非参数统计题

合集下载

非参数统计部分课后习题参考答案

非参数统计部分课后习题参考答案

课后习题参考答案第一章p23-252、(2)有两组学生,第一组八名学生的成绩分别为x 1:100,99,99,100,99,100,99,99;第二组三名学生的成绩分别为x 2:75,87,60。

我们对这两组数据作同样水平a=0.05的t检验(假设总体均值为u ):H 0:u=100 H 1:u<100。

第一组数据的检验结果为:df=7,t 值为3.4157,单边p 值为0.0056,结论为“拒绝H 0:u=100。

”(注意:该组均值为99.3750);第二组数据的检验结果为:df=2,t 值为3.3290,单边p值为0.0398;结论为“接受H 0:u=100。

”(注意:该组均值为74.000)。

你认为该问题的结论合理吗?说出你的理由,并提出该如何解决这一类问题。

答:这个结论不合理(6分)。

因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。

(4分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。

实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。

本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。

(4分)第三章p68-713、在某保险种类中,一次关于1998年的索赔数额(单位:元)的随机抽样为(按升幂排列): 4632,4728,5052,5064,5484,6972,7596,9480,14760,15012,18720,21240,22836,52788,67200。

已知1997年的索赔数额的中位数为5064元。

(1)是否1998年索赔的中位数比前一年有所变化?能否用单边检验来回答这个问题?(4分) (2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。

非参数统计例子

非参数统计例子

非参数统计例子
1. 嘿,你知道吗,在比较不同班级学生的兴趣爱好分布时,就可以用非参数统计呀!比如说,看看一班的同学喜欢画画的多,还是二班喜欢唱歌的多。

这多有趣啊!
2. 哎呀,说到非参数统计例子,就像统计不同月份里人们看电影的频率呀!难道你不想知道哪个月大家最爱去电影院吗?
3. 你想想看,统计不同城市居民对某种美食的喜爱程度,这是不是就是个典型的非参数统计例子呢。

难道不是很有意思吗?
4. 哇塞,非参数统计在分析不同年龄段的人对运动的偏好上也超好用啊!比如说小孩是不是更喜欢跑步,而老人更爱散步呢?
5. 嘿呀,就好比统计不同宠物狗品种的受欢迎程度,这也是非参数统计的用武之地呀!你不觉得很神奇吗?
6. 你瞧,统计不同季节公园里游客数量的多少,不就是非参数统计在发挥作用嘛。

这多值得研究呀!
7. 哎呀,像调查不同性别对于某种时尚风格的接受程度,这绝对是非参数统计的好例子呀!你不想了解一下大家的态度?
8. 嘿,统计不同地区的降雨量差异,这就是非参数统计呀!多么贴近我们的生活呀!
我觉得非参数统计真的太实用啦,在好多方面都能帮我们更好地了解和分析各种现象呢!。

非参数统计作业

非参数统计作业

非参数统计2010-11-14一、思考题1.当一组配对计量资料既可作参数又可作非参数检验,应首选何种检验方法,为什么?2.两小样本比较的假设检验首先应如何考虑?3.当总体分布类型不清楚时最好采用何种检验方法?4.参数检验和非参数检验的区别何在,各有何优缺点?5.非参数检验是针对总体分布之间的比较吗?6.简要回答进行非参数统计检验的适用条件。

7.你学过哪些设计的秩和检验,各有什么用途?8.试写出非参数统计方法的主要有缺点。

二、选择题1.配对比较秩和检验的基本思想是:若检验假设成立,则对样本来说( )。

A .正秩和与负秩和的绝对值不会相差很大 B .正秩和与负秩和的绝对值相等 C .正秩和与负秩和的绝对值相差很大 D .不能得出结论 E .以上都不对2.设配对资料的变量值为1X 和2X ,则配对资料的秩和检验是( )。

A .把1X 和2X 的差数从小到大排序 B .分别按1X 和2X 从小到大排序 C .把1X 和2X 综合从小到大排序 D .把1X 和2X 的和数从小到大排序 E .把1X 和2X 的差数的绝对值从小到大排序 3.下列哪项不是非参数统计的优点( )。

A .不受总体分布的限制 B .适用于等级资料 C .适用于未知分布型资料 D .适用于正态分布资料 E .适用于分布呈明显偏态的资料 4.等级资料的比较宜采用( )。

A .秩和检验B .F 检验C .t 检验D .2检验 E .u 检验 5.在进行成组设计两样本秩和检验时,以下检验假设哪种是正确的( )。

A .两样本均数相同B .两样本的中位数相同C .两样本对应的总体均数相同D .两样本对应的总体分布相同E .两样本对应的总体均数不同6.以下检验方法中,不属于非参数检验方法的是( )。

