二维导电纳米复合材料的制备及其性能研究

合集下载

《纳米TiO2复合材料制备及其光催化性能研究》范文

《纳米TiO2复合材料制备及其光催化性能研究》范文

《纳米TiO2复合材料制备及其光催化性能研究》篇一一、引言随着科技的不断进步和人类对环保问题的日益关注,光催化技术作为新兴的绿色技术领域受到了广泛的关注。

纳米TiO2复合材料作为一种高效的光催化剂,具有广泛的应用前景。

本文旨在研究纳米TiO2复合材料的制备方法及其光催化性能,为实际应用提供理论依据。

二、文献综述纳米TiO2复合材料因其独特的物理和化学性质,在光催化领域具有广泛的应用。

其制备方法、性能及应用已成为研究热点。

目前,制备纳米TiO2复合材料的方法主要包括溶胶-凝胶法、水热法、微乳液法等。

其中,溶胶-凝胶法因其操作简便、制备条件温和等优点备受关注。

而光催化性能的研究主要关注其对有机污染物的降解、抗菌性能及自清洁等方面的应用。

三、实验方法(一)实验材料实验中所需材料主要包括TiO2纳米粉体、表面活性剂、溶剂等。

所有材料均需符合实验要求,保证实验结果的准确性。

(二)制备方法本文采用溶胶-凝胶法制备纳米TiO2复合材料。

具体步骤包括:将TiO2纳米粉体与表面活性剂混合,加入溶剂进行搅拌,形成溶胶;然后进行凝胶化处理,得到凝胶;最后进行热处理,得到纳米TiO2复合材料。

(三)性能测试本实验通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对制备的纳米TiO2复合材料进行表征。

同时,通过光催化实验测试其光催化性能,以降解有机污染物为评价指标。

四、实验结果与分析(一)表征结果通过XRD、SEM和TEM等手段对制备的纳米TiO2复合材料进行表征。

结果表明,制备的纳米TiO2复合材料具有较高的结晶度和良好的分散性。

(二)光催化性能测试结果以降解有机污染物为评价指标,对制备的纳米TiO2复合材料进行光催化性能测试。

结果表明,该材料具有优异的光催化性能,能够有效降解有机污染物。

此外,我们还研究了不同制备条件对光催化性能的影响,为优化制备工艺提供依据。

五、讨论本实验研究了纳米TiO2复合材料的制备方法及其光催化性能。

赝电容材料-Ti3C2Tx复合材料的制备及其电化学性能研究

赝电容材料-Ti3C2Tx复合材料的制备及其电化学性能研究

赝电容材料-Ti3C2Tx复合材料的制备及其电化学性能研究赝电容材料/Ti3C2Tx复合材料的制备及其电化学性能研究摘要:赝电容材料/Ti3C2Tx复合材料以其在电化学储能领域的广泛应用前景受到了越来越多的关注。

