化工热力学:第五章 化工过程热力学分析
合集下载
第五章化工热力学课件

2、稳态流动
①连续 ②质量流率相等(无积累)③热力学性质不随时间变化
1 2 1 2 m(H1 u1 gz1 ) m(H 2 u2 gz2 ) WS Q 0 2 2 u 2 H gz Q Ws 积分、单位质量 2
微分流动过程
dH udu gdz Q Ws
H C p dT
373
813
27.89 4.27110 T dT
3
13386kJ / kmol Cp R S dT dP T P 373 27.89 1.013 3 4.27110 dT 8.314 ln 813 4.052 T 12.083kJ / kmol K
压缩机可以提高流体 的压力,但是要消耗功
枣庄学院 化学化工系
化工热力学
透平机和压缩机
2
H
u
2
gz Q Ws
是!
通常可以忽略
Ws H
是否存在轴功?
是否和环境交换热量? 位能是否变化? 动能是否变化?
不变化或者可以忽略 通常可以忽略
枣庄学院 化学化工系
化工热力学
节流阀 Throttling Valve
无流动功 单位流体
通常势能和动能无变化
d (mU) W Q dU W Q
枣庄学院 化学化工系
化工热力学
5.1 能量平衡方程
能量平衡方程的应用
1 2 1 2 d (mE) m1 (H1 u1 gz1 ) m2 (H 2 u2 gz2 ) WS Q 2 2
g为重力加速度。
1 2 E1 U1 u1 gz1 2
1 2 E2 U 2 u2 gz2 2
①连续 ②质量流率相等(无积累)③热力学性质不随时间变化
1 2 1 2 m(H1 u1 gz1 ) m(H 2 u2 gz2 ) WS Q 0 2 2 u 2 H gz Q Ws 积分、单位质量 2
微分流动过程
dH udu gdz Q Ws
H C p dT
373
813
27.89 4.27110 T dT
3
13386kJ / kmol Cp R S dT dP T P 373 27.89 1.013 3 4.27110 dT 8.314 ln 813 4.052 T 12.083kJ / kmol K
压缩机可以提高流体 的压力,但是要消耗功
枣庄学院 化学化工系
化工热力学
透平机和压缩机
2
H
u
2
gz Q Ws
是!
通常可以忽略
Ws H
是否存在轴功?
是否和环境交换热量? 位能是否变化? 动能是否变化?
不变化或者可以忽略 通常可以忽略
枣庄学院 化学化工系
化工热力学
节流阀 Throttling Valve
无流动功 单位流体
通常势能和动能无变化
d (mU) W Q dU W Q
枣庄学院 化学化工系
化工热力学
5.1 能量平衡方程
能量平衡方程的应用
1 2 1 2 d (mE) m1 (H1 u1 gz1 ) m2 (H 2 u2 gz2 ) WS Q 2 2
g为重力加速度。
1 2 E1 U1 u1 gz1 2
1 2 E2 U 2 u2 gz2 2
化工热力学第五章3

第三节
WS H12 H1 H 2 s WS R H12 H1 H 2
h1 h2 或 S h1 h2
s 值可由实验测定,其值通常为: s 0.6 ~ 0.8
WS R 可由图查出,则:
wS S wS R
用相律分析:
单相区:f = 2 两相区:f = 1
已知某物系在两相区的位置可由T—S图求出汽液相对量,
汽液混合物系的热力学性质可通过汽液性质及干度求出。
如: hm
hg x hl 1 x
Sm Sg x Sl 1 x
Vm Vg x Vl 1 x
化工热力学 a、等压过程: 单相态:
h 0
节流过程可在等焓线上表示出来:见下页
化工热力学
第五章
热力学第二定律及其应用
第三节
无相变:
P1
1(T1, P ) 1 H1 P2
P3
T
2(T2 , P2 )
节流过程:
Ssur 0
S
St Sg Ssys S 2 S1
节流过程是不可逆过程。
S1、S 2 可由图中读出
或
Ws S WS R
由上图看出不可逆绝热膨胀后 T2 T2 。此外,S2 S2
说明不可逆绝热过程有熵产生。
