2017全国数学建模B题
2017数学建模b题优秀论文

2017数学建模b题优秀论文利用数学知识解决现实生活的具体问题了成为当今数学界普遍关注的内容,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下文是店铺为大家搜集整理的关于2017数学建模b题优秀论文的内容,欢迎大家阅读参考!2017数学建模b题优秀论文篇1浅谈数学建模实验教学改革摘要:阐述了数学建模课程在大学生知识面的拓宽、全方位能力的培养以及人文素质的提高三方面的重要作用,提出了数学建模课程有助于提高学生的综合素质。
从数学建模理论课程和实验教学两者之间的区别与联系的角度提出了实验教学改革的必要性,最后针对数学建模实验教学的具体情况提出了实验教学改革的措施。
关键词:数学建模;实验教学;教学改革一、数学建模课程有助于提高学生的综合素质随着教育改革的不断深入,我国目前正在开展以“素质和素质教育”为核心的教育思想与教育观念大讨论。
在1983年召开的世界大学校长会议中,对理想的大学生综合素质提出了三条标准:专业知识要掌握本学科的方法论、具有将本学科知识与实际生活与其他学科相结合的能力以及具有良好的人格素质。
[1]数学是一切科学和技术的基础,数学的思考方式对培养学生科学的思维方法具有重要意义,因而数学的重要性是毋庸置疑的。
数学和各学科的相互渗透及其在技术中的应用,推动了数学本身的发展和各个学科理论的发展。
戴维在1984年说过:“对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价。
显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。
”数学的广泛应用性主要取决于数学的思维方式。
数学对于学生的培养,不只是数学定理的证明,公式、定义的理解,重要的是培养学生具备正确的思想方法,而且可以依据自己所学到的知识不断创新、不断寻找新的途径。
21世纪以来,数学建模课程的开设在国内高校中稳步展开,并获得了广泛认同。
参加数学建模竞赛的学校和人数逐年上升,数学建模课程的重要性得到广泛认可,越来越多的高校开设了数学建模课程。
2017数学建模B题问题1解析——“拍照赚钱”的任务定价

【 关键词】 拍照赚钱 ; 多元 回归分析 ; 插 值与数据拟合 【 基金项 目】 2 0 1 7年 陕 西省 教 育厅 科 学研 究项 目( 编
号: 1 7 J KI 1 7 7) .
依据最d x Z- 乘法原理 , 借助 S P S S软件对 n . , n : , 的值
随 着信 息 时代 的进 步 , 智能手 机的像素越 来越 高 , 拍 照 也 从 数 码 相 机 过 渡 到 了手 机 , 手 机 不 仅 可 以拍 出生 活 照 、 风 景照等 , 它还可 以用来拍照赚钱 , 只要你 的手机 能拍 出清 晰 进行估计 , 可 以得 到 表 l 一 表3 .
一. 3 8 8 一l 51 . 6 4 0 . o o o . 3 2 4 1 2 8. 1 21 . O 0 o
t
S i g .
4 2 9 9 . 7 0 9 2 2 . 3 1 6 . O o o
. 0 0 4 . 1 5 0 5 4 9
=
d x z. 乘法求解参 数. 以二 阶线性 回归模型为 例 , 求 解 回归 参
数 的标 准 方 程 组 为
0. 4 47.
