金属材料机械性能试验报告

合集下载

材料力学性能实验报告参考模板

材料力学性能实验报告参考模板

实验报告(一)
院系:机械与材料工程学院课程名称:材料力学性能日期:
班级组
号学号实验室材料性能室
专业姓名教师签名实验
名称
金属室温静拉伸力学性能的测试成绩评定实验
仪器
材料
材料万能试验机、标准拉伸试样
实验目的要求
测定低碳钢的屈服极限、强度极限、延伸率、截面收缩率和铸铁的强度极限;观察低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线;比较低碳钢和铸铁两种材料的拉伸性能和断口情况。

实验原理
低碳钢的拉伸过程可以分为弹性变形、屈服、强化和缩颈断裂四个阶段,可以测定屈服极限、强度极限、延伸率、截面收缩率等指标;而铸铁在断裂之前不发生明显的塑性变形,只能测定出抗拉强度。

低碳钢的拉伸断口可分为纤维区、放射区和剪切唇三部分组成,而铸铁的拉伸断口为正断。

院系:机械与材料工程学院课程名称:材料力学性能日期:
友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

拉伸试验报告(样本)3

 拉伸试验报告(样本)3

拉伸试验报告(样本)3本次拉伸试验是对金属材料进行的实验,旨在探究该材料的机械性能表现及其材料应力应变关系。

本文将详细叙述实验的原理、步骤、结果及其分析。

一、实验原理拉伸是一种常见的实验方法,它可以测定材料在拉伸过程中的力和变形,在此基础上可以得出材料的弹性、塑性及其破坏性能。

拉伸试验的主要量有应力、应变、杨氏模量、屈服强度、延伸率和断裂强度等参数。

在进行拉伸试验之前,需要对材料进行标准化、钞票和获得力学性能曲线等数据,以便评估材料的力学性能。

二、实验步骤1、制备试件:在符合ASTM标准的制备规范下,从金属材料中切割出试件。

试件形状应按规范制作,并拥有足够强度和标准的减角。

2、固定试件:将试件固定在拉伸试验机的夹具上。

拉伸试验机应保证夹具具有良好的刚性、抗变形能力和与试件之间的最小间隙,以避免附加载荷的引入。

3、调整仪器:根据材料的特性和试验规范,调整拉伸试验机的速度、负载传感器灵敏度等参数,以便进行正常的拉伸测试。

4、开始拉伸:拉伸试验机灵敏的记录器将在试件上施加逐渐增加的拉伸力。

在此过程中,记录并记录试件的伸长量和负载变化。

数据可以通过机器本身内置的数据采集程序或外部检测器收集。

5、分析数据:在试验结束后,将收集的数据分析,以求得材料的各种性能参数,如弹性模量、屈服强度、最大载荷、延伸率等等。

三、实验结果及分析本次实验使用的金属材料为铜,拉伸试验的数据及其分析如下:1、试样尺寸及规格:宽度15mm,厚度1.5mm,长度30mm。

2、试验结果:拉伸最大力为25.6KN,应变为0.1,弹性区斜率为264.18MPa,在应力为0.2时的偏离长度为0.2,屈服强度为210.28MPa,最大载荷为26.3KN。

3、试验分析:(1)根据弹性区斜率的计算式,可以求出该材料的弹性模量。

弹性模量E=σ/ε,其中σ是应力,ε是应变。

通过我们得到的数据可以求出铜材料的弹性模量为264.18MPa。

(2)屈服强度是材料在拉伸试验过程中变形的起点,该点是在应变增加的情况下应力不再增加的点,用于表示材料的塑性性能和使用的过程中抗扭曲性能。

金属材料的硬度试验实验报告

金属材料的硬度试验实验报告

金属材料的硬度试验实验报告金属材料的硬度试验实验报告一、实验目的本实验旨在通过不同的硬度测试方法,对金属材料进行硬度试验,以了解和评估金属材料的硬度特性,包括其硬度的范围、分布、变化规律等,以期为材料的使用、加工和设计提供依据和参考。

二、实验原理硬度是金属材料的重要力学性能之一,它能反映金属材料抵抗局部变形的能力。

硬度的测试方法有很多,如布氏硬度、洛氏硬度、维氏硬度、努氏硬度等。

本实验将采用布氏硬度、洛氏硬度和维氏硬度三种方法对金属材料进行硬度试验。

1.布氏硬度:采用硬质合金球或钢球作为压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的直径,并通过查表获得硬度值。