A .Friedman 检验 B .符号检验 C .Kruskal-Wallis 检验 D .Wilcoxon 检验 E .t 检验7.成组设计两样本比较的秩和检验中,描述不正确的是( )。

统计软件实践习题数据-非参数部分

统计软件实践习题数据-非参数部分

统计软件实践数据(SPSS非参数部分)第一章单样本非参数检验1.1 2 检验例1.某企业大批连续生产某产品,要求不合格率不大于5%。

现从产品总体中,抽取100个进行检查,不合格品有12个,试以5%的显著性水平检验该批产品的不合格率是否为5%。

例2.某金融机构的货款偿还类型有A、B、C、D四种,各种的预期偿还率为80%、12%、7%和1%。

在一段时间的观察记录中,A型按时偿还的有380笔,B型有69笔,C型有43笔,D型有8笔。

问在5%显著性水平上,这些结果与预期的是否一致。

例3.两种不同牌号的茶哪个更好。

今有30人组成的品茶专家组,对A、B两种不同牌号的茶进行6种味道的检验。

凡专家认为优者被记录下来,如下表示。

1.2 K-S 检验例1.《数理统计与管理》论文作者服从洛特卡分布。

例2.公共交通设施适合性的研究——公共汽车到达时间是否服从正态分布公共汽车按计划每15分钟通过一个商店旁。

然而,由于交通条件,乘客数目等的影响,汽车实际到达的时间有很大的不同。

通过一天的随机观察,获得的数据如下表示。

比计划提前到达的为负值,取大的整数,如提前一分10秒到达,记为-1;比计划晚到的为正值,也取大的整数,如迟到1分10秒,记作+2。

公共汽车到达时间是否服从3σ=的正态分布。

例3.某大街在一年内的交通事故按星期日、星期一、星期二、星期六分为七类进行统计,记录如下表。

试问:事故的发生是否与星期几有关?1.3 符号检验例1.广告对商品促销是否起作用。

例2.生产过程是否需要调整某企业生产一种钢管,规定和度的中位数为10米。

现随机地从正在生产的生产线上选取10根进行测量,结果为:9.8, 10.1, 9.7, 9.9, 9.8, 10.0, 9.7, 10.0, 9.9, 9.8例3.领导者的领导水平是可以训练的为验证领导者是可以训练的,根据人的聪明程度、人品、受教育状况等,随机抽取出12个人配对成6对,每对中有一人随机选择受训,记作T,另一人则不受训记作经过一段时间后,按被设计好的问题评价他们的领导水平,结果如下表示。

非参数统计部分课后习题参考答案

非参数统计部分课后习题参考答案

课后习题参考答案第一章p23-252、(2)有两组学生,第一组八名学生的成绩分别为x 1:100,99,99,100,99,100,99,99;第二组三名学生的成绩分别为x 2:75,87,60。

我们对这两组数据作同样水平a=0.05的t检验(假设总体均值为u ):H 0:u=100 H 1:u<100。

第一组数据的检验结果为:df=7,t 值为3.4157,单边p 值为0.0056,结论为“拒绝H 0:u=100。

”(注意:该组均值为99.3750);第二组数据的检验结果为:df=2,t 值为3.3290,单边p值为0.0398;结论为“接受H 0:u=100。

”(注意:该组均值为74.000)。

你认为该问题的结论合理吗?说出你的理由,并提出该如何解决这一类问题。

答:这个结论不合理(6分)。

因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。

(4分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。

实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。

本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。

(4分)第三章p68-713、在某保险种类中,一次关于1998年的索赔数额(单位:元)的随机抽样为(按升幂排列): 4632,4728,5052,5064,5484,6972,7596,9480,14760,15012,18720,21240,22836,52788,67200。

已知1997年的索赔数额的中位数为5064元。

(1)是否1998年索赔的中位数比前一年有所变化?能否用单边检验来回答这个问题?(4分) (2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。

