,起到净化作用。
因此,生物作用是水体内污染物转化中最为重要的一个机制。
2. 环境氧化还原的污染物转化环境氧化还原反应是一类水体内污染物转化的重要机制,它通常是指一类化学反应,其中电子在不同的物质之间转移。
在氧气存在的环境下,某些化合物可以发生氧化反应,例如铁离子可以被氧化为铁离子,从而引发一系列反应,最终使得化学反应达到自我平衡。
污染物在水体中的迁移转化方式

污染物在水体中的迁移转化方式主要有以下三种途径:
(1)氧化-还原作用。
天然水体中有许多无机和有机氧化剂和还原剂,如溶解氧、Fe3+、Mn4+、Fe2+、S2-及有机化合物等,这些物质对污染物的转化起重要作用。
如环境中重金属在一定氧化-还原条件下,容易发生价态变化,结果是其化学性质改变,迁移能力也会发生改变。
水体中的氧化-还原类型、速率和平衡,在很大程度上决定了水中重要溶质和污染物的性质。
如在一个厌氧湖泊中,湖下层的元素以还原态存在:碳还原成CH4,氮还原成[*]等,而表层水由于可被大气中氧补充,成为氧化性介质,达到热力学平衡时,碳成为CO2,氮成为[*]。
显然这种变化对水生生物和水质影响很大。
(2)络合作用。
天然水体中有许多无机配位体,如OH-、Cl-[*]、[*]和有机配位体如氨基酸、腐殖酸,以及洗涤剂、农药、大分子环状化合物等,它们可以与水中的污染物,特别是重金属发生络合反应,改变其性质和存在状态,影响污染物在水体中发生、迁移、反应和生物效应。
(3)生物降解作用。
水体中的微生物,特别是底泥中的厌氧微生物,可以使一些污染物发生转化,如把无机汞转变为有机汞。
环境化学水环境化学第三节讲解

例:某有机分子量为192,溶解在含有悬浮物的水体中, 若悬浮物种85%为细颗粒,有机碳含量为5%,其余 粗颗粒有机碳含量为1%,已知该有机物在水中溶解 度为0.05mg/L,那么其分配系数(Kp)如何计算?
lgKow=5.00-0.670×lg(0.05×103/192 ) Kow=2.46×105 由公式Koc=0.63Kow Koc=0.63×2.46×105=1.55×105 由公式Kp= Koc[ 0.2(1-f) Xocs + f Xocf ] Kp =1.55×105 [ 0.2(1-0.85) ×0.01 + 0.85×0.05 ] Kp =6.63×103
解;烷ቤተ መጻሕፍቲ ባይዱ芳基磺酸盐LAS,含磷,泡沫减少,可生物降解) 有机农药(有机氯农药DDT、六六六等毒性大,难分解,
禁用,有机磷农药含杀虫剂与除草剂,毒性大,难降解)
取代苯类化合物(苯环上的氢被硝基、胺基取代后生成的芳 香族卤化物,主要来自染料、炸药、电器、塑料、制药、 合成橡胶等工业)。
六、水体的污染小结
四、光解作用
光解作用是有机污染物真正的分解过程,因为它不可逆 的改变了反应分子,强烈的影响水环境中某些污染物 的归趋。
光解过程可分为三类: 1、直接光解:化合物本身直接吸收了光能而进行分解反
应。
2、敏化光解:水体中存在的天然物质被阳光激发后,又 将其激发态的能量转移给化合物而导致的分解反应。
3、氧化反应:天然物质被辐照而产生自由基获纯态氧等 中间体,这些中间体又与化合物作用而生成转化的产 物。
许多有机毒物可以像天然有机化合物那样作为 微生物的生长基质。只要用这些有毒物质作为 微生物培养的唯一碳源便可鉴定是否属于生长 代谢。在这种代谢过程中微生物对这些有毒物 质可以进行较彻底的降解或矿化,因而是解毒 生长基质。
水环境影响预测与评价模拟试题及参考答案

xs
为
控制河段总长度,km;x 为沿程距离(0≤x ≤
xs
) ,km。
2、河流水质一维水质模式
当河流中河段均匀,该河段的段面积 A、平均流速 ux、污染物的输入量 Q、扩散系数 D 都不随时间 变化,同时污染物的增减量仅为反应衰减项且符合一级反应动力学,无其他源和汇项,则河流中污 染物的浓度 C 为:
第 3 页 共 18 页
该式适用于无边界中的连续点源排放。 当污染源处于两个边界的中间,则:
C ( x, y ) =
Q u x h 4πD y x / u x
∞
u y {exp − x
2 ∞ + ∑ exp − u x (nb − y ) + 4Dy x 4 D y x n=1 2
Os =
式中,T 为温度,0C。 在很多情况下,人们希望能找到溶解氧浓度最低的点——临界点。在临界点河水的氧亏值最大,且 变化速率为零。此处水质最差,氧亏值(或溶解养值)及发生的距离为:
468 31.6 + T
(5-8)
xc =
k u ln 2 k 2 − k1 k1
D0 (k 2 − k1 ) 1 − L k 0 1
(二)水环境影响预测方法
预测地表水水质变化的方法大致可以分为三大类:数学模式法、物理模型法和类比分析法。
更多环评工程师资格考试资料,请浏览:/st /st
第 1 页 共 18 页
(1)数学模式法:该法利用表达水体净化机制的数学方程预测建设项目引起的水体水质变化,能 给出定量的预测结果,在许多水域有成功应用水质模型的范例。 (2)物理模型法:该法依据相似理论,在一定比例缩小的环境模型上进行水质模拟实验,以预测 由建设项目引起的水体水质变化。 该法能反映比较复杂的水环境特点, 且定量化程度高, 再现性好。 但需要有相应的试验条件和较多的基础数据,且制作模型要耗费大量的人力、物力和时间,而且水 中的化学、生物净化过程难于在试验中模拟。 (3)类比分析法:调查与建设项目性质相似,且其纳污水体的规模、流态、水质也相似的工程。 根据调查结果,分析预估拟建项目的水环境影响。该法属于定性或半定量。该法的缺点是此工程与 拟建项目有相似的水环境状况不易找到,所得结果比较粗略,一般多在评价工作级别较低,且评价 时间较短,无法取得足够的参数、数据时,用类比法求得数学模式中所需的若干参数、数据。 预测条件的确定:(1)筛选预测的水质参数;(2)拟预测的排污状况;(3)预测的设计水文条 件;(4)水质模型参数和边界条件(或初始条件)。
水中有机污染物的迁移转化(ppt46张)

生长代谢过程中的转化速率方程--Mond模型
Monod方程用来描述当化合物作为唯一碳源时的降解速率
E(酶)+S(底物)
ES
E+P(产物)
dB dc B c 1 1K s 1 R Y max dt dt K c R B c s max max
半衰期与有机物属性、温度、 pH有关,与有机物 初始浓度无关.
水解速率与pH的关系
Mabey等把水解速率归纳为
◎酸性催化过程 ◎碱性催化过程 ◎中性催化过程
水解速率为三个催化过反应速度的和:
d[RX] K [RX] h dt K K [H ] K K [OH ] K [H ] K K K /[H ] h A N B A N BW
①分配作用
②吸附作用
土壤矿物质对有机化合物的表面吸附作用
2. 标化分配系数
有机物在沉积物与水之间的分配
Kp cs cw cT cscp cw cw( 1Kpcp) cw cT ( 1Kpcp)
Kp —分配系数(与沉积物中有机质浓度有关) cT —总有机物浓度(μg/L) cs —沉积物中有机物浓度(μg/kg) cw —溶解在溶液中的有机物浓度(μg/L) cp —沉积物浓度(kg/L)
KA、KB、KN的计算
在lg Kh—pH图中,三个交点相对应于三个pH值
IAN-酸性催化与中性催化直线的交点的pH值 IAB-酸性催化与碱性催化直线的交点的pH值 INB-中性催化与碱性催化直线的交点的pH值
有机物在水中迁移转化规律

有机物在水中迁移转化规律
有机物迁移转化
(1)需氧污染物.在水中需要消耗大量的水溶氧进行微生物
分解的污染物称为需氧污染物,它们进入水体后即发生生物化学分解作用,由污染物有机成分中的碳水化合物、蛋白质、脂肪和木质素等分解为简单的二氧化碳和水及其它无机物质.