布氏硬度的优点是测量准确,重复性好,适用于测量较大和较软的金属材料。

2.洛氏硬度:采用金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的深度,并通过查表获得硬度值。

洛氏硬度的优点是操作简便快捷,适用于测量较薄或较硬的金属材料。

3.维氏硬度:采用金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的面积,并通过查表获得硬度值。

维氏硬度的优点是测量准确,适用于测量较小或较软的金属材料。

三、实验步骤1.样品准备:选取一定数量的金属材料样品,对其进行打磨、抛光和清洁处理,确保其表面无氧化物、锈迹等杂质。

2.布氏硬度试验:选择合适的硬质合金球或钢球作为压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的直径,并查表获得硬度值。

每个样品至少测量三个点,以取得平均值。

3.洛氏硬度试验:选择合适的金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的深度,并查表获得硬度值。

每个样品至少测量三个点,以取得平均值。

4.维氏硬度试验:选择合适的金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的面积,并查表获得硬度值。

每个样品至少测量三个点,以取得平均值。

5.数据处理与分析:将实验数据整理成表格和图表,分析金属材料的硬度特性,包括其硬度的范围、分布、变化规律等。

金属拉伸实验报告

金属拉伸实验报告

金属拉伸实验报告导言:金属材料在工业界和科研领域中广泛应用,而了解金属的物理性质对于设计和制造高性能金属构件尤为重要。

本实验旨在通过对金属材料进行拉伸实验,研究其拉伸性能。

实验目的:通过金属拉伸实验,掌握金属的力学性能,包括强度、延伸性以及断裂行为,并分析其与微观组织的关联。

实验方法:本实验选取了常见的工程金属铜作为实验样品,首先将金属样品切割成标准试样。

然后,通过金属材料力学试验机进行实验,即将金属试样夹持在两个夹具之间,然后施加逐渐增加的拉力,在不断测量拉伸过程中的应力和应变的同时,记录下试样断裂之前的长度。

实验过程中,要确保试样质量恒定、环境温度稳定。

实验结果与分析:根据实验数据,我们得到了铜样品在不同拉力下的应力和应变曲线,通过分析这些数据,可以得出以下结论:1. 弹性阶段:在应力小于材料屈服强度时,金属样品表现出弹性变形特性。

应力与应变呈线性关系,即满足胡克定律。

应力-应变曲线为一条直线,斜率等于杨氏模量。

2. 屈服阶段:随着应力的增加,金属样品会在达到一定应力值时开始发生屈服变形。

此时应力-应变曲线出现明显的非线性区域,曲线出现弯曲并逐渐平缓,表示金属样品进入塑性变形阶段。

屈服强度是表征金属材料抵抗塑性变形的能力。

3. 闭口阶段:当金属样品已达到最大应力值时,应力开始急剧下降,直到最终断裂。

这个过程称为闭口阶段。

在这个阶段,金属材料已无法承受更大的应力,进一步拉伸会导致断裂。

通过实验数据的分析,我们可以计算出金属样品的屈服强度、抗拉强度和延伸率等力学性能参数。

这些数据对于制定合适的金属材料应用方案,比如结构设计和材料选型,有着重要的意义。

结论:通过本次金属拉伸实验,我们对金属材料的力学性能有了深入的了解。

金属的力学性能直接受到其微观组织的影响,因此在设计和制造金属构件时,需考虑各种因素对金属力学性能的影响。

此外,为了获得准确可靠的测试结果,实验过程中要注意控制试样形状和尺寸的一致性,并确保实验环境的稳定性。

材料力学实验报告1

材料力学实验报告1

材料力学实验报告院系班级学号姓名实验一金属材料拉伸实验实验日期:同组成员:一.实验目的1.测定低碳钢的屈服极限,强度极限,延伸率和断面收缩率。

2.测定铸铁的强度极限。

二.实验设备1.万能材料试验机2.游标卡尺三.实验步骤1.用游标卡尺在试件标距长度内取三处,测每一处截面两个相互垂直方向的直径,取其平均值。

最后以三处平均值中最小值作为试件的直径。

2.选择试验机的量程根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。

3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。

4.装夹试件,调读盘零点。

5.打开送油阀,缓慢加载,测试并观察,记录相关数据。

6.试件拉断后,关上送油阀,将试件取出,记录相关数据,测试件断后标距及断后直径。

7.实验整理四、实验记录及实验结果:1、试件尺寸记录- 1 -2、载荷及计算结果3、绘出低碳钢和铸铁的P-ΔL图五、实验结论与分析:1、分析比较两种典型金属材料的抗拉机械性能。