化工热力学
第五章
热力学第二定律及其应用 2/
第三节 P2 P1
压缩过程
T
2
1
s
WS R WS
h1 h2 h1 h2/
S
WS
WS R
S
化工热力学
第五章
热力学第二定律及其应用
化工热力学第五章 化工过程的能量分析(课堂PPT)

Z1
Ws
Q u2
P2,V2,Z2,u2
2 Z2
返回
2
§5.1.2稳定流动体系的热力学原理
根据能量守恒原理:
进入体系能量=离开体系能量+体系内积累的能量
∵ 稳定流动体系无能量的积累
∴ E1 +Q = E2 -W (1)
• 体系与环境交换的功W包括与环境交换的轴功Ws
和流动功Wf,即W = Ws + Wf
较少的过程。 – 找出品位降低最多的薄弱环节,指出改造
的方向。
上一内容 下一内容 回主目录
返回
2
§5.1热力学第一定律与能量平衡方程
• §5.1.1 热力学第一定律 • §5.1.2 稳定流动体系的热力学原理 • §5.1.3 稳流体系能量平衡方程及其应用
上一内容 下一内容 回主目录
返回
2
§5.1.1热力学第一定律
2
8
§5.0 热力学基本概念复习
3、过程
➢指体系自一平衡状态到另一平衡状态的转换. ➢对某一过程的描写:初态+终态+路径.
▪ 不可逆过程:一个单向过程发生之后一定留 下一些痕迹,无论用何种方法也不能将此痕 迹完全消除,在热力学上称为不可逆过程.
➢凡是不需要外加功而自然发生的过程皆是不可 逆过程(自发过程)。
• 应用中的简化
1)流体通过压缩机、膨胀机
∵ u2≈0,g Z≈0 ∴ H=Q + Ws——稳流过程中最常用的公式 若绝热过程Q=0, Ws= H= H2-H1
高压高温蒸汽带动透平产生轴功。
上一内容 下一内容 回主目录
返回
2
§5.1.3 稳流体系能量平衡方程及其应用
合工大-化工热力学-第五章_化工过程的能量分析资料

dH udu gdZ Q WS (5-15)
式(5-13)与式(5-15)是稳定流动体系的能量 平衡方程。
第十一 次课结束2010
5.1.3
19
一些常见的属于稳流体系的装置
混合装置
Ws 喷嘴
透平机
扩压管
节流阀
Ws
压缩机
换热装置
化工生产中,绝大多数过程都属于稳流过程, 在应用能量方程式时尚可根据具体情况作进一步的
就热力学的观点,功和热是转移中的能量,
是不能贮存的,不转移时能量总是贮存在体系和环
境内。所以,体系在过程前后的能量变化△E 应与
体系在该过程中传递的热Q与功W之代数和相等。 如E1、E2分别代表体系始、终态的总能量,则
△E = E2﹣E1 = Q+W
(5-1)
式(5-1)就是热力学第一定律的数学表达式。 规定体系吸热为正值,放热为负值;体系得功为正 值,对环境做功为负值。
1 u 2 H 2
(5-22)
此式表明,气体在绝热不做轴功的稳定流动过程 中,动能的增加等于其焓值的减小。
例题5-1 5.1.3
5-2
32
可逆过程与不可逆过程
用热力学的方法研究体系发生状态变化时,在怎 样的条件下能作出最大功或者需要最小功,具有重 要意义。这里牵扯到一个热力学上的重要概念,可 逆过程与不可逆过程。
H
1 2
u 2
gZ
Q
Ws
(5-13)
此公式是由能量守恒定律推导出来的。而能量守恒是
自然界的客观规律。因而式(5-13)对可逆过程和实际过
程均适用。
5.1.3
18
使用时注意公式中各项单位必须一致。
如:
1 u 2 2
化工热力学的教学课件5

化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能衡算及效率
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能衡算及效率
化工热力学的教学课件5
第五章 化工过程的能量分析 ——化工过程与系统分析
化工热力学的教学课件5
第五章 化工过程的能量分析 ——化工过程与系统分析
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
第五章 化工过程的能量分析 ——有效能衡算及效率