(2)难降解有机物污染物.这是指难以被生物分解的有机物
质.如有机氯农药、多氯联苯、芳香氨基化合物、高分子合成聚合物(塑料、合成橡胶、人造纤维)、染料等有机物质,它们在
环境中难以被生物降解,污染危害时间长.例如有机氯农药喷撒作物后只有一小部分落在作物枝叶上,其余大部分散落在土壤表面或进入大气;而进入大气后又可以随降雨或尘埃降落到地面后再进入水体.。
水环境化学有机物挥发作用水解光降解

实际上,水解速率与pH有关: Kh = Kn + Ka[H+]+ Kb[OH-]
Kh为水解反应速率常数。从上式看出,在一 定温度下水解速率取决于其类别(Kn、Ka、Kb 值不同)、浓度和介质的pH。
介质pH改变可引起水解速率的变化,其变化值可通过计算
Kh求得。水解常数与的关系,作lg Kh -pH图。从图中可知,
对于有机污染物的挥发作用及挥发速率人们更 为关注。
例如,大部分卤代脂肪烃及芳香烃化合物具有挥发性, 有从水体向大气挥发的倾向。
美国环保局确定的114种优先有机污染物中,具有挥发 作用的为31种,约占27%。
虽然这些有机物也能被微生物不同程度地降解,但在 流速较快的河流中,挥发到大气中是它们的主要迁移 途径。
1. 大多数环氧化物具有高度的反应性,因为它们 含有张力环。
2. 环氧化物可发生中性、酸催化、和碱催化反应, 多数情况下生成二醇,有时也生成酮。
3. 环氧化物的“短寿”也有例外,如有机氯杀虫 剂(如狄试剂 )。狄试剂由于具有两个碳环骨 架,从而产生了空间位阻(steric hinderance ), 因此是一种非常稳定的环氧化物。
挥发速率方程
c t
KV Z
(C
p KH
)
K
V
(C
p KH
)
式中 C 表示溶解相(水)中有机物的浓度 Kv 表示挥发速率常数 Kv′表示单位时间混合水体的挥发速率常数 Z 表示水体混合深度 P 表示水体上方有机物的大气分压 KH 表示亨利定律常数
多数情况下大气中有机化合物的分压几乎为零, 则该方程可简化为:
实验证明:DDT、2,4-D、辛硫磷、三硝基甲苯、苯 并(a)蒽、多环芳烃等均可发生光化学反应。如有人用 波长254 nm的紫外光照射DDT的己烷溶液,发现15 min内DDT损失43%;1 h内损失70%;4 h内损失97%; 其光化学反应的主要产物是DDE和DDD。反应过程可 表示如下:
水环境污染物的迁移转化规律

水环境污染物的迁移转化规律
水环境污染物的迁移转化是一个重要的环境问题,也是当前地球环境污染防治的一个议题。
水环境污染物的迁移转化规律是指,污染物在水中的运动、转化和转移规律,它经历了在
水中的溶解、沉降和扩散三种过程,也就是物理-化学-生物三位一体联合作用过程。
污染物在水环境中的转化是一个复杂的过程,包括物理转化、化学转化和生物转化三种过程。
物理转化是指水的流动和搅动能使污染物聚集;化学转化指的是污染物在水环境中由
于水的化学反应逸散和降解转化;生物转化是指污染物在水环境中被有机降解的过程,靠
微生物的发酵、氧化抑制等作用达到处理效果。
此外,水环境污染物的迁移转化还受到很多其他因素的影响,比如水质、温度、pH值、
向性、气泡等,这些因素可以影响污染物的迁移速率、转化效率以及最终消解率。