所 以任务定价 与 G P S纬度 、 G P S经度 、 任务执行情况 的
函数 关 系式 为
Y =一0 . 0 1 8 x l一0 . 5 4 9 x 2+1 9 . 2 2 6 x 2+4 . 7 2 9 . ( 1 )
残 差 8 . 1 6 6 I o 8 9 2 6 2 9 1 4 8 3 1 . 8 9 8 总计 1 . 4 7 7 “ 8 9 2 6 5
. o o 0
因. 任务 G P S经纬 度与价 格 、 用户 是否 下载使 用 A P P存 在 着 非 常 强 的相 关 性 . 问题 1 : 建 立 执 行 任 务 情 况 与 三 个 自变
2017全国大学生数学建模B题

“拍照赚钱”定价分析随着现代互联网技术发展“拍照赚钱”已经成为时下一种热门的互联网自助模式,如何对任务进行定价的合理性显得尤为重要,本文针对题目重所给的信息数据进行归纳设计和总结,研究其定价规律,并建立模型。
针对问题一,本文对附件数据进行分析,将会员点在地图中标出,发现任务点集中在佛山,广东,深圳,东莞四个城市的会员进行聚类分析。
对数据进行线性回归分析,结果表明,任务的定价与周围用户的限额总量,周围用户的平均距离都与会员点的分布有很重要的关系。
最后通过比较未完成任务与已完成任务的相关矩阵得出距离对任务的完成的影响是显著的。
针对问题二,设计新的任务定价方案是一个优化问题,以最小成本完成最大化,将附件中数据在地图中展示,我们综合考虑任务情况与会员分布的互相影响,即任务对于周围的会员存在着吸附力ci = f(s,d),它与任务价格正相关,与距离任务距离负相关问题重述1.1 问题背景随着互联网+的发展,许多产业逐渐发生偏移,传统工作方式在互联网的渗透下,不再是自己传统的工作模式,工作人员不再限制,工作地点不再固定在一个位置,增加了人群就业,提高了工作效率。
国家也积极发展众包,即汇集众力增加就业,借助互联网发展,将特定的工作不再局限于一部分人,而是面向自愿参与大众人群,最大限度利用大众的力量,提高某些传统工作的效率,降低成本的投入。
‘‘拍照赚钱’‘便是面向大众的一种众包方式,最大限度的利用人力提高工作效率,用户下载APP,注册成为app的会员,然后在APP上领取拍照任务,完成在APP领取的任务,赚取佣金。
拍照赚钱的这一种方式,对于市场调查等一类工作有很大的帮助,减少了调查的时间,缩短了调查的周期。
可以在很短时间内完成一项调查的工作,提高任务完成的效率。
而且可以保证数据的真实性。
但是,app中的任务定价是核心要素。
定价的合理是否会影响任务的完成情况。
二丶问题分析2.1 问题一问题一需要分析出附件一中未完成任务的原因,问题一中我们对于未被完成的任务先进行三方面的分析。
2017年全国研究生数学建模竞赛B题

2017年中国研究生数学建模竞赛B题(华为公司命题)面向下一代光通信的VCSEL激光器仿真模型随着互联网技术的快速发展,家庭固定网络速度从原来的2Mbps、10Mbps,快速发展到了今天的百兆(100Mbps),甚至千兆(1000Mbps)光纤宽带入户。
“光纤宽带入户”,顾名思义,就是采用光纤来传输信号。
光纤中传输的激光信号具有远高于电信号传输速率的特点(激光信号传输带宽远大于电信号传输带宽),更适合于未来高速率的传输网络。
工程师们在光纤通信传输系统设计前,往往会通过计算机仿真的方式研究系统设计的指标,以便快速找到最适合的解决方案。
因此在进行系统仿真时,需要准确掌握系统中各个器件的特性以保证仿真模型的精度。
激光器作为光纤通信系统的核心器件是系统仿真中需要考虑的一个重要因素。
与我们生活息息相关的激光器种类繁多,其中的垂直腔面发射激光器(VCSEL: Vertical Cavity Surface Emitting Laser)具有使用简单,功耗较低等特点,一般VCSEL 的工作电流在6mA~8mA。
本题的主要任务,就是得到能准确反映VCSEL激光器特性的数学模型。