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能衡算及效率
化工热力学的教学课件5
第五章 化工过程的能量分析 ——化工过程与系统分析
化工热力学的教学课件5
第五章 化工过程的能量分析 ——化工过程与系统分析
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——有效能和无效能
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学的教学课件5
第五章 化工过程的能量分析 ——能量平衡方程
化工热力学第五章

2021/4/6
3
5.1 热力学第一定律—能量转化与守恒方程
5.1.1 能量的分类
能量是物质固有的特性,一切物质或多或少都带有一定种类和数量的能。 在热力学第一定律中,所涉及到的能量通常有以下几种。
(1)内能 内能又叫热力学能,以 U 表示。它是系统内部所有粒子除整体 势能和整体动能外全部能量的总和,在确定的温度、压力下系统的内能应当是 系统内各部分内能之和,即具有加和性。内能 U 由三部分构成。
(环境的能量)= - ( Q+W )
(5-2)
同时,式( 5 – 1 )中的第一项可以写成储存能的变换,即
(体系的 ) U 能 E 量 k Ep
(5-3)
式中,△E k 是动能的变化;△E p 是重力势能的变化。将式( 5 – 2 ) 和式( 5 – 3 ) 代入式( 5 – 1 ),则
U E k EpQ W
式( 5 – 4 )即为热力学第一定律的基本式。
2021/4/6
(5-4)
7
5.1.3 封闭系统的热力学第一定律
封闭系统是指那些与环境之间只有能量交换而无物质交换的系统, 根据此定义可知,当式( 5 – 4 ) 应用于封闭系统时,没有物质交换表示 与物质交换相关的动能和势能的变化项为零,于是封闭系统的热力学 第一定律可表示为
能 Ep mgZ
( 4 ) 热 由于温差而引起的能量传递叫做热,以 Q 表示。作为能量的交换
量,必然会涉及到传递方向的问题。即 Q 不仅有绝对数值,而且需要正负号来
表示能量的传递方向。在化工热力学中,规定物系得到热时 Q 为正值,相反的,
物系向环境放热时 Q 为负值。
2021/4/6
5
(5) 功 除了热 Q 之外的能量传递均叫做功,以 W 表示。与热 Q 一样, 功 W 也是物系发生状态变化时与环境交换的能量,只是 W 是另一种形式。于 是,在化工热力学中对于功 W 也做了正负号的规定。物系得到功作用,记为 正值;而物系向环境做功,记为负值( 在一些著作中,对于功的正负号的规定 有不同的表述,查阅时需要注意 )。
化工热力学第五章ppt

yi P xi Pi
yi P xi s Pi
s
i 1,2, , N
x
i i i
yi P 1 s Pi
1 P s yi / Pi
i
计算步骤
① 由Antoine方程求 Pi s
②
1 P s yi / Pi
i
③
yi P xi s Pi
3 等压泡点计算
已知P 与{ xi },求T与 { yi }。
s 3
1 P 74.27kPa yi 0.50 0.30 0.20 P s 144.77 70.34 34.88 i i
y1 P 0.5 74.27 x1 s 0.2565 P 144.77 1 y2 P 0.30 74.27 x2 s 0.3166 P2 70.34 y3 P 0.20 74.27 x3 s 0.4269 P3 34.88
否
调整T
例题 丙酮(1),乙腈(2)和硝基甲烷(3)体系 可按完全理想系处理,各组分的饱和蒸汽压方程
2940.46 ln P 14.5463 t 237.22
s 1
2945.47 ln P 14.2724 t 224.00
s 2
2972.64 ln P 14.2043 t 209.00
对于这种体系,用一般精馏法 是不能将此分离开的,必须要 采用特殊分离法。 0 x1,y1 1
P
等温
最低压力负偏差体系
最小压力(最高温度) 共沸点x=y, γi<1