本文采用简单的湿化学法和电化学沉积法制备了赝电容材料/Ti3C2Tx复合材料,并对其电化学性能进行了研究。

实验结果表明,赝电容材料/Ti3C2Tx复合材料在电容性能和循环稳定性方面表现出良好的表现,具有良好的应用潜力。

1. 引言赝电容材料/Ti3C2Tx复合材料是一种能够储存和释放电荷的材料。

它具有高能量密度、长循环寿命和快充快放的特点,因此在能量储存和转换领域有着广阔的应用前景。

近年来,随着二维过渡金属碳化物(TMXenes)的研究进展,人们发现TMXenes具有优异的电化学性能,并能够与其他材料形成复合材料,进一步提高其电容性能。

因此,研究赝电容材料/Ti3C2Tx复合材料的制备和性能对于拓宽其应用领域具有重要的意义。

2. 实验方法本实验采用湿化学法制备了Ti3C2Tx纳米片,然后利用电化学沉积法将赝电容材料沉积到Ti3C2Tx表面。

首先,将Ti3AlC2粉末与浓HCl反应,去除Al原子,然后用浓HCl和HF溶液进行酸化处理,最终得到Ti3C2Tx纳米片。

接下来,将制备好的Ti3C2Tx纳米片放入含有金属离子的电解质溶液中,进行电化学沉积,得到赝电容材料/Ti3C2Tx复合材料。

3. 结果与讨论通过扫描电子显微镜(SEM)观察发现,Ti3C2Tx纳米片形貌规整,分散均匀。

电化学测试结果显示,制备得到的赝电容材料/Ti3C2Tx复合材料具有优异的电容性能。

比特(BET)表面积测试结果表明,赝电容材料/Ti3C2Tx复合材料具有大的比表面积,有利于电荷的储存和传导。

循环伏安(CV)测试表明,赝电容材料/Ti3C2Tx复合材料在循环过程中呈现出良好的稳定性和可逆性。

恒流充放电测试结果显示,在不同的电流密度下,赝电容材料/Ti3C2Tx复合材料表现出良好的充放电能力和循环稳定性。

导电高分子复合材料的制备及性能研究

导电高分子复合材料的制备及性能研究

导电高分子复合材料的制备及性能研究近年来,随着电子技术和材料科学的飞速发展,导电高分子复合材料逐渐成为研究热点。

导电高分子复合材料以其优越的导电性能和良好的物理化学性能,被广泛应用于电子、能源和传感器等领域。

而其制备和性能研究成为当前材料科学研究的重点。

一、导电高分子复合材料的制备导电高分子复合材料的制备主要包括导电填料选择、制备方法和复合工艺等几个方面。

首先,导电填料的选择对于导电高分子复合材料的性能至关重要。

目前常用的导电填料有碳纳米管、碳黑、金属纳米线等。

其中,碳纳米管是一种理想的导电填料,其高导电率和优异的力学性能使其成为最佳选择。

其次,制备方法包括机械混合法、溶液浸渍法、原位聚合法等。

其中,机械混合法是一种简单易行且效果较好的方法,通过高速搅拌或研磨将导电填料与基体材料均匀混合。

最后,复合工艺可以通过压片、热压、注塑等方法将导电填料和基体材料固定在一起,并形成复合材料。

二、导电高分子复合材料的性能研究导电高分子复合材料的性能研究主要包括导电性能、力学性能和热稳定性等方面。

首先,导电性能是导电高分子复合材料最重要的性能之一。

通过实验测试发现,导电填料的形态、含量和分散性对导电性能有着明显影响。

在导电填料含量一定的情况下,导电性能随着填料形态的改变呈现不同的变化规律。

其次,导电高分子复合材料的力学性能直接影响其在实际应用中的可行性。

该复合材料的力学性能主要与基体材料的力学性能和导电填料的分散性有关。

最后,热稳定性是导电高分子复合材料在高温环境下应用的重要性能之一。

研究表明,导电填料的选择和复合工艺对导电高分子复合材料的热稳定性有着显著影响。

三、导电高分子复合材料的应用前景导电高分子复合材料由于其优异的导电性能和独特的物理化学性能,在电子、能源和传感器等领域具有广阔的应用前景。

首先,在电子领域,导电高分子复合材料可用于柔性显示器、导电墨水和透明导电膜等器件的制备。

其次,在能源领域,导电高分子复合材料可作为电池、超级电容器和光伏设备等的重要组成部分,提高器件的性能和可靠性。

WS2复合材料的制备及应用研究进展

WS2复合材料的制备及应用研究进展

第 50 卷 第 1 期2021 年 1月Vol.50 No.1Jan.2021化工技术与开发Technology & Development of Chemical IndustryWS 2复合材料的制备及应用研究进展侯传旭,张德庆(齐齐哈尔大学材料科学与工程学院,黑龙江 齐齐哈尔 161000)摘 要:二硫化钨(WS 2)作为过渡金属二硫化物(TMDs)的一种,具有独特的二维结构、良好的稳定性和半导体特性。

近几年,以WS 2为基体制备的WS 2复合材料表现出许多优异的性能,受到越来越多研究人员的关注。

本文概述了WS 2复合材料的制备方法,以及近年来WS 2复合材料在催化剂、气敏传感器、电极材料、复合纤维材料、电磁波吸收材料等方面的应用,展望了WS 2复合材料的发展前景。

关键词:二硫化钨;复合材料;制备;发展前景中图分类号: TB 333 文献标识码:A 文章编号:1671 -9905(2021)01/02 -0037-04作者简介:侯传旭(1996-),女,汉族,硕士研究生,研究方向为材料物理与化学。