2、国家标准《金属拉伸实验方法》(GB228-87)中规定拉伸试样分为短试样和长试样,对同一材质、同一直径的圆形试样,短试样和长试样的断后延伸率是否相同?若不一样哪个大?- 2 -实验二铸铁材料压缩实验实验日期:同组成员:一.实验目的1.测定铸铁抗压强度极限σb。

2.观察铸铁在压缩时的变形和破坏现象。

二.实验设备1.万能材料试验机2.游标卡尺三.实验步骤1.测量试件直径用游标卡尺在试件相互垂直方向的直径各测一次,取其平均值。

2.选择试验机的量程根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。

3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。

4.安装试件,注意载荷对中。

调读盘零点。

5.打开送油阀,缓慢加载,测试并观察,试件压断后,关上送油阀,将试件取出,记录相关数据。

四、实验记录及实验结果:1、试件几何尺寸记录2、实验数据记录及处理五. 实验结论与分析:1、铸铁的破坏形式说明什么问题?2、铸铁压缩与拉伸破坏端面形状有什么不同?- 3 -- 4 - 实验三 弹性模量E 的测定实验日期:同组成员: 一.实验目的1.测定低碳钢的弹性模量E 。

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告摘要:本实验旨在通过对金属材料的力学性能进行测试和分析,以探究其力学行为和性能。

在本实验中,我们选取了一种常见的金属材料进行测试,并使用了相关的测试方法和设备,包括拉伸试验、硬度测试和冲击试验。

通过对实验结果的分析与比较,我们探讨了该金属材料的力学性能表现以及对其应用的影响。

实验结果显示,该金属材料表现出高强度、良好的塑性和韧性,适用于各种工程应用。

1. 引言金属材料是广泛应用于工程领域的重要材料,其力学性能直接关系到其在工程中的可靠性和安全性。

因此,了解金属材料的力学性能是进行工程设计和材料选择的基础。

本实验旨在通过力学性能测试来了解金属材料的力学特性和表现,以提供工程实践的依据。

2. 实验方法和设备2.1 材料样品选择选取了某种常见的金属材料作为研究对象,样品形状和尺寸符合标准要求。

2.2 拉伸试验使用拉伸试验机进行拉伸试验,按照标准规范进行测试,记录载荷-位移曲线,计算材料的弹性模量、屈服强度、抗拉强度和断后延伸率等指标。

2.3 硬度测试使用硬度计对材料进行硬度测试,选择适当的测试方法,如布氏硬度或洛氏硬度,记录测试结果并计算平均硬度值。

2.4 冲击试验利用冲击试验机对材料进行冲击试验,记录冲击能量和冲击韧性等指标。

3. 实验结果与分析3.1 拉伸试验拉伸试验结果显示,该金属材料在加载过程中呈现明显的弹性阶段、塑性阶段和断裂阶段。

载荷-位移曲线呈现出典型的应力-应变曲线特征。

根据试验数据计算得到的材料力学性能指标如下:- 弹性模量:XXX GPa- 屈服强度:XXX MPa- 抗拉强度:XXX MPa- 断后延伸率:XXX %3.2 硬度测试通过硬度测试,我们得到了该金属材料的平均硬度值为XXX。