(完整版)非参数统计试题

(完整版)非参数统计试题

非参数统计试题
一、试比较参数统计与非参数统计的区别和联系。

(15)
二、请你结合实际谈谈非参数统计的应用。

(15)
三、试验者把一只老鼠放入一个有两扇门的笼子里,并且把门都关上,一扇涂红色一扇涂

色,然后给老鼠播放一段音乐,再同时打开两扇门,记录老鼠逃出选择的门的颜色,重复了10次,发现有7次从红色门中出来,他的结论是:此时老鼠更喜欢红色。

他同时做另一个试验向10只老鼠注射某种药物,5分钟后有7只死亡,他断定这个结果具有偶然性,即药物不具有危险性。

试分析他的结论的合理性,如果是你,你怎样分析这一问题?可以通过适当计算来说明你的结论。

(20)
四、下列数据是从某个总体中,随机抽取的,数据如下:
34 38 56 23 41 52 37 53 46 37 29 48 35 43试问利用这一组数据我们能分析什么?(不需要计算,只说明怎样分析);若还有一组数据,如:38 45 27 34 46 63 34 48 30 43,我们又如何分析他们?写出你的分析思路。

(20)
五、下面是关于非参数统计的一段文献,试叙述其主要意思(30)。

非参数统计十道题

非参数统计----十道题09统计学 王若曦114一、 Wilcoxon 符号秩检验下面是10个欧洲城镇每人每年平均消费的酒类相当于纯酒精数,数据已经按升序排列: 4.12 5.81 7.63 9.74 10.39 11.92 12.32 12.89 13.54 14.45 人们普遍认为欧洲各国人均年消费酒量的中位数相当于纯酒精8升,试用上述数据检验这种看法。

数据来源:《非参数统计(第二版)》 吴喜之手算:建立假设组:01H :M=8H :M>8T 2467891046T 5319n=10+-=++++++==++=查表得P=0.032<α=0.05,因此拒绝原假设,即认为欧洲各国人均年消费酒量的中位数多于8升。

SPSS :操作:Analyze ——Nonparametric Tests ——2-Related Sample TestRanksNMean RankSum of Ranksc - xNegative Ranks 7a 6.57 46.00 Positive Ranks 3b 3.009.00Ties 0c Total10由输出结果可知,单侧精确显著性概率P=0.032<=0.05,因此拒绝原假设,即认为欧洲各国人均年消费酒量的中位数多于8升。

与手算结果相同。

R语言:> x=c(4.12,5.81,7.63,9.74,10.39,11.92,12.32,12.89,13.54,14.45)> wilcox.test(x-8,alt="greater")Wilcoxon signed rank testdata: x - 8V = 46, p-value = 0.03223alternative hypothesis: true location is greater than 0由输出结果可知,P=0.03223<α=0.05,因此拒绝原假设,即认为欧洲各国人均年消费酒量的中位数多于8升。

非参数统计第二章习题

乘机服务机上服务到达机场服务
列1 列1 列1
平均79.78 平均54.46 平均58.48 标准误差 1.174661 标准误差 2.08556 标准误差 2.262605 中位数82 中位数55.5 中位数58.5 众数72 众数60 众数52 标准差8.306108 标准差14.74713 标准差15.99903 方差68.99143 方差217.478 方差255.969 峰度-1.05913 峰度0.083147 峰度0.41167 偏度-0.16402 偏度0.264118 偏度-0.26232 区域32 区域65 区域76 最小值63 最小值25 最小值16 最大值95 最大值90 最大值92 求和3989 求和2723 求和2924 观测数50 观测数50 观测数50 最大(1) 95 最大(1) 90 最大(1) 92 最小(1) 63 最小(1) 25 最小(1) 16
置信度(95.0%) 2.36057 置信度(95.0%) 4.191089 置信度
(95.0%) 4.546874
由上表知,表一的平均数最大,标准误差最小,中位数最大,方差最小,等等,所以乘客对乘机服务的满意度最高。

非参数统计(R软件)参考答案

非参数统计(R软件)参考答案内容:A.3, A.10, A.12A.3 上机实践:将MASS数据包用命令library(MASS)加载到R中,调用自带“老忠实”喷泉数据集geyer,它有两个变量:等待时间waiting和喷涌时间duration,其中…(1) 将等待时间70min以下的数据挑选出来;(2) 将等待时间70min以下,且等待时间不等于57min的数据挑选出来;(3) 将等待时间70min以下喷泉的喷涌时间挑选出来;(4) 将喷涌时间大于70min喷泉的等待时间挑选出来。