E -mail:*****************收稿日期:2020-11-03WS 2是最早发现并得到研究的层状纳米材料之一[1-2],其制备方法主要有液相剥离法[3]、化学气相沉积法[4]、水热法[5]和固相烧结法[6]等。

根据晶体结构中W 原子的2种配位形式(八面体配位和三棱柱配位),WS 2可分为金属相和半导体相。

金属相通过八面体配位形成 1T 型结构[图1(a)],半导体相则通过三棱柱配位形成2H 型或3R 型结构[图1(b)] [7-9]。

WS 2通过W −S 共价键和较弱的范德华力,层间相互作用结合在一起,具有优异的光学、电学和机械性能[10],在传感器[11-12]、催化剂[13-15]、电极材料[16-17]、润滑剂[18]等领域均有广泛的应用前景。

随着科技的发展,单一功能的WS 2已无法满足人们的需要,因此开发WS 2复合材料显得尤为重要。

石墨烯聚苯胺复合材料的制备及其电化学性能

石墨烯聚苯胺复合材料的制备及其电化学性能

石墨烯聚苯胺复合材料的制备及其电化学性能一、本文概述本文旨在探讨石墨烯聚苯胺复合材料的制备工艺及其电化学性能。

石墨烯,作为一种二维的碳纳米材料,因其出色的电导性、高比表面积和良好的化学稳定性,在电化学领域具有广泛的应用前景。

聚苯胺,作为一种导电聚合物,具有良好的电化学活性和环境稳定性。

将石墨烯与聚苯胺复合,可以充分发挥两者的优势,提高复合材料的电化学性能。

本文将首先介绍石墨烯和聚苯胺的基本性质,然后详细阐述石墨烯聚苯胺复合材料的制备方法,包括溶液混合法、原位聚合法等。

随后,通过对制备的复合材料进行结构表征和电化学性能测试,分析其电化学性能的影响因素及优化条件。

本文还将讨论石墨烯聚苯胺复合材料在超级电容器、锂离子电池等电化学器件中的应用潜力,并展望其未来的发展前景。

通过本文的研究,旨在为石墨烯聚苯胺复合材料的制备和应用提供理论支持和实践指导,推动其在电化学领域的广泛应用。

二、石墨烯聚苯胺复合材料的制备方法石墨烯聚苯胺复合材料的制备是一个融合了化学合成和纳米材料制备技术的复杂过程。

这种方法的关键步骤包括石墨烯的制备、聚苯胺的合成以及两者的复合。

我们需要制备高质量的石墨烯。

这通常通过化学气相沉积(CVD)法、氧化还原法或剥离法实现。

其中,氧化还原法是最常用的一种方法,它通过将天然石墨与强氧化剂反应,生成氧化石墨,再经过热还原或化学还原得到石墨烯。

接下来,我们合成聚苯胺。

聚苯胺的合成通常通过化学氧化聚合法进行,如使用过硫酸铵作为氧化剂,在酸性条件下将苯胺单体氧化聚合,生成聚苯胺。

制备石墨烯聚苯胺复合材料的核心步骤是将石墨烯和聚苯胺进行有效复合。

这可以通过溶液混合法、原位聚合法或熔融共混法实现。

其中,溶液混合法是最常用的一种方法。

将石墨烯分散在适当的溶剂中,然后加入聚苯胺溶液,通过搅拌或超声处理使两者充分混合。

随后,通过蒸发溶剂或热处理使复合材料固化。

为了进一步提高复合材料的性能,我们还可以在制备过程中引入其他添加剂或进行后处理。

《贵金属-MXene纳米复合材料的研制及性能研究》

《贵金属-MXene纳米复合材料的研制及性能研究》

《贵金属-MXene纳米复合材料的研制及性能研究》贵金属-MXene纳米复合材料的研制及性能研究一、引言近年来,贵金属/MXene纳米复合材料由于其优异的电、磁、光等性能,在能源储存、催化、生物医疗等领域具有广泛的应用前景。

本文旨在研制贵金属/MXene纳米复合材料,并对其性能进行深入研究。

二、贵金属/MXene纳米复合材料的研制1. 材料选择与制备贵金属(如金、银、铂等)具有优异的导电性、催化性能和生物相容性,而MXene作为一种新型二维材料,具有高导电性、高强度和高化学稳定性等特点。