综上所述,水环境污染物的迁移转化是一个复杂的过程,要正确预测和分析污染物的迁移、转化和消解情况,需要大量实际调查资料和实验数据,结合理论模拟和理论计算,以便更准确地评估水环境污染物的迁移转化过程,有效地实施环境保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 狄氏剂
• 异狄氏剂
• DDT
• 氯丹
• 六氯苯
• 灭蚁灵
• 毒杀芬
以上都为农药
• 七氯
• 多氯联苯
精细化工产品
• 二噁英 化学品生产的杂质衍生物和含氯废物焚烧产生的次生污染物
2020/9/9
9
• 呋喃
新增九种POPs 名单
• α-六氯环己烷; • β-六氯环己烷; • 林丹(99.5%的γ-六六六); • 六溴联苯醚和七溴联苯醚; • 四溴联苯醚和五溴联苯醚; • 十氯酮(开蓬); • 六溴联苯; • 五氯苯; • 全氟辛烷磺酸、全氟辛烷磺酸盐(
2020/9/9
17
有机污染物的挥发速率 c / t
及挥发速率常数Kv 的关系:
C / t KvC
Kv’—单位时间混合水体的挥发速率常数
2020/9/9
18
2.水解作用
有机毒物与水的反应是X-基团与 OH-基团交换的过程:
RX H 2O ROH HX
在水体环境条件下,可能发生水解的官
能团有烷基卤、酰胺、胺、氨基甲酸酯、羧
• 世界海洋近岸沉积物中DDT的含量范围为
<0.1~44ng/g,dw
2020/9/9
14
2020/9/9
15
二、水中有机物的迁移转化
有机污染物在水环境中的迁移转化 取决于有机污染物的自身性质和水体的 环境条件。
•迁移转化主要方式:
吸附、挥发、水解、光解、生物富集、 生物降解等。
2020/9/9
能蓄积在食物链中并对上一营养级的生物造成影 响
能够长距离迁移到达偏远的极地地区
在相对环境浓度下会对接触该物质的生物造成有 害或有毒的效应
2020/9/9
8
《 POPs 公约》
• 2001年在瑞典首都斯德哥尔摩签订的《关于持久性有机污染物的斯德哥尔摩 公约》2004年5月17日生效。
• 需要采取国际行动的首批12种物质:
• 对水体中有毒有机污染物的环境化学行为 的研究正成为环境化学、水污染控制和水 处理工程领域的研究焦点之一
2020/9/9
7
3. 持续性有机污染物(POPs) (persistent organic pollutions )
• 持续性有机污染物是指具有以下特征的环 境污染物
在所释放和传输的环境中持续存在
第八节 水体中有机污染物的迁移转化
• 水中主要有机污染物 • 水中有机物的迁移转化 • 常见有机物的降解方式及途径 • 农药在环境中的归趋过程分析
1
一、水中主要有机污染物
• 按对水质影响和危害方式分: • 1. 耗氧有机物 • 2. 有毒有机污染物 • 3. 持续性有机污染物(POPs)
2020/9/9
• 但当氧不能及时得到补充时,使水体缺氧、变黑 发臭,水质恶化,导致鱼类及水生生物缺氧窒息 或中毒死亡,水的可利用性大大降低。
2020/9/9
4
2. 有毒有机污染物
• 定通过多种途径进入水体,导致水 体污染,直接危害水生生物,并通过食物 链的传递和积累危害动物和人类健康。
PFOS)和全氟辛基磺酰氟。
水环境中的POPs
• 水环境包括水相、悬浮物相和沉积物相