硬度是材料抵抗局部塑性变形和耐刮削能力的指标,较高的硬度值表示该金属材料具有较好的耐磨性和抗刮削性能。

3.3 冲击试验冲击试验结果显示,该金属材料在受到冲击负荷时具有较高的韧性和抗冲击性能。

金属扭转试验实验报告

金属扭转试验实验报告

一、实验目的1. 通过金属扭转试验,了解金属在扭转过程中的力学性能变化。

2. 测定金属材料的剪切屈服极限、剪切强度极限和切变模量。

3. 比较不同金属材料的扭转性能,分析其差异。

二、实验原理金属扭转试验是研究金属材料扭转性能的重要方法。

在扭转过程中,试样受到一对大小相等、方向相反的力矩作用,使试样产生扭转变形。

根据胡克定律和剪切应力与切变应力的关系,可以推导出金属材料的扭转力学性能指标。

三、实验设备与材料1. 实验设备:扭转试验机、游标卡尺、扭矩传感器、计算机等。

2. 实验材料:低碳钢、灰铸铁、铝等金属材料。

四、实验步骤1. 准备工作:检查实验设备是否完好,准备实验材料。

2. 试样制备:按照国家标准GB10128-2007《金属室温扭转试验方法》,制备圆形截面试样。

3. 试样测量:使用游标卡尺测量试样直径,计算试样抗扭截面系数。

4. 实验操作:a. 将试样安装在扭转试验机上,调整扭矩传感器,连接计算机。

b. 输入实验参数,如试样直径、材料类型等。

c. 启动实验,缓慢加载扭矩,观察试样变形情况。

d. 记录扭矩、扭转角等数据。

5. 实验结束:试样扭断后,取下试样,测量断口尺寸,计算剪切强度极限。

五、实验数据与处理1. 实验数据:记录扭矩、扭转角、试样直径、抗扭截面系数等数据。

2. 数据处理:a. 绘制扭矩-扭转角曲线,分析金属材料的扭转性能。

b. 计算剪切屈服极限、剪切强度极限和切变模量。

c. 比较不同金属材料的扭转性能,分析其差异。

六、实验结果与分析1. 实验结果:a. 低碳钢的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。

b. 灰铸铁的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。

c. 铝的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。

2. 分析:a. 低碳钢的扭转性能较好,剪切屈服极限和剪切强度极限较高,切变模量较大。

金属力学性能测定实验报告

金属力学性能测定实验报告

金属力学性能测定实验报告一、实验目的(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。

(2)学会恰当采用硬度计。

二、实验设备(1)布氏硬度计(2)读数放大镜(3)洛氏硬度计(4)硬度试块若干(5)铁碳合金淬火试样若干(ф20×10mm的工业纯铁,20,45,60,t8,t12等)。

(6)ф20×10mm的 20,45,60,t8,t12钢退火态,正火态,淬火及回火态的试样。

三、实验内容1、概述硬度就是指材料抵抗另一较软的物体装入表面抵抗塑性变形的一种能力,就是关键的.力学性能指标之一。

与其它力学性能较之,硬度实验简单易行,又迪代工件,因此在工业生产中被广泛应用。

常用的硬度试验方法存有:布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。

洛氏硬度试验——主要用作金属材料热处理后产品性能检验。

维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。

显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。

2、实验内容及方法指导(1)布氏硬度试验测定。

(2)洛氏硬度试验测量。

(3)试验方法指导。

3、实验注意事项(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。

(2)圆柱形试样应当放到具有“v”形槽的工作台上操作方式,以免试样翻转。

(3)加载时应细心操作,以免损坏压头。

(4)测完硬度值,刺破载荷后,必须并使压头全然返回试样后再摘下试样。

(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。

(6)应当根据硬度实验机的采用范围,按规定合理采用相同的载荷和压头,少于采用范围,将无法赢得精确的硬度值。

四、实验步骤1、布氏硬度试验布氏硬度试验是用载荷p把直径为d的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积a,然后再计算出单位面积所受的力(p/a值),用此数字表示试件的硬度值,即为布氏硬度,用符号hb表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伸长率δ(%)
拉断处位置描述




弯曲角度α(°)
弯心直径d(mm)
弯曲外表面描述
评定结果
压扁
试验
压板间距(mm)
压扁后外观描述
评定结果




冲击韧性值
(akv或aku)
常温
低温

金属材料机械性能试验报告
委托单位报告编号
工程名称委托编号
施工部位委托日期
规格种类记录编号
产品批号产地厂名
代表数量报告日期
项目
标准
规定值
试件编号




矩形、弧形试样或管壁厚度a0(mm)
矩形或弧形试样宽度b0(mm)
圆形试样直径或圆管试样内径d0(mm)
横截面积S(mm2)
屈服点σs(MPa)
抗拉强度σb(MPa)
相关文档
最新文档