因此,选择贵金属和MXene作为复合材料的组成成分。

制备过程中,首先合成MXene纳米片,然后通过化学还原法或光还原法将贵金属纳米粒子负载在MXene纳米片上,形成贵金属/MXene纳米复合材料。

2. 制备工艺优化为提高贵金属/MXene纳米复合材料的性能,对制备工艺进行优化。

通过调整贵金属前驱体的浓度、反应温度、反应时间等参数,以及采用表面活性剂、还原剂等辅助手段,实现对贵金属纳米粒子的尺寸、形貌和分布的控制。

三、性能研究1. 电学性能贵金属/MXene纳米复合材料具有优异的电学性能。

通过测量复合材料的电导率、电阻率等参数,发现其电学性能随贵金属含量的增加而提高。

此外,MXene的高导电性和二维结构有利于提高电子传输速度和减少电子传输过程中的能量损失。

2. 催化性能贵金属/MXene纳米复合材料在催化领域具有广泛应用。

通过测试复合材料对某些有机反应的催化活性,发现其催化性能优于单一贵金属或MXene。

这主要是由于贵金属和MXene之间的协同作用,以及纳米级粒子提供的大量活性位点。

3. 稳定性与生物相容性MXene的高化学稳定性和生物相容性使得贵金属/MXene纳米复合材料在生物医疗领域具有潜在应用价值。

通过测试复合材料在生理环境中的稳定性以及与生物体的相互作用,发现其具有良好的生物相容性和较低的生物毒性。

四、结论本文成功研制了贵金属/MXene纳米复合材料,并对其性能进行了深入研究。

有机一无机纳米复合材料的制备、性能及应用

有机一无机纳米复合材料的制备、性能及应用

有机一无机纳米复合材料的制备、性能及应用引言纳米复合材料是一类新型复合材料,它是指1种或多种组分以纳米量级的微粒即接近分子水平的微粒复合于基质中所构成的一种复合材料。

纳米复合材料因其分散相尺寸介于宏观与微观之间的过渡区域,将给材料的物理和化学性质带来特殊的变化,正日益受到关注。

纳米材料被誉为“21世纪最有前途的材料”,该类材料研究的种类已经涉及到无机物、有机物和非晶态材料等。

有机-=无机纳米复合材料因其综合了有机物和无机物各自的优点,并且可以在力学、热学、光学、电磁学和生物学等方面赋予材料许多优异的性能,正在成为材料科学研究的热点之一。

目前,国内外在这方面的研究成果正不断见诸报道。

本文拟对有机一无机纳米复合材料的制备、性能及应用作一个综述。

有机一无机纳米复合技术最先制得的纳米复合材料是无机纳米复合材料,如金属、非金属、陶瓷和石英玻璃等。

目前,纳米复合材料研究的种类已涉及到有机物和非晶态材料等。

各国首先着重于纳米复合材料制备方法的研究,特别是薄膜制备法的研究。

纳米复合方法常用的有3种:溶胶一凝胶法、嵌入法和纳米微粒填充法。

其中溶胶一凝胶法较早用于制备有机一无机分子杂化材料或纳米复合材料;嵌入法在分子材料领域表现出很好的前景,特别是将不同的性能综合到单一的材料中去。

把具有有机/无机纳米复合材料的性能和特点的纳米颗粒材料添加到其他材料中,可以根据不同的需要选择适当的材料和添加量达到材料改性的目的,因为复合材料中增强体的尺寸降到纳米数量级会给复合材料引入新的材料性能。

首先,纳米颗粒本身具有量子尺寸效应、小尺寸效应、表面界面效应和宏观量子隧道效应等特殊的材料特性,这会给复合材料带来光、电、热、力学等方面的奇异特性;其次,纳米颗粒增强复合材料所具有的特殊结构,如高浓度界面、特殊界面结构、巨大的表面能等等必然会大大影响复合材料的宏观性能。

由无机纳米材料与有机聚合物复合而成的有机/无机纳米复合材料具有无机材料、无机纳米材料、有机聚合物材料、无机填料增强聚合物复合材料、碳纤维增强聚合物复合材料等所不具备的一些性能。