激光器输出的光功率强度与器件的温度相关,当器件温度(受激光器自身发热和环境温度的共同影响)改变后,激光器输出的光功率强度也会相应发生变化。
在进行建模时,我们既要准确反映VCSEL激光器特性,还要考虑:1.激光器输出的功率强度与温度的关系——即该激光器可以在多大的外界环境温度范围内使用;2.如何设计激光器参数可以使激光器具有更大的传输带宽(即S21曲线上纵坐标-10dB位置对应的横坐标频率值更大)——即可以实现更快的传输速率。
1问题1:VCSEL的L-I模型L-I模型,即激光器的工作电流与输出光功率强度关系模型(L:light,表示光功率强度,也可以表示为P ;I :Intensity of current ,表示工作电流)。
激光器是将电能转换成光能的半导体器件,能量转换的过程,也是电子的电能转换为光子的光能的过程,在转换过程中,伴随着电子的运动,半导体器件会产生一定的热量。
2017数学建模B题评阅要点

2017高教社杯全国大学生数学建模竞赛B题评阅要点
本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题来源于实际问题,要求对“拍照赚钱”项目中的任务进行定价,使得任务对会员有吸引力而不至于被会员所放弃,特别是那些处在比较偏远位置的任务。
问题1:在已经结束的项目中研究任务定价规律,分析任务未完成的原因。
理论上任务定价跟所有会员的限额、会员与任务之间距离有关,在已知的定价数据上,这是一个高维数据函数拟合问题,需要一定的降维处理;同样,任务是否完成也跟所有会员的限额、会员与任务之间距离有关,在已知任务完成与否的情况下,这是一个高维数据分类问题。
问题2:问题2要求对已结束项目中的任务设计新的定价方案。
不同的原则可能对应于不同的定价,一个好的定价方案应该考虑到以下几点:
1.任务定价的主要目的是在不提高平台的运行成本的前提下,尽量提高任务的
完成率。
2.定价方案应该对所有会员都有一定的吸引力,均衡性是一种可能的方案;
3.定价方案需要照顾到优质会员的利益,也要对新会员保留一定的机会;
对定价方案的评价可以模拟会员抢单,统计任务完成率进行评价。
问题3:问题3是考虑任务打包问题,按照一定的原则打包(比如就近打包和远近搭配打包等方式),在保证任务完成率的情况下节省成本也可以作为一个评价定价方案的新维度。
问题4:问题4就是将前面问题2和问题3的方案应用到实际任务之中,需要通过模拟用户抢单,统计任务完成率来对方案进行评价。
评阅时主要关注模型的合理性和正确性。
2017数学建模国赛题目

2017数学建模国赛题目(原创版)目录一、2017 数学建模国赛题目概述二、题目 A:空中交通管制1.题目背景及要求2.题目分析3.建模思路与方法三、题目 B:城市交通信号控制1.题目背景及要求2.题目分析3.建模思路与方法四、题目 C:新能源汽车充电设施规划1.题目背景及要求2.题目分析3.建模思路与方法五、总结正文一、2017 数学建模国赛题目概述2017 年全国大学生数学建模竞赛的题目分为 A、B、C 三个题目,分别涉及空中交通管制、城市交通信号控制和新能源汽车充电设施规划三个领域。
这些题目旨在考验参赛选手的数学建模能力、创新思维和团队协作精神,以及运用数学方法解决实际问题的能力。
二、题目 A:空中交通管制1.题目背景及要求题目 A 的背景是在未来,无人机和飞行汽车等空中交通工具将逐渐普及,如何有效地对空中交通进行管制以确保安全和效率。
题目要求参赛选手建立一个空中交通管制系统,通过优化算法和数学模型对空中交通进行实时监控和调度。
2.题目分析此题需要参赛选手充分了解无人机和飞行汽车的运行特点,以及空中交通管制的基本原理。
此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现空中交通实时监控和调度的数学模型。
3.建模思路与方法首先,需要对无人机和飞行汽车的飞行数据进行收集和整理,建立一个飞行数据库。