• POPs在水中的溶解度很低,属于憎水性物 质, POPs一旦进入水环境后,可与水中 的悬浮颗粒物,沉积物中的有机质、矿物 质等发生一系列物理化学反应,如分配、 物理吸附和化学吸附等,进而转入到固相 中,致使水中POPs的浓度下降。在一定的 条件下,吸附到水中悬浮物和沉积物中的 POPs又会发生各种转化,重新进入水体。
• 一个有毒化合物的光化学分解的产物可能 还是有毒的
2020/9/9
21
直接光解:化合物本身直接吸
收了太阳能而进行分解反应
敏化光解(间接光解):水体中
存在的天然物质(如腐殖质等)
光解作用 被阳光激发,又将其激发态的
能量转移给化合物而导致的分
解反应
氧化反应 :天然物质被辐照
而产生自由基或纯态氧(又称 单一氧)等中间体,这些中间
16
1.挥发作用
• 许多有机物,特别是卤代脂肪烃和芳香烃,都具 有挥发性,从水中挥发到大气中后,其对人体健 康的影响加速,如CH2Cl2、CH2Cl—CH2Cl等。
• 挥发作用是有机物从溶解态转入气相的一种重要 迁移过程。
• 挥发速率依赖于有毒物质的性质和水体的特征。 如果有毒物质具有“高挥发”性质,那么显然在 影响有毒物质的迁移转化和归趋方面,挥发作用 是一个重要的过程。
2
1. 耗氧有机物
其危害主要是通过耗氧过 程来实现的,因此统称为
耗氧有机物
• 定义:水体中能被大气中氧分子或水中溶 解氧所氧化的各种有机物质
• 包括:动、植物残体和生活污水及某些工 业废水中的碳水化合物、脂肪、蛋白质等 易分解的有机物。
2020/9/9
3
• 耗氧有机物 的危害:
• 在水中氧供给充分的条件下,对水体水质不会产 生危害
酸酯、环氧化物、腈、磷酸酯、 磺酸酯、
硫酸酯等。
2020/9/9
19
• 水解作用是有机化合物与水之间最重要的 反应
• 有机物通过水解反应而改变了原化合物的 化学结构
• 水解作用可以改变反应分子,但并不能总 是生成低毒产物
2020/9/9
20
3.光解作用
• 光解作用是有机污染物真正的分解过程 , 强烈地影响水环境中某些污染物的归趋
2020/9/9
5
• 有毒有机污染物主要包括:
农药、多氯联苯(PCBs)、卤代脂肪烃、 醚类、单环芳香族化合物、多环芳香烃类 (PAHs)、酚类、酞酸酯类、亚硝胺类和 其它各种人工合成的具累积性生物毒性的 有机化合物,石油污染物亦可属此类
2020/9/9
6
• 全球水体有毒有机物的污染呈加重势态, 特别是持久性有机污染物引起的水环境问 题日益突出。
2020/9/9
11
我国部分地区水域中有机氯农药的污染水平
2020/9/9
12
2020/9/9
13
沉积物中的POPs
• 研究表明,沉积物中积累的有机氯农药浓 度相对于土壤、水和大气而言是最高的, 在没有陆地排放源的情况下,一些水体的 沉积物成为排入水和大气中污染物的排放 源。我国近年来对内陆湖泊水体和近岸海 域沉积物监测研究也都基本反映了这一事 实。
体又与化合物作用而生成转
2020/9/9
化的产物
22
农药在环境中的归趋过程分析
• 农药的环境归趋(化学动力学过程)是指 一种物质在各类环境因子的影响下,随时 间有了性质或数量上的变化。这种变化包 括质量、浓度和化学结构或属性等。化学 动力学的过程则包括了分配、迁移和转化。