零维量子点二维纳米片复合材料的制备及其光催化、气敏性能研究

零维量子点二维纳米片复合材料的制备及其光催化、气敏性能研究

零维量子点/二维纳米片复合材料的制备及其光催化、气敏性能研究人类社会发展进程中所产生的水污染和空气污染不但制约了社会经济的可持续发展,而且严重威胁到人类的健康。

在污染治理与监控方面,半导体光催化技术和气敏传感器由于其独特的优势得到了研究者的广泛关注。

一方面,利用半导体光催化技术可以将太阳能转化成化学能用于污染物的深度降解;另一方面,半导体气敏传感器能够检测和量化有毒、有害、易燃和易爆气体等用于环境污染的检测与监控。

在半导体材料性能改进的方法中,利用零维量子点与二维纳米片复合形成异质结或同质结被证明是构筑高性能半导体材料最有效的方法之一。

因此,本论文合成了多种零维量子点/二维纳米片复合材料来构筑高效光催化剂、气敏传感器并对其机制进行了讨论。

主要研究内容如下:1.合成了TiO2QDs/TiO2纳米片同质结构复合材料,并对其光催化性能及机制进行研究。

通过同质结的构建,加快光生电子空穴的分离及转移的同时抑制了光生电子和空穴的复合,从而显著提升其光催化活性。

其中TiO2QDs/TiO2-40同质结构复合材料在30 min内就可以将RhB全部降解,是TiO2纳米片降解速率的大约5倍。

2.合成了CQDs/TiO2纳米片异质结构复合材料,并对其可见光光催化活性及机理进行了研究。

在自然光的照射下,复合材料表现出比TiO2纳米片更优异的光催化活性,即使在可见光下(λ≥420 nm)也能实现对RhB的降解。

这得益于CQDs既可以作为电子存储器,分离光生电子和空穴,还可以作为光敏化剂将长波长光转换为TiO2能够吸收的短波长光,从而提高复合材料的光催化活性。

3.合成了TiO2QDs/g-C3N4纳米片异质结构复合材料,并对其在可见光下对罗丹明B(RhB)的降解效率及光催化机制进行研究。

TiO2QDs与g-C3N4纳米片之间异质结的形成加快了光生电子空穴的分离及转移,显著提升了复合材料的光催化效率。

负载3 wt%的TiO2QDs的TiO2QDs/g-C3N4纳米片异质结构表现出最佳的光催化活性,对RhB的降解速率相对于g-C3N4纳米片的降解速率提高了3.4倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二维导电纳米复合材料的制备及其性能研究新型二维纳米材料(石墨烯和MXenes)具有由尺寸效应带来的优异物化性能,目前已在众多领域展现出广阔应用前景。

为有效利用石墨烯和MXenes本身纳米尺度上优异性能以满足相关领域具体使用要求,利用逐渐兴起的组装技术,将微观尺寸的纳米片层组装成具有宏观尺寸的功能结构(如一维纤维、二维薄膜、三维气凝胶)无疑是一种最为有效的方法。

通过对二维纳米材料组装体进行合理的结构设计和形貌调控,不仅能够更好地利用纳米材料本身优异的电学、光学和力学等性能,而且还能开发材料新的功能特性并拓展其应用范围,因此,研究二维纳米材料的组装策略并以此制备宏观功能材料对实现二维纳米材料实际应用具有重要意义。

本论文针对MXenes和石墨烯宏观组装体制备和使用时仍存在的难点和性能缺陷,如石墨烯薄膜在作为电磁屏蔽材料时屏蔽机制单一、MXenes材料在潮湿环境中易降解、MXenes二维宏观薄膜导电与力学性能难以兼顾以及MXenes三维宏观组装结构难以形成等问题,通过提出新的结构设计思路和组装策略,设计出轻质磁性多孔石墨烯二维薄膜、高强高导电二维MXene薄膜、低密度疏水二维MXene 泡沫薄膜以及低密度、超弹性MXene三维气凝胶,并系统研究其结构与性能关系。