其次,根据空中交通管制的基本原理,建立一个空中交通管制的数学模型。
最后,运用优化算法对模型进行求解,实现空中交通的实时监控和调度。
三、题目 B:城市交通信号控制1.题目背景及要求题目 B 的背景是城市交通信号控制问题,要求参赛选手设计一个信号控制系统,使得城市道路交通更加顺畅、安全和环保。
2.题目分析此题需要参赛选手充分了解城市交通信号控制的基本原理和方法,以及道路交通流的运行特点。
此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现城市交通信号控制的数学模型。
3.建模思路与方法首先,需要对城市道路交通流的数据进行收集和整理,建立一个交通流数据库。
2017年数学建模B题问题一与问题二解析

2017年数学建模B题问题一与问题二解析“拍照赚钱APP”是基于移动互联网下的一种信息共享平台,其成功与否与任务发布者的出价密切相关。
基于此,主要研究其的任务定价问题,采用多元线性回归模型,借助SPSS软件处理数据,并通过分析任务所在的经度、纬度、任务完成情况三个影响因素对任务定价的影响。
此外,借助插值和拟合模型求出原方案的拟合函数,利用MATLAB计算出定价的理想值,并设计新的定价方案,利用AHP和原方案进行比较,得出新方案优于原方案。
标签:任务定价;多元线性回归模型;插值与拟合模型;AHP“拍照赚钱”是一种基于移动互联网络的自助式劳务众包平台,其成功与否与任务发布者的出价密切相关,因而任务定价成为该平台的运行核心。
根据数据信息剔除附件一的异常数据,筛选出有效信息。
1 问题一的模型建立与求解1.1 确定影响因子分析附件一的数据,任务定价作为因变量,其它因素作为影响因子,即:(1)任务GPS纬度。
(2)任务GPS经度。
(3)任务执行情况。
利用MATLAB得出图1。
1.2 模型的建立与求解多元线性回归分析一般模型为:y=β0+β1x1+…+βmXm+εε~N(0,σ2)(1)式中β0,β1,…βm,σ2都是与x1,x2,…,xm无关的未知参数,其中β0,β1,…βm称为回归系数。
利用n个独立观测数据(yi,xi1,…,xim),i=1,…,n,n>m ,由(1)得:yi=β0+β1xi1+…+βmXim+εiεi~N(0,σ2),i=1,…,n(2)记X=1 x11 … xim… … … …n1 xn1 … xnm,Y=y1…yn(3)ε=ε1 … εnT,β=β0 β1 … βmT表为:Y=Xβ+εε~N(0,σ2)(4)其中E为n阶单位矩阵。
模型中的参数β0,β1,…βm用最小二乘法估计,即应选取估计值βj,使得当βj=βj,j=0,1,2,…,m时,残差平方和Q=∑ni=1ε2=∑ni=1(yi-β0-β1xi1-…-βmxim)2(5)达到最小。
2017年国赛建模b题.doc

2017年国赛建模b题.doc1.寻找可能与现有定价方案有关的因素,研究附件一中项目的任务定价规律并分析任务未完成的原因。
2.基于上述原因的讨论,设计新的任务定价方案并与原方案的效果进行比较。
3.实际情况中,某些位置如市中心的任务点较为集中,从而导致用户争相选择,限制了其余任务的接受度。
通过将这些任务联合在一起打包发布的方法,修正已有的定价模型并分析对任务完成情况的影响。
4.结合前三问分析讨论,给出对附件三中新项目的定价方案,并评价该方案的实施效果。
其中附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况;附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额;附件三是一个新的检查项目任务数据。