共沸点
0
T
x1,y1 等压
1
0
x1,y1
1
液相为部分互溶体系
5.3.2中、低压下泡点和露点计算 等温泡点计算 已知体系温度T与液相组成xi,求泡点 压力P与汽相组成 yi 。 等压泡点计算 已知体系压力P与液相组成xi,求泡点 温度T与汽相组成 yi 。 等温露点计算 已知体系温度T与汽相组成yi,求露点 压力P与液相组成 xi 。 等压露点计算 已知体系压力P与汽相组成yi,求露点 温度T与液相组成 xi 。
化工热力学:第五章 化工过程热力学分析

热机均从高温热源吸收无限小的热量δQh,恒温向低温冷源放
出无限小的热量δQl
Qh Ql 0
Th Tl
沿热力学循环过程作循环积分为:
Q
T
0
可逆循环等于0 不可逆循环小于0
热力学第二定律的本质与熵的概念
凡是自发的过程都是不可逆的,而一切不可 逆过程都可以归结为热转换为功的不可逆性。
一切不可逆过程都是向混乱度增加的方向进 行,而熵函数可以作为体系混乱度的一种量 度。
5.3.2 熵与熵增原理
1、熵S的定义
dS
(
Q
T
)可逆
( 1)
dS
(Q
T
)可 逆ACB
(Q
T
)可 逆ADB
P
任意可逆过程的热温商的值 决定于始终状态,而与可逆 途径无关,这个热温商具有 状态函数的性质。
F (不可逆)
D (可逆)
A B
C(可逆)
V
5.2.2 熵与熵增原理
2、不可逆过程的熵变
与体系密切相关、有相互 作用或影响所能及的部分称为 环境。
热力学基本概念复习2:体系的分类
根据体系与环境之间的关系,把体系分为三类:
(1)敞开体系 体系与环境之间既有物 质交换,又有能量交换
(2)封闭体系 体系与环境之间无物
质交换,但有能量交换。
热力学基本概念复习2:体系的分类
(3)孤立体系(isolated system) 体系与环境之间既无物质交换,又无能量交换,故
x H1 Hl 2736.5 844.9 0.9709 Hg Hl 2792.2 844.9
例题
例2:功率为2.0 kw的泵将95oC水从贮水罐泵压到换热
器,水流量为3.5kg/s,在换热器中以698kJ/s的速率将
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.3稳流体系热力学第一定律
根据能量守恒原理: 进入体系能量=离开体系能量+体系内积累的能量 ∵ 稳定流动体系无能量的积累
∴ E1 +Q+W = E2 E2-E1 =Q+W
(U2-U1)+(u22-u22)/2+g(Z2-Z1)=Q+W ΔU+Δu2/2+gΔZ=Q+W (5-5)
5.1.3稳流体系热力学第一定律
5.1.2 封闭体系热力学第一定律
封闭体系只有能量交 换,无物质交换,故 与物质交换有关的动 能和势能变化为零
ΔU+ΔEk +ΔEp=Q+W
ΔU=Q+W
5.1.3稳流体系热力学第一定律
稳定流动 敞开体系 稳定、连续、流进、流
出,不随时间变化,没 有能量和物料的积累。 化工过程中最常用
不能用ΔU=Q+W来表达!!!
5.1.3稳流体系热力学第一定律
以1Kg为基准!!! Q为体系吸收的热量 W为体系与环境交换
的功。
截面1的能量E1 E1 = U1 + gZ1+ u12/2
截面2的能量E2 E2 = U2 + gZ2+ u22/2
A1
u1
1
P1,V1,Z1,u1
Z1
Ws
Q
A2
u2
P2,V2,Z2,u2
2 Z2
Vdp udu gdz Ws,rev 稳流过程的可逆轴功
两边积分,并令V=1/ρ,当与环境无轴功交换时:
p u2 gz 0
2
柏努利方程
其中: Ws,rev Vdp
Ws,rev
p2 Vdp
p1
5.1.3 稳流体系热力学第一定律
稳流过程的可逆轴功计算公式:
Vdp udu gdz Ws,rev
体系与环境交换的功W包括与环境交换的轴功Ws 和 流动功Wf,即W = Ws + Wf
Wf为流体进入或离开设备时与前后流体所交换的功 流体进入界面1时受到后面流体的推动,故所获得的
流动功为:Wf1=(p1A1)(V1/A1)=p1V1 流体出界面2时需推动前面的流体,故向外做功,此