本论文主要内容和创新成果如下:(1)针对目前石墨烯薄膜作为电磁屏蔽材料时屏蔽机制单一且性能提高困难的问题,我们采用高效的肼蒸汽还原诱导发泡工艺制备轻质、导电且具有磁性的石墨烯/羰基铁多孔薄膜并研究其超宽频段电磁屏蔽性能。

通过引入适量壳聚糖作为界面粘接剂来增强还原氧化石墨烯纳米片之间的层间相互作用,稳固体系内多孔结构,优化宏观组装材料表观形貌和内部结构;利用导电组分和磁性组分对电磁波损耗的协同效应,将磁性片状羰基铁引入到导
电的多孔石墨烯网络中以丰富材料对电磁波损耗机制,进一步提升材料的电磁屏蔽性能。

我们制备的轻质、高导电石墨烯薄膜,可在密度为0.12 g/cm3时,电导率达到2000 S/m以上,当样品厚度为0.3 mm时,在8.2-59.6GHz的较宽频段范围内展现出高于38dB的屏蔽效能。

此外,我们还对壳聚糖的引入对薄膜内部多孔结构的影响以及磁性颗粒的引入对材料电磁屏蔽性能的影响进行系统研究。

(2)MXene 材料以其亲水性和高导电能力而著称,然而Ti3C2Tx MXene材料水中和潮湿环境里易降解仍是严重制约其实际使用的关键问题;为此,我们首次提出一种制备轻质、疏水的自支撑Ti3C2TxMXene泡沫薄膜的工艺。

与传统的亲水且高密度的MXene材料相比,本实验中制备的MXene泡沫薄膜具有疏水且轻质的不同于以往的新特性,并且我们进一步系统分析发泡机理和材料表面润湿特性变化的原因,制备的MXene泡沫薄膜展现出优异的耐水性和对有机污染物的选择性可循环吸附能力。

更为重要的是,由于MXene泡沫薄膜具有良好的导电能力和多孔结构,经过结构调控,与其未发泡的MXene薄膜相比,材料在发泡后屏蔽性能可大幅提高,可在密度为0.22 g/cm3、厚度为60 μm时,屏蔽效能达到70dB。

(3)针对MXene宏观三维多孔自组装结构难以构筑的问题,通过引入水溶性预聚物,成功获得了高性能MXene三维组装体。

制备的低密度、超弹性且导电可调的多功能MXene/聚酰亚胺(PI)复合气凝胶在许多应用方面体现出较大优势。

我们系统研究了 MXene/PI复合气凝胶的力学性能,包括压缩性能和拉伸性能;气凝胶展现出极佳的压缩可回弹能力,压缩应变高达80%时仍可回复原状,耐疲劳,在50%应变时可稳定循环压缩1000次以上而未见气凝胶结构明显损坏;此外,气凝胶还展现出可循环拉伸的能力以及极好的
力学柔韧性。

基于气凝胶的导电特性,研究气凝胶的吸波性能、应变感应能力以及绝热性能,在气凝胶厚度为3mm的时候,反射损耗最低可在9.59 GHz处达到-45.4 dB,对电磁波有效吸收波段宽度可达3.7 GHz,几乎覆盖整个军用雷达常用的X波段;当样品厚度为2mm时,反射损耗最低可在15.28GHz处达到-25.3dB,有效吸收波段宽度可达5.1 GHz,优于目前文献报道的几乎所有的MXene基吸波材料。

(4)针对MXene二维自组装薄膜力学性能仍需提高、引入聚合物增强时力学性能与导电性能难以兼顾的问题,通过引入富含含氧官能团的氧化石墨烯(GO)作为粘接剂以丰富纳米片层之间的连接作用,成功获得兼具高强度和高导电的MXene-GO薄膜,实现对MXene二维薄膜有效增强的同时保留其高导电特性。

薄膜在GO含量为10 wt%时,拉伸强度可被提高至63.7MPa,相比于未增强薄膜提高了175%,此时电导率仍高达263883 S/m;当GO含量提高到50 wt%时,MXene薄膜的拉伸强度可达209 MPa,提高了 801%,且增强后薄膜电导率仍保持在46165 S/m 的高水平。

经由GO改性的薄膜,力学性能大幅提升,可随意弯曲且耐折叠,且优异的导电能力使其具有极佳的电磁屏蔽性能。

相关文档
最新文档