解题思路:1、对研究任务定价规律的问题,我们可以先观察附件所给的任务点及会员位置,并对两组点进行聚类,分析点分布与任务定价之间可能存在的联系;然后令所有可能的联系作为定价的影响指标,通过灰色关联分析的方法确定其间的相关程度;选取相关度较高的指标作为拟合因子,与附件一所给数据进行拟合得到拟合关系式,即为我们求得的任务定价规律;最后我们需要对拟合结果与实际结果作图对比,讨论造成误差的原因。
对分析任务未完成原因的问题,我们可以采用支持向量机的方法以任务完成与否为标准,选取价格和不同影响指标分别进行分类,最终分析结果讨论可能的原因。
2、问题二的新的定价方案设计问题实际上是一个优化问题。
由于附件一中任务定价存在某种不合理性导致了任务完成率低下,从企业定价的角度考虑,一个较优的定价方案应当让企业化费尽可能少的成本去得到更多的市场调查信息,因此,我们将设计新的定价方案看做个双目标优化问题,即在各种约束条件下设计出一个可以使得成本最小化、任务完成率最大化的定价方案。
在考虑最优定价方案时,不能完全从发布任务的企业角度来考虑,应当考虑到现实中任务被会员预定的过程中存在的规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目摘要1问题的重述基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。
对于整个过程当中,任务的定价问题成为了核心关键。
当定价过高时,商家所付出的代价太大;当定价过低时,会员拒接此类任务,最终导致商品检查(任务)失败。
请讨论以下问题:问题一根据对所给的附件一已结束项目任务数据的研究,研究(找出)项目任务的定价规律,同时分析部分任务未完成的原因。
问题二根据问题一的情况为附件一中的项目设计一个新的任务定价方案,并且与原方案进行比较。
问题三考虑到实际情况中,绝大多数用户会争相竞争选择位置比较集中的多个任务,因此,商家(平台)考虑将这些任务联合在一起打包发布。
基于这种条件,对问题二的定价模型进行相应的修改并且分析此类情形对最终任务的完成情况有什么影响。
问题四根据前三问分析所建立出来的定价模型给出附件三中新项目的任务定价方案,并且评价该方案的实施效果。
2问题分析“拍照赚钱”的任务实际上就是通过劳务众包的方式进行工作,所谓众包就是将原本由企业内部员工完成的任务,以开放的形式外包给未知的且数量庞大的群体来完成。
在本题所涉及到的自助式劳务众包平台,企业将所需搜集的信息通过APP这个平台,展现在大众面前,大众根据自身情况来对一系列任务进行选择性的完成,最终得到相应的奖金。
问题一中对于任务悬赏金额量的确定是由一系列因素决定的,包括任务发布者所期望得到的作品数量、同期不同发布商所给的悬赏金、任务的难易程度、任务的期限等,对于问题一我们可以将这些因素都考虑进去,挖掘出各因素对于定价的影响规律,最终确定项目任务的定价规律,在综合分析实际情况和用户的信誉程度影响,来归纳出任务未完成的原因。
问题二中对于任务未完成情况的再分析,在问题一建立的模型的基础上,再考虑任务量,交通便利性等因素,将这些因素考虑进去之后,充分考虑任务点周围会员的信誉值情况,讨论任务未完成跟低信誉会员之间有什么关系,建立新的任务定价模型再给出新的任务定价方案,最后结合计算机对任务进行模拟仿真,得到在新任务定价条件下的各区域任务完成率和总完成率,将这个指标与之前的指标进行比较,可判断新任务定价方案是否优于模型一。
问题三中对于任务分布聚集规律提出打包的思想,将几个分布较近的任务进行捆绑,所以问题二中对于会员信誉值的考虑方法不再适用于本问题,所以要提出另一种思路对信誉值进行考虑,同时会员选取任务包时会被预定任务限额所限制,所以在该模型当中应该将这个因素考虑进去,充分结合任务包内各个任务的分类情况以及任务包与任务包之间的距离提出两个修正因子,将模型一进行修正,最后还是通过任务完成率分析该模型的可行性。
问题四就是直接将附件三中的数据代入模型二当中得出相应的任务赏金,最后通过建立一个评价模型来对整个模型的实用性进行分析,得出该方案的评价结果。