解:读取数据的R命令:library(MASS);#加载MASS包data(geyser);#加载数据集geyserattach(geyser);#将数据集geyser的变量置为内存变量(1) 依题意编定R程序如下:sub1geyser=geyser[which(waiting<70),1];#提取满足条件(waiting<70)的数据,which(),读取下标sub1geyser[1:5];#显示子数据集sub1geyser的前5行[1] 57 60 56 50 54(2) 依题意编定R程序如下:Sub2geyser=geyser[which((waiting<70)&(waiting!=57)), 1];#提取满足条件(waiting<70& (waiting!=57)的数据. Sub2geyser[1:5];#显示子数据集sub1geyser的前5行[1] 60 56 50 54 60 ……原数据集的第1列为waiting喷涌时间,所以用[which(waiting<70),2](3)Sub3geyser=geyser[which(waiting<70),2];#提取满足条件(waiting<70)的数据,which(),读取下标Sub3geyser[1:5];#显示子数据集sub1geyser的前5行[1] 4.000000 4.383333 4.833333 5.450000 4.866667……原数据集的第2列为喷涌时间,所以用[which(waiting<70),2](4)Sub4geyser=geyser[which(waiting>70),1];#提取满足条件(waiting<70)的数据,which(),读取下标Sub4geyser[1:5];#显示子数据集sub1geyser的前5行[1] 80 71 80 75 77…….A.10如光盘文件student.txt中的数据,一个班有30名学生,每名学生有5门课程的成绩,编写函数实现下述要求:(1) 以data.frame的格式保存上述数据;(2) 计算每个学生各科平均分,并将该数据加入(1)数据集的最后一列;(3) 找出各科平均分的最高分所对应的学生和他所修课程的成绩;(4) 找出至少两门课程不及格的学生,输出他们的全部成绩和平均成绩;(5) 比较具有(4)特点学生的各科平均分与其余学生平均分之间是否存在差异。

非参数统计部分课后习题参考答案

课后习题参考答案第一章p23-252、(2)有两组学生,第一组八名学生的成绩分别为x 1:100,99,99,100,99,100,99,99;第二组三名学生的成绩分别为x 2:75,87,60。

我们对这两组数据作同样水平a=0.05的t检验(假设总体均值为u ):H 0:u=100 H 1:u<100。

第一组数据的检验结果为:df=7,t 值为3.4157,单边p 值为0.0056,结论为“拒绝H 0:u=100。

”(注意:该组均值为99.3750);第二组数据的检验结果为:df=2,t 值为3.3290,单边p值为0.0398;结论为“接受H 0:u=100。

”(注意:该组均值为74.000)。

你认为该问题的结论合理吗?说出你的理由,并提出该如何解决这一类问题。

答:这个结论不合理(6分)。

因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。

(4分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。

实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。

本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。

(4分)第三章p68-713、在某保险种类中,一次关于1998年的索赔数额(单位:元)的随机抽样为(按升幂排列): 4632,4728,5052,5064,5484,6972,7596,9480,14760,15012,18720,21240,22836,52788,67200。

已知1997年的索赔数额的中位数为5064元。

(1)是否1998年索赔的中位数比前一年有所变化?能否用单边检验来回答这个问题?(4分) (2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 填空题(每空2分,共计30分)
1、 性别属于_______尺度的测量层次,文化程度属于_______尺度的测量层次,温度属于________尺度的
测量层次,年龄属于________尺度的测量层次。

2、 某一序列的观察值为2,5,3,7,8,9,6,4,16,10,则上游程数为______,下游程为_______,
第一个下游程的长度是_________。

3、 两组独立的随机样本的观察值分别为: 第一组(X ):9,12,3,7 第二组(Y ):5,8,6,14,16
则第一组X 的等级和T x =_______,第二组Y 的等级和T y =_______,Y 的评分值先于X 的总次数U =_______,游程的总数目V =________。

4、
则列边缘次数为___________,不考虑X ,直接预测Y 时产生的误差1E =______,用X 预测Y 时产生的误差2E =______,非对称形式的λ系数yx λ=___________。

二、 (10分)某地一周内个日患忧郁症的人数分布如表所示,请用2χ检验法检验一周内个日人们忧郁数
是否满足1:1:2:2:1:1:1
三、(20分)试根据下表的数据分别用符号检验和Wilcoxon 符号秩检验法检验学生接受某种方法训练前后成绩是否存在显著差异,训练能否提高学生的成绩?(显著性水平0.05α=)
四、(10分)随机抽取3个班级的学生,得到21个成绩样本,如表所示,试用Kruskal-Wallis检验法检验
α=)
3个班级学生成绩是否存在显著差异?(显著性水平0.05
五、(10
三个月后的体重,试用Friedman检验法检验在这4个时期,10个人的体重有无发生显著的变化?(显著α=)
性水平0.05
六、(20分)两名裁判员对六名歌手评分的等级如下:
X的秩:1,2,5,6,4,3
Y的秩:5,3,6,4,2,1
分别用Spearman等级相关系数及Kendall秩相关系数分析两位裁判员评分的相关程度。

相关文档
最新文档