时的流动功: Wf2= -(p2A2)(V2/A2)= -p2V2 其中:Wf= Wf1 + Wf2 = p1V1 -p2V2 所以 W = Ws+ p1V1 -p2V2 = Ws- Δ(pV) (a) 将(a)式代入(5-5)可得式
5.1.3 稳流体系热力学第一定律
H gZ u2 2 Q Ws
2)流体通过换热器、管道、混合器
∵ Ws=0,u2=0,g Z=0 ∴ H=Q ——用于精馏、蒸发、吸收、结晶过程
➢ 如发生化学反应,相变化,温度变化时,与环境交
换的热量(反应热,相变热,显热)等于体系的焓
差。
化学反应
相变化
Q
体系状态变化,如 温度变化
∴ H= Q + WS =Q + W- Wf= Q + W+ P1V1 -P2V2 又∵ H=U+ PV
∴ U=Q + W
流动功Wf= P1V1 -P2V2
5.1.3 稳流体系热力学第一定律
6)对于没有摩擦的流体流动,可视为可逆过程
dH TdS Vdp Qrev TdS
代入:dH udu gdz Q Ws
H
反应热 相变热 显热
5.1.3 稳流体系热力学第一定律
H gZ u2 2 Q Ws
3)流体通过节流阀门或多孔塞,如节流膨 胀或绝热闪蒸过程。
∵ Ws=0,u2=0,g Z=0 ,Q=0 ∴ H=0
➢ 冷冻过程是节流过程,焓未变但温度降低
5.1.3 稳流体系热力学第一定律
H gZ u2 2 Q Ws
与体系密切相关、有相互 作用或影响所能及的部分称为 环境。
热力学基本概念复习2:体系的分类
根据体系与环境之间的关系,把体系分为三类:
(1)敞开体系 体系与环境之间既有物 质交换,又有能量交换
(2)封闭体系 体系与环境之间无物
质交换,但有能量交换。
热力学基本概念复习2:体系的分类
(3)孤立体系(isolated system) 体系与环境之间既无物质交换,又无能量交换,故
5.1.3稳流体系热力学第一定律
U
u 2 2
gz
Q Ws
( pV )
稳定流动体系的热力学第一定理:
H gz u2 2 Q Ws (5 6)
焓变
位能变
动能变
化
化
微分形式为: dH udu gdz Q Ws
(5-6)式的计算单位建议用 J/kg;即以1Kg为基准!!!
一些常见的属于稳流体系的装置
喷嘴 扩压管
透平机
混合装置
节流阀
压缩机
换热装置
5.1.3 稳流体系热力学第一定律
H gZ u2 2 Q Ws 应用中的简化
1)流体通过压缩机、膨胀机
∵ u2≈0,g Z≈0 ∴ H=Q += H2-H1
高压高温蒸汽带动透平产生轴功。
第五章 化工过程热力学分析
本章内容
5.1 热力学第一定律 5.2 热力学第二定律 5.3 理想功、损失功及热力学效率 5.4 有效能 5.5 化工过程热力学分析
热力学基本概念复习1: 体系与环境
体系(System) 在科学研究时必须先确定
研究对象,把一部分物质与其 余分开,这种分离可以是实际 的,也可以是想象的。这种被 划定的研究对象称为体系,亦 称为物系或系统。 环境(surroundings)
4)流体通过喷嘴获得高速气体(超音速) 例:火箭、化工生产中的喷射器。
∵ Q=0,g Z=0 , Ws=0 ∴ H= -u2/2 ; u2>> u1
u2 2(H1 H2 )
5.1.3 稳流体系热力学第一定律
H gZ u2 2 Q Ws
5)对封闭体系,退化为封闭体系热力学第 一定律
∵ u2=0,g Z=0
若流体流进出运转设备的动能和位能的变化可以 忽略时:
Ws,rev Vdp
Ws,rev
p2 Vdp
p1
热力学第一定律应用注意事项
1、注意区别:
又称为隔离体系。有时把封闭体系和体系影响所及的环 境一起作为孤立体系来考虑。
§5.1.1热力学第一定律
热力学第一定律(能量守恒与转化定律)的数学表 达式:
Δ(环境的能量)=-(Q+W) Δ(体系的能量)=ΔU+ΔEk +ΔEp
Δ(环境的能量)+ Δ(体系的能量)=0
ΔU+ΔEk +ΔEp=Q+W
其中:Q体系吸热为正,放热为负;W体系得功为正,做功为负