3符号约定赏金关于会员数量因素的赏金会员的预定任务限额单个任务点周围分布的会员数量任务包之间的距离4模型的假设1.在计算任务点周围的会员数量时,假设在2000米内为任务点的周围。
2.本城市的会员只会选择并完成本城市的任务不会去完成其他城市的任务。
3.任务的定价只与内部因素有关,不受外部行业的影响。
5问题一模型的建立与求解5.1模型的准备对于任务悬赏金额量的确定是由一系列因素决定的,包括任务发布者所期望得到的作品数量、同期不同发布商所给的悬赏金、任务的难易程度、任务的期限等,对于问题一我们可以将这些因素都考虑进去,挖掘出各因素对于定价的影响规律,将总的任务区域划分成4个不同的区域分别为广州区域、佛山区域、东莞区域、深圳区域,计算完成透视率和判断是否存在资源过剩情况。
5.2区域划分通过对附件一的数据进行提取可以得出所有任务的分布区域如图1所示:图1 任务分布图从图一可以看出附件一所给出任务分布在四个市,分别为广州、佛山、东莞、深圳,任务的分布特点是离四个市市中心越近的区域任务越多,而对于距市中心较远的地方任务分布较少,因此本文通过对任务进行分类聚合,把任务分布规律相同的点放在一起进行讨论,将任务分布区域划分为四个板块。
对附件一的数据进行再分析通过MATLAB可得不同任务的悬赏金额如图2所示:图2 任务悬赏金额分布图根据图1我们可以看出任务分布主要集聚在广州市、佛山市、东莞市和深圳市,在此对问题进行分析,可以将不同地区的同一任务简化成四个分布在同一地区的同一任务,分别为广州区域、佛山区域、东莞区域、深圳区域。
根据附件一中各种任务的完成情况,可以得到任务是否完成的分布图如图3所示:图3 任务完成分布图因为这四个区域都是属于同一任务,所以四个区域任务的情况大致相同,表现为任务完成规律大致相同,任务分布规律大致相同,所以四个区域的任务定价规律也应该是大致相同,在此对广州市进行分析,得到的结果同样也应适用于其他三个区域。
因此本文首先考虑广州区域,同理可得其余三个地区的情况,最后可以得到四个区域的任务情况。
5.3单个区域APP定价模型的建立对数据进行筛选之后只考虑广州区域的任务分布如图4所示:图4 广州区域的任务分布图从图4可以看出在广州区域内,大部分的任务都聚集在市中心而且聚集在市中心的任务都是赏金最少的,而距离市中心较远的任务赏金会增加。
因此可以得出结论一:赏金数额与任务地距离市中心远近有关,并且距离市中心越近,赏金数额越少。
结论二:赏金数额与任务地周围会员分别数量相关,任务地周围会员分布越多则赏金越低。
5.3.1路程因素的影响从图中可以得到任务到市中心的距离与任务赏金成正相关,即距离市中心越远,任务赏金越高。
通过对数据的提取运用MATLAB在图中标出相应的任务点,最后通过MATLAB进行拟合可以得到相对应的函数关系。
P表示任务的赏金数额,k表示任务地距离市中心的距离。
通过在此用1MATLAB对这两项数据的拟合可以得到结果如图5所示:图5 赏金数额与距离关系的拟合结果通过图5我们可以得出赏金数额与距离市中心距离之间的关系:5.3.2会员数量因素的影响结合附件二可以得出分布在广州区域的会员位置信息如图6所示:图6广州区域的会员位置信息根据图6可以看出,在广州区域的会员当中,在市中心的会员数量占很大的比例,而在市中心的任务数量也很多,但是通过查询附件一的标价可知,市中心任务的悬赏金额较低,所以可以得出任务点周围的会员数量与任务赏金成负相关,即会员数量越多,赏金越低。
通过对数据的提取运用MATLAB在图中标出相应的任务点,最后通过MATLAB进行拟合可以得到相对应的函数关系。
P表示任务的赏金数额,k表示任务地周围分布的会员数。
通过在此用2MATLAB对这两项数据的拟合可以得到结果如图7所示:图7 赏金数额与会员数量关系的拟合结果通过图7我们可以得出赏金数额与任务地周围会员数量之间的关系:5.3.2综合定价模型的建立因为考虑到距离和会员数量不是单一的影响任务定价因素,任务定价是将这两种因素综合考虑得到的,所以任务定价模型要将这两种因素综合考虑进去。
任务地距离市中心的距离和任务地周围会员数量都会影响任务的定价,所以可以得出任务定价的基本式子:已知αβ、是为决定任务价格因素的参数,前面所得的12P P 、都是根据自己的参数所确定的定价,所以αβ、要满足+=1αβ,根据具体评优问题的实际,充分考虑各类因素K O 在评优中所起的作用的大小,构造出成对比较矩阵22()ij A a ⨯=,A 是2阶正互反矩阵。
求A 的最大特征值max λ及相关的特征向量,并对特征向量作归一化得由随机一致性指标0RI =,计算一致性指标(1)CI 和一致性比率指标(1)(1)CI CR RI=,若(1)0.1CR <,则说明0W 可作为权向量,否则要对A 的元素进行调整。
现构造出比较矩阵22()ij A a ⨯=,再根据上述方法得到该矩阵的最大特征值及最大特征向量,在进行归一化可得到权向量0(0.67,0.33)W T =,再由组合一致性检验得到(1)0.1CR <,所以这个向量可作为权向量。
根据上述内容可得出任务定价的模型:5.4模型的检验为了检验上述参数的可行性,本文再次提取附件一和附件二另外十组数据,代入任务定价模型中,结果如表2所示:行对比可知上述建立的任务定价模型适用于这次任务的定价情况,所以模型一任务定价模型具有一定的可靠性。
5.5任务未完成原因的分析根据附件一反馈的信息可知,不是所有的任务都成功完成,在835件任务当中只有522件任务被成功完成,根据图3所示,绝大多数未完成的任务都分布在广州市、佛山市、深圳市市中心。
通过计算可以得出各个区域的完成率以及总完成率如表3所示:表3 完成率情况率。
在此,先分析理论基础,动机理论表明:人们的某个行为都是出于一定的动机。
用户参与大数据众包活动同样是受到刺激而产生参与的意愿,这种刺激可能最初来自于外部,如金钱或物质奖励,也可能来自于内部,如享受乐趣、能力提高以及自我肯定等【1】。
动机理论能够直接从心理学和行为学的角度来分析用户行为的思想、行为的意向以及实际的行为。
所以本文认为动机理论在分析用户选取任务时,个人动机占很大的因素,其中不乏有接受任务消磨时光的存在,但是大部分会员都是抱着获得外部奖励去的。
会员们会考虑自己完成任务后得到的奖励报酬与付出的努力是否相对等,如果付出的努力大于所得的报酬,那么会员就不会接收该类任务,然而这只是任务未完成的因素之一。
根据图8所示的任务完成情况与会员分布图可以找出未完成任务的一些特点图8 任务完成情况与会员分布图根据对图8中的会员信息分析可得,在未完成的任务地点周围都分布大量的会员,但是这些会员的信誉值都普遍不高,有些还很低。
通过分析得到任务未完成的原因可能是:1.在未完成任务点周围的会员都是低信誉会员,这类会员接受了任务因为自己的原因而不去完成任务。
2.在这些低会员当中,大部分抢占了人物资源导致高信誉会员接受不了此类任务。
3.这些未完成任务的赏金普遍较低,对会员的吸引力不大,经过综合考虑效率,会员接受此类任务会导致单位时间收益偏低。
4.对于距离未完成任务点的高信誉会员来说,路程较远是他们放弃任务的主要因素。
6问题二模型的建立与求解6.1模型的准备通过问题一的分析本文得到了简单的任务定价模型,但是根据附件信息可知,任务完成情况差,根据问题一所列出的任务未完成的原因,经过图像对照,其中任务点周围充满了信誉值低的会员,因此该问就是解决问题一任务定价模型存在的不足,对模型进行完善和改进,最终得到一个新的任务定价方案,最后根据新的任务定价模型得出该任务的任务完成率与原方案进行对比,说明新模型是否可行。
6.2 改进定价模型的建立考虑到会员的信誉值分布较广、波动较大的特点,以及各个信誉值人数的关系,本文将信誉值在20以下的会员定义为低信誉会员,信誉值在20以上的会员定义为高信誉会员,因为未完成任务的地点周围都存在大量的低信誉会员,所以这类任务的完成情况与这些低信誉会员有很大的关联(如图